{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Lab04 Exercises\n", "UW Geospatial Data Analysis \n", "CEE467/CEWA567 \n", "David Shean" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Goals\n", "* Review some fundamental concepts that are common to most geospatial analysis\n", "* Learn basic operations with Geopandas\n", "* Explore coordinate systems, projections and transformations, geometry types\n", "* Understand how different projections can distort measurements and visualizations\n", "* Create more sophisticated visualizations involving multiple layers and data types" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Part 1: Exploring CRS and Projections" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Import necessary modules" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import geopandas as gpd\n", "from shapely.geometry import Point, Polygon\n", "import fiona\n", "import pyproj" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#%matplotlib widget\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Load sample vector data: world polygons\n", "* See example (and lots of relevant info): https://geopandas.org/projections.html\n", "* This GeoDataFrame containing attributes and Polygon geometries for all countries is conveniently bundled with Geopandas" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Inspect the world GeoDataFrame\n", "* Review the columns\n", "* Note geometry types: both Polygon and MultiPolygon - why the difference? 🤔" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
pop_estcontinentnameiso_a3gdp_md_estgeometry
0920938OceaniaFijiFJI8374.0MULTIPOLYGON (((180.00000 -16.06713, 180.00000...
153950935AfricaTanzaniaTZA150600.0POLYGON ((33.90371 -0.95000, 34.07262 -1.05982...
2603253AfricaW. SaharaESH906.5POLYGON ((-8.66559 27.65643, -8.66512 27.58948...
335623680North AmericaCanadaCAN1674000.0MULTIPOLYGON (((-122.84000 49.00000, -122.9742...
4326625791North AmericaUnited States of AmericaUSA18560000.0MULTIPOLYGON (((-122.84000 49.00000, -120.0000...
\n", "
" ], "text/plain": [ " pop_est continent name iso_a3 gdp_md_est \\\n", "0 920938 Oceania Fiji FJI 8374.0 \n", "1 53950935 Africa Tanzania TZA 150600.0 \n", "2 603253 Africa W. Sahara ESH 906.5 \n", "3 35623680 North America Canada CAN 1674000.0 \n", "4 326625791 North America United States of America USA 18560000.0 \n", "\n", " geometry \n", "0 MULTIPOLYGON (((180.00000 -16.06713, 180.00000... \n", "1 POLYGON ((33.90371 -0.95000, 34.07262 -1.05982... \n", "2 POLYGON ((-8.66559 27.65643, -8.66512 27.58948... \n", "3 MULTIPOLYGON (((-122.84000 49.00000, -122.9742... \n", "4 MULTIPOLYGON (((-122.84000 49.00000, -120.0000... " ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "### Check the coordinate reference system (crs)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Look up this EPSG code online\n", "* See top of `crs` output\n", "* Burn this code in your brain\n", "* What are units? ✍️" ] }, { "cell_type": "markdown", "metadata": { "tags": [ "hide_content", "hide_output" ] }, "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot the GeoDataFrame using the convenient `plot` method with default settings\n", "* Note that this is a 2D representation of geographic coordinates (lon,lat), known as Equirectangular, Equidistant Cylindrical, and \"Plate Carrée\" (flat square in French) projection\n", "* https://en.wikipedia.org/wiki/Equirectangular_projection" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAADACAYAAADhsRM0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABvyUlEQVR4nO2dd3gc1dm377O9aVer3rvkbssdYzCY3ntPAglJCClvGmmk1/dNbx8BAoQUAiGhE0LomGLj3rvVe9c2bd893x+7kiWrWLIlq3ju69Il7ezOzNnV7DPnPOX3CCklCgoKCgozE9VkD0BBQUFBYeJQjLyCgoLCDEYx8goKCgozGMXIKygoKMxgFCOvoKCgMIPRTPYA+pOSkiILCgomexgKCgoK04pt27Z1SClTh3puShn5goICtm7dOtnDUFBQUJhWCCFqh3tOcdcoKCgozGAUI6+goKAwg1GMvIKCgsIMRjHyCgoKCjMYxcgrKCgozGCmVHaNgsJQNDt9HGxxEwpHCUaiRCVoVAK1SvT7rUKtEqQm6MmxGzFo1ZM9bAWFKYFi5E9TguEovmCEbm+Q2i4vu+sdGHVqrAYtz+5ooM0dwO0PEwxHiUYleq0akLFtkSg6tQqdRoVeo0avUaHXqPr2X5yXyG0r88hONBIIR+kJhPGFIvQKnqZZ9QgEB1tcOH0hilMtZFgNPPxeFe9XdHCwxU2HJ4BaxAx4IBwd8j0IAXlJJgAiUYlBq8asU6NWCTJsBgpTzFw8L4MF2TaEEKfok1VQmFooRv40oc3lZ0e9A41KoFWr+PP6at4+1D7q/d2B8IDHgXCUQDiKmzCpCXpuWZ7L6tJkPP4wra4Atz+6mSaHD39osIE26dSEI5Jg5OhzQoDVoCUQjvTtE5aScHR4KWwpoa7LS3+1bLtJS7rVwObqbhq6fSQadTyzrYHOniDd3iCdniA9wTDJZj3LC+x8+twSksy6UX8OU51o/PNSqabOTc0filDZ7qHNHSDXbqI41azcdE8hYirpyS9btkwqxVDji5SSe/61i2d3NPZtSzBoKEmzkGrRk5agR69Vc7jVjVGrJhCOsqm6c0jj3ItaJchKNHD7GQVcuiADpy/En9fX8Oq+Ftz+8LD7TSYWvYZzZqVydkkKKwqTyE82ox5nQxiNSto9ARq6fczLsuL2h9lV70CnUbGn0cmhFjfeYBi9Rk2Dw0eqJeZaunJRFkvz7Sd8zo6eAE9va8AXjFCcaiHRpOXM4hR0mskNuUWjknePtPO1p3fT5g70bc9ONHLbyjxuW5GHfQbdYCcTIcQ2KeWyIZ9TjPz0wRsMs7PeQYY15oronQ1Vtnt4dnsDUsbcF/OzbczPtrG30YnDG6I03Uxdl4/HPqjlxV1NA465LN/OisIkDjS7RpzZXzQ3nY+fVUiGzUB6gp5Gp5+Gbh/1Xd7YT7eXDZWdOLyhCf0MTpR7L53NJ88umtAZbrPTxyf/tpW9jS6EYNAK46pFWZwzK41Ui55gJIJRqyHBoCHHbpzRM9v6Li9vH2rjUIubVlcAhzeISa/hjlX5vLqvBU8gzLwsG6tLUijPTZzs4U5LJtTICyFmAf/st6kI+C6QCHwS6LUc35RSvjzSsRQjH8MXjNDo8BKKSKxGLdmJRoLhKH/fWENtl48L56ZxVslRmYpoVNLq9hMIRanq8FDT4eXyhZm4fCFe2t2MSadmfraNsnQLnkAEhzeIBFItev69u4m9jU521jlocvoHjEMIWF6QxLWLs1lRmERxqgWHN8gj71VzsMVFhyeIyxeiwxPANUVn8L28ec85FKdaJvw8Uko2VXfxzy31PBdfPRUkm/jqxbO5fGEm7xxu5w9vVXDRvHRuWJpDoun0nMmGI1H+vbuJSBQ0KnD4QmTZjKwpS1WC5ifAKZvJCyHUQCOwEvgY4JFS/nK0+5/ORl5KyfsVHfx9Yy3vH+mgIMVMQYqZW5fnolGryLIZybAZ0GlUbKvtYt2hdj65pgirQTvgOBVtHhodPmo7e7DoNawsSuLR92vwxv3QwUiULJuB21flc/+6SnY3OKnt9CKRmPUatGoVHe4AnT1BLluQwRULs1hdkjJovK0uPw+/W8U/t9b3uWhUAjQqFdHj+NJPJclmHR9bXcDS/CTOKEo6ZTNmfyjC1ppuDra4uGBOOgUp5lNy3tEgpaTDE8TpC+Lyh2lz+dnd4KTVFWBZgZ1bV+RN2HmFEDi8QQ40u4lKyW/fOMyWmm4ArAYNszISOH9OOoG4u1CjFsxKT2BJvn1GxU7Gm1Np5C8CvielXC2E+D6KkR81UkqanH78oQiZNgMmnYb3jrTzjWf2EIlKtJpYmmBZuoXiVAtPbqnHqFWj16p48MNLKUtPAOCR96p453A77x3pwG7S8s5X1/LGgVYq2z1cU57Nd1/Yx6bqTmZlWFlZmIRZr8ak09DhCdDuDuAPRdCoVJSkWfjM2mJMupFj86FIlHBEotOoBvi4w5EotV1edtQ5+PVrhwatEk4leUkm/vuFszHrT888A38owgdVnWyt6WJ3g5N9TS6SzToW5iRSnGamKD6hyEsyHff/fTxanH5aXH62VHdR0ebBEwxzqMVNfZeXUCRKps1Io8M35uPOz7by+CfOwGbUHv/Fo+BAs4vbH91MuzuARiUw6dTkJ5spSbPwrcvnUNvppardQ4pFT4bNwKz0hCkVzD6WU2nkHwW2Synvixv5jwIuYCtwj5Sye4h97gLuAsjLy1taWzusmNqMZUNFBxurOukJRrDoNWTYDGjVKpLNOlYVJ2PQqjnU4ua9I+2kWw2UpSeQYTNg0qnRqgcH1yJRSTAcwaBVIyVUtHtYf6SDBKMGi15DKCxBQLc3iCcQRgAGjYoEow6tWtATiJCXZGJlUdKQxx8rgXCExzfW8aP/7OdUh4DMOjW3rMjjnovKTtqATUf2N7l4cksdf/uglhSLnrvPKeLCuenkJ5/8yiIalXiCYdRCIIFNVZ188m9bGa9FXFGKmVtW5HLp/EwSTVoSDONj4Hvp7glypM1DVqKBcDSKQaNGo1aRYtED0NUTpMXpJ9GkJSvROK7nHm9OiZEXQuiAJmCelLJVCJEOdAAS+BGQKaW8c6RjnI4z+UhU8p0X9vLEproB29MT9CzKTSTJrMNi0HD9khw6PUHK8xJp7PaRYtHx2v5Wajt6aHUH+O4Vc7GbdRxscfGT/xxgW203eo2Kb18+l3Akytef3YNOraI8L5EPn5HP2lmp/Oil/Wyq7iLRpOPrF8/igXcqqWzzkGM3ccn8dP69u5kUsz62hF+ZN8g1NFZe29fCV57adUr890LAdYtzOG92GquKk0/Lpf6/dzXxm9cPU9XRw41Lc/jmZXNGlc2yvqIDtz9EaoKBBdk2ZLw+otf4QSzYf8lv3yUUOTV37dykWFyq2xvCoFFh0Wu4YlEWuXYjem0sJfdnrxwk2axDoxbkJZm586wCziwe7GrsTyQS5R9b6qnr8pKdaOCmZbkYp+FkYCQjP57v5lJis/hWgN7f8QE8DLw0jucahMsfIhCKkmLRTatMhVf3tfDWgba+x0atml/ftIinttbz2v6+j5BH3qsGQKdWEYxESbHoWV2SzAs7m0g261DF33MoLCnPTaSqvYdGh49fvnaIxz+xgsvmZ3DRvHSuLs9GCMFf1lfzr60NANR2erntkU1952py+ukJxvLfN9d0se5wG//d28KFc9O5a00RHn/4hFLfZmdYsZt1+EKRCTUOGpVgdUkKWYkGLluQMa2uh/Hibx/U8KOX9hOKSM6bncbPb1h43M8hHInyxOY6vvvCPiCW6vjXO1fwQWUHFW0eTHoNexudcZeikbQEwwm5Xk6E+q6j5wmGo7j8YR56t2rQ65y+WHbX4VYPahWsKkpGCMHuBgfpVgMalaDDEyQvyURnT4DX97fyg3/v79v/ey/uJ8GgwW7SkWjSkmjSceHcdG5aloNeM3EB4XAkimYcVs1DMZ4z+SeBV6WUf44/zpRSNsf//hKwUkp5y0jHOJmZ/Pa6bnbVOzh/djp5yaYx7RsIR6hq72FXvYOqjh7qu7xsru6iIMXMqqJkQpEoZ5WmkGDQIoDCVPNJz2obur1kWA1o1CqklGys6iIcjTIn00qKRU+nJ8Af3q6kqsODSgj8oQh7GpyDipJ6WVOWys3LclldkkyiSUc4EsXtD5No0nL9AxvYXucA4JJ5Gfz65kVICb9/60hfodBoLwO1ShCJSi5fmMnSPDvzsqysKBx9QHNHXTfP7WhkSzwoOd7um0STlh9cNY/3j3TQ5g7wk2vnk2Mf2/UwkUSjEklsJvzQu1X4ghF8oVjl8ZxMK+fNSuO82Wkn7f+NRiVNTh9/WV9DTzBCaZqFW1bkjuiyuuPRzbxz+Ggarc2o5am7V/G/Lx9ge213XwHcdGJ2Rixo+68t9QOSAY5NcT0eJp2a1SUpFCSb6AlG8AZild82o5ZVxSlctSjrhMfoD0V4dnsjt6088YD3hLtrhBAmoB4oklI649seA8qJuWtqgE/1Gv3hONXuGikl2+u6+dRj2+nwBI6/Qz90GhVWgxarQYM3GKEsI4EluYmY9RrmZ9tYXmAnEI7yxoFWGh0+BIINlR0caHZTlGpmb6OTDJuByxdk0uz0U5pmYVeDg6IUCyuLkihNS0Al4N5n91Dd0UNdl3fIjJVks45g3KADXF2exT0XziIiJV99ahdmvYY1ZSnsqHPw0u5mzDo1Hz+7iDtXFyCEwGbU4g9FuO+tCrbWdmHSqSlINjM3y0qO3YSUsLm6i/vXVQz7Bb94XjoPfGjpqAzTq/ta+OuGGnLtJiJS8vS2hjF97qNhdkYCVy7K4qpFWeQmTb6Bd/lDPLGpjjf2t+Dwhahq7+nzW8/OSCAYjhKORgHBquIkBJCaYGDt7DTSrQaSzbpxTSs80urmoXerSInr/CzOtTMnM4HndjTys1cO0uo6+l14/UtruP3RzTRPYuB8qpNi0fOF80vwh6J0e4OoRExDSatWEYlGuXJRFgdb3Hz7+b0kmXXYTVoiUdCqBSVpFsrSE1hdknJSLsXTohjqiU11bK7u5OJ5GaydnTbil8IbDPPDf+/n7UNtAy7ok2VlYRKbqrsA0GtUqITAF4qc8PFMOjWpCXrmZ9n41DlF7GtyYdFr0GtUJJq0PLOtkdquHjKtBq4szyIYjnJGUXJf7vUre5vZWN3FmtIUwhHJXY9t6zv23EwrFe0eXvviGlIS9Fzzh/VUtHkAWJSbyDN3r+pbPrY4fTy1tQGNWvDWwba+lDeIBTY/urqAi+ZmUJxmwTKKDJZmp48/vlPFS7ub6PAET/jzSU3Qk2s3kmzRk51opCTNwjllqVPCsAM0Onz8dUMNm6o6MWjV+EIRajt7mJsZq4aNSElFm4dQRJJi0aEWglb34OtRrRIszbdzwZw0zp+T3pfv3+z08fTWBnKSjFy5MAuNWkU4EuVAs5tN1Z1srOpkZWEyBp2adlcs66W6o4dVRcn8eX3NgFVhdqKRC+emMy/Lyree29snOXHR3HS+c8Vc1vzi7VMeNJ8pWPSxgreDLe5hX5OaoGfLty444XOcFkb+j+9U8n//PQjElpl3ri5kRWESEkl2onHIbILazh5+9spB3jrYNmIZ/2jpb+THEyFihUtCgDcYwe0P91WpHisjYDXEMmgcvlCfPkyyWUdnz9DG9JyyVOq7vVS19/RtO7M4mcc/sbLPBfP6/lbWV3Tw+fNL0agFF/zqnQFl6v25dUUut67IIy/JNGyhz9ee3tUXDzgR1CrBPReVcdfZRRPmxzxZHt9Uyw9e3MfcLBs76x2Dnl+aZ2db3cBksyV5iX1uNYitFoNDrJ5+fdMirluSQ7PTx6W/e4+PnlnADUtz+OM7VTyzvQFv8MQnFv3JsRv53S2L2VrTxS9ePTRlah9mIikWPVu/rRj5EfnX1npe2NnI+opOIBag1GtUuANhVALuPqeYr148C5c/zHPbG9hS082uBgcrCpIIRSX/Pqbc/0SYKCM/0RSlmPnqJbPQqFTMzkgYdiYciUou+e27HInP+Hv59uVzsOg1/PK1w3R4AhSlmvnrx1YMe5x/bK7j3mf3jHp8Jp2a0jQLxWkWynMTuXheBulWw4j7vLCzkae2NlCSZuHM4mTeO9JBskXHngYnFe0evhavQB1vAuEI339xP//YXMeyfDtbawdlDVOUYmZNWSr7m11s7ne9pCboCYYjOH2xa/aKhVncfU4xbW4/h1vduP2xYHibK8Dbh9ooSbPw5oE2PMPEaU6WC+aksbvBOewNXWH8mEgjP/1yhYbhzOJkrl+SQyQqaXX5uX9dBW8caCPdZuDVL67pK9SxGjTkJZv4z55mNCrB7kZnnxE51nidDszOSOCn1y3g5oc2MjvTyiXzMrhwbjolaTGXwAs7G/nN64cBSDTpqO3yDjrGg+9UceuKXJ686wxqOno4qzRlRHfZrSvy6HAH+FX8uCPxybMLuffSOWMORF4wJx1PIMwPXtzPXzbUDHr+me0NnD9nZLfeWKnt7OFzT+xgT6OTFYVJAwx4LwtzbDz76TMJhKP8c0s9+5tcfUY6Eo0VlgFEJby4q4mbl+cyN9PKq/taWF6QRE1HD/e9XQHAvibXuI19KN7ol/WlMDFoVIK5WVZWFSdP2DlmzEx+KKLRWHl9fbeX2s4eEgxalubZ+wxGKBIlEo0FX1/f38qf19ec1Pmm00z+lzcuYnZGArPSLbx7pIMfvrSfBdk2Lpybzvbabpbk27m6PBspJb5QBKNWjRACpy/EU1vr+cnLB5AyFjwqTDFzuNVDSZqF1764ZlQGud0d4OaHPhjgJjqWHLuRf35qFdknWIjS1RPk5T3NNDl8NDv92IxalhXYWV6QdNyVwFio7ezhz+treGJTHVEZZW6mjeqOngE+b7NOzc3L87hrTSEv7W7mvrcrhhRzW5pvZ1u/2b9KwMKcRPY1OU9ZTrrCqeWiuek88OGlJ6WKelq4a46HlBJ3INyX+tji9HPXY1vZ0+gct4DSdDDyt6/K56ZluczPtg3YHo1KnL4QD75TyW0r80hLMLC/2UVWooHndzSRn2zCbtLh8AZZOzuNrp4gbx9qY0NlJy5fiCsXZpFtNw6pczMc3mCYrz+zZ0hX2RlFSTz28ZXjUnE7EUgpeWJzHY99UDsgoJabZByQ0w2x9/LHjyzDZtTy2r6WAQHwY0k0adGrVUMGYBWmPrMzEsixG0e1CpqVnsDKoiRCkShXLszizDF8d47ltHDXHA8hxIDc9ncOt7G7wTnq/ZPMOoxadV/xh0GrGpdg7ankh1fP4/ZVBUM+p1IJ7GYd9142B4gVZ2TaDATDUX72ysEBr02x6PjShWUUp1r40Mp84Kj41Fgw6TT84oaFhCNRNlV3EQhF6IkHDfOSTFPWwEPMnfL9F/cNml03O3yDXH/XlGf3aa6UxjWGjkWImOzzwRY3rV7FwE91cuxG7j6nmKIUMxXtHn7234PcsDSHm5bn8vVndg+73+qSZO5YVUB5XiJpCeO3mhyJ02Ym35/tdd20Ov00Of28uq+FQDjKriEyIHq5aG46eUkmHnm/mrJ0C585t4TLFmSyobKDLTVdtLsDBMNRurxBgqEoTU4fdV0+1AK0ahX+KVBAsijHxgufO2vM+0kpueg3g4OtEAsWbfnW+X3GfVe9g55g+Lil5MMRisT81Ida3Hz63OIprxey9pfrqO4Y6G6yGjUYNOoBwUq9RsX9H1rC+XPSCUWivLK3hWe2N5Af1/7PTjTiDoS551+7JiyIqnDi9FaZ93Lj0hy+f9W8PsE7KSUN3T4efKeS53Y0UphiJsNqICIlKwuTWZRr47V9rdy2Mq9PSHC8UWbyx7Ak72gXno+fVcj+Jhf/760jGLVqDrS40WtUfWlv87KsPPDhpRxqcXPHmQUDMkbOnZXGubPSBhy73R3gkfeq2NvoZG+TC5tRi0mnHjFH9lTgC0V4elsD1y3OHlMQ8797W4YNSHd4Ajz8XhW3rcxnb6OTu/62lUhU8tc7V7CsIGnMY9SqVXz4jPwx7zcRNDt99ATC5Cebh11RnFOW2mfkL1+QyY3Lcvj5K4fY33w0IKpRCW5YmtMXWNOqVVy5KAsh4McvHeBvG2tJtehJNGkVAz+JnF2awiXzM0ix6Ek26whHJR5/GJNezRmFyWys7uT5HY2kJRg4uzRlgKLpv3c3853n9+Lyh7j30tnctaZ40PFPdOIzHpyWM/mRCEWi3POvXWyp6eLaxdnoNSpCEcmXLywbk3EMhqPUd8fkVZ/Z1sCuegebawan051q7rttMRfNzUCrFqNyr0gp+f2bFfzmjeEzYYzxQp9eTDo1j39iJYv73UynE1XtHi7//fvMzkzghqU53Lo8b8j/vZSSw60eLAYNyWYdB1vcrK/o4BevHup7zZK8RJ79zOq+x6FIlNf2tbJ2Virfe3EfdV1enL4Q9V099AQnf8V3upFlM/DdK+dy8byxaxw9+n41r+9v5YOqWNp2jt3Ij6+ZP2jidypQZvKjQErJi7ua+NP71Vw4J51vXjaHDJuBdYfaWNwvI2e06DSqvsrEr18ym0ferwYE+5uceMapWOVE+PI/dxGO7iDRpGNVUTIfXV3A8hFm3UIIPnRG3ohG/tiqXm8wJpPwyB3LpqU4WKPDhy8UYUedg7K0BD60cuj3IIRgVkYCr+5r4QtP7uDqRdn86Jp5vLq3md2NLtKteq5fmjNgn6e21vOXDTX8fWMNTl+YI21uQhHJ8gL7gEpihYlFoxJ8/OxCvnB+6QlJUP95fTU/fGn/gG0tTj/vHu6YFCM/Eqe1kY9GJRurOnnncHu816aJ+25dMkDgbDz+YRq1irvPKabTEyAYiQ5ZAXmq6PUtdvUE+c+eZv6zp5miFDMXzcugNM2CWa/hnLJUjDo1kahkU3UnP3rpwJjP8+bBNi77/ft84fxSFubYprx/HWI3+h31DmZnWLm6PIsXdjbx373NXL4wkzVlqcPupxaxhi5furCUu/++nWsW53BVueTjZxUihOgLSvtDEXoCYXoCEQ63xrKw0q16MqwGttR0k2OPdf/aOknGXggoTDaTbNHR7Q31yVzMNJbl2/nJtQuYlXHi/vHn460d+3PD0hy+e+XckxnahHBau2sOtbgJRaLMzbROeNeXV/Y2U55r57V9zfzwpQNTukR887fOJy3BwMt7mvnM49vH5Zg/vmY+H1qZN2Vn9tUdPdz77G5CEUlxqpkfXj2f/c0uPv6XLYQjkm9fMYeblw9WCYxEJW5/iOU/eYMzipK5ZF4GB1vcXLkoiyNtbt480MaW6i5K0i3YDFq8wTBCCMLRKP5QlEAoQkW/WgGjVk1xqpm9E1zolJsUkwrWqGI3oVZXgCaHj1D8uky16ClMNROJSrbVdjM7IwGLXjNkBe90I8du5IqFWVy+IJN3j7Rz5cIscpOMHGh2MzfLOqpj3POvXTyz/ag0x1cuKuOWFXkDNPdPJRPurhFC1ABuIAKEpZTLhBBJxBp8FxBTobxpqM5Qk8nJ3MnHisMbotnp4/YzCwmEJf/73wNTVvDp5d3NfHR1IZfOzyA78cTatR3Lt5/fS12Xl2/GUzSnGr5ghI1Vsdn1BXPSqens4ZvP7qEnECEYifLj/xzArNdwwZx0DFo1H1R28uvXD2HSqXnvSAdRCe8d6eC9Ix0AfFDVOWAmvKOfJg3EAvpDVaz6QhH0WjVJJh1d3hMXbzsemTbjkBW5vbR7ArR7AmhUsdz93sSB+VlWDra4p8wkZVZ6QqybWTCMTqPGZtRyuNU9ZKFZL72ZMA++UwnAg+9U8rHVhWyr7eLxT5wxqvOeWZzMM9sbyLEbuW1lHneuLpyyDcjH012zVkrZ0e/xN4A3pZQ/FUJ8I/746+N4vmnFLSvyaHPH5Fo/uaYIjVoMaFYwlfjFq4ewm3UszbfjGCdDU5xqJsc+dV02jQ4f1y3J5pyyVK5YmMW6Q224fKE+95bbH+bnrxziwrnptLv9fP/f+2hz+Um3GoZsd1fR5iE9QT9sUZPFoGFFQRJCxIL07kAIty+mTQOxVMzSdMsJFdeVpcfUQB3eEFUdgyuKc+xG6oeQpxiKcJQBBnNvk4ul+YnsqHOccJs/k1bF/JxEPP4QTU7/iAb5eNiMmkEJDQtzbDi8o6+B0cXVOxu6Rz+ZOWdWKgl6DV+/ZDZXnoSW/KlgIn3yVwPnxv/+K7CO09jIAwOKH7RqFVctyqSivYf9E7w0Hys9wQhfeHLnmBormHVq0qwGpJQ4fCEc3hAJBg23rsjjY2cWcO9ze8iyTV0jf+HcdC6cmw7ECsGOtHmwGrWcXZqK3awjxaKjJM3Chx7ehBAxV9/8LOuQbpW5mVZ0GkE0Gpsxd3gCNByzGmpx+qntHGxo+98U6rq8LM5LpNMTwBOI0DWMkiiAUafGoteQlqBjX9PRdN30BD35yWYC4QieQJhEoxa1SoU3GD5hjfhttQ7SE/SY9RoSjBpUCCrbPYPaOhalmElN0BOKROnwBKiLVwLPy7YNWEUsyLZyuNVNutWATqOittM7pISDUavC168AcV6WdciMtd0NTspzE0cd+7pyURZ3nFnA/esq2VnvoDw38bj7pFj0vP+N88atsfhEMl5GXgKvCSEk8Ecp5UNAem+TECllsxBiyAjmMY28x2k4U59L5mfgD0U41OLms2tLWHewdcgv/XhhM+nG7HYZjYHXa1RctiCTW1fkoVEL1EJwsMXFmcUpfTUFj7xXxYaKTtrdAeq7vZxVkjJs5edUQK0S3LGqgLvPieU7P7Gpjoo2D4+8V02LK2YY0xL0WI0aZqVbaHT4B+S4Jxg0bK7pQqMShCISnUbFOWWpePwhhBBEpeTQKOomovKom8egVVEc70i2YwjjtSDbyq56B+3HrBxa3YEJkUhodQeg33GNWhULc2xY9CqC4VhP2EOtnr6VhErEVDaTzToONA9873saYzfK3ptAsllHQYoZfyhMJBr7PIORKLvqnZSlWbAatSDgYPPwn2GLy8/KwiQ6ewJUtA2vjwRQlp6A2x8m2azjn1vqWJRjG1XsaDoYeBi/zlBZUsqmuCF/Hfgf4EUpZWK/13RLKUdMnJ4KefKnmg5PgD++U8mqomS+/uyeQV/S8cKoVVOUasas1xCNSkLRKEgIR+UJqxnaTVo+fEY+6w61s6fRSZbNwJN3rRqQnbS9rpvr7t8wYL/y3ESe7teUZCrS3RPk2vvX4wtF8AUjIzYfL0kzDzAkBckmBNDg8MVvBlq8wQjp8Vmtzaij2emn2xvEZtSSYdPjD0U50OzCExg+vdaoVVOWbmHXEHIcw60qTiUrCpPY3eBgUU4iFW2eYXsYnNQ5CpLYUd9NhtVAg8M3qonI/Cwrle0eZmdYUQkxQMc/3arn3/9zFhVtHg61uPnY6sJxH/OpYMIDr1LKpvjvNiHEc8AKoLW3z6sQIhNQdEuHINaQO4VP/307dtPEzQx8ociwxjzdGlvSjxSIOxajVs1l8zP5oLKTQDhmmMJRGW9jF8PhDVKaZuHdr64FYH+zE61axfde3IfLHz6pdmcTjd2s4/Uvn8NLu5v4+jNDa9/r1IIF2YlUd3jISzKRn2QkCrQ6/VS092DUqihINrO+MlYsU9vpxaxTk2jW0Rj3/7a5A9R09lCcamZWhpVttd2DisvSEvScUZRMQ5eX7cO4IPY2uZifbWVvo4vy3EQSDBpqO73UjdL3fqKYdWrmZlkRCA40u/CHon1xhOH09E+GzTVdqETsWluWP7ragt6b3456B/lJR12GKRYdT33qTNISDBxp9fDK3hY+fEb+lNZMOhFO2sgLIcyASkrpjv99EfBD4EXgDuCn8d8vnOy5ZioLsm2xGaNzcoqkWl0BWl0B8pNNqIQYpMcyFL5QhJ0NDvY1uVgRL6Zqcwf4ycsHyE0ykWrRsaWmm0duX0ZCcuzm1TvDP39O+sS9mXFEq1Zx7eIcegIRvv383iFfY9arKY0v93c3unD6QhSmmDl/dhp1XTEju7zAjloIQlFJMBRhzzE321BEkmTW0+byc99ti1mWn8RzOxp462Ab1y7O5rolOWyp6eIjf9o87FjVKkGWzchDH1lKVqIJKSUv7W7mf/6xo+81OrVAp1aNazHecH5xYNzTklUCStMseEMR6rt8Y44pLMi29rmGjFo1v7hxUd81WZRi5jc3l4/reKcK4zGTTweei/uwNMATUspXhBBbgH8JIT4O1AE3jsO5ZiTDNcg+1dR2elGJ2Oys5xhDkJ9kItmiIyIlIGhz+ftWBhq14NlPn8mj66vZUeegJNXCohw7nzy7eEq7ZEaLVj20sQpGJP5QlC21XRi16r62ew98eAnBcJRH36+modtHV08Qq0HL3iYnFr1mSNfKB1Wd3HfrYi5fGMvUuGR+Ju8cbicSldR3eXltXysJes0Ajfr+fO3iWXwqHkPYVtvNp/++DYfvaNZKWbqFqvYeIjLm8qjq8JxUf90leYm0uwMjSnXsaXBSnGomwaAlHI2yv8k15owcdVxPX6MWHGnzcKh17AVai3JsNHT7qI7XI6Rb9fzpjuUD5Laf3dFIKBLl0+cWEwxH0Wmm/3Xby2ldDDVVeOtgK3f+Zeq878IUM9UdPeg1gvJcOxLJjjrHoIyHz59fyo1Lc8hNMtHm8vPCziY+sip/yuYLj0Q4EuW5HY0cafOQaNJi0WuwGrRIJP/d08Jr+1v7Xms3aZmfbaPbGyTRqOULF5SxINvGN5/bw7PbGylJs/Dgh5eSbNbxy9cPsbW6G7c/iD3eWctu0pFk1qHVqAhHJHVdPVy+IJMfXbNgxDF29QT55WsH2dvgpMsbGpDyV5xq5s17zgWgodvLhb9+d4DLR6MSA3LbUyw6ilItsZQJAZUj+NBz7MZB6YWZNj0trsCYaj1ORLqhONVMZ0/wpNIsy3MTqe3sodsbYkleIvfdtmRABfbOegc/+Pc+dtQ5sJu0XLUoix9cPf+EzzcZKNo1U5yJzKoZK+W5Nhq7/SzLtxOKRIfN005N0HP3OUV9uh9pVgOfXFN0Koc6rkSk5O8ba9nf7Bp0M9OqBbMzEtBrVOi1aj5/XglnlR6VOYhGJd95YS/fuHQ2tZ1ettV2c/fft/GrGxfx3Svm0ury88y2BrbVdKNRq7CaNLx/uJPesxQkm7h0/sB+s95gmMZuH0admhx7zKWQZNbxv9cuZFttN9c/sIH8ZBOJJi3BUJSDLW7+szsmwZBjN7HtOxfwqb9twxeKsL2uGyFirhW9RkVXT5CaTi8dnqP/26X59gFGflm+nS5vEKtBw856J0atmoiU6NQqUiw6shKNNDvHliSwpaab0jQLOo0Kg1ZNVErUQhAMR6nq8OAJRJidYcFq1IGMuQT3N7uInGBC/vwsK8kWPVcvyuSq8mzqu32xoHi/zJlQJMqND27go2cWkGjUcu9lcyZMDniyUIz8FCBvmIbXk8GhFg+hSJR2z9BfYKNWzbmzYgVDnZ4gpqSZcQnpNWpUIqZDY0/QDdCDD0UkB1vcLM5L5KK56awsGtiP0+ELsSg31gTin3edwTPbG3h6WwNX/2E9F85N5wvnl/KlC2ex+qdvkWLR4QtEWVmURLJZF5cNcPD2oTba3H7cgQh7G5w8s72hb+a9oiCJSxdkkGM34Q2G2VjVyewMC8lmPVEJRq1kfraVB9+pwGbUclZpCiadhnsvm822OgeBcBSDVtU3iy5Lt7AyngnTm3e+rbablYVJtLkDmHVqELGkgN74jC8UIcOqJy/JRGV7DxviweSxMlIfZatBw8GWsbtj0q16Wl2x/5deo2JRbiJOb5CDLS5+ffNirooXKxWmmAftq1WruPOsQs6fnc63Lh+7PPZ0YGZ8Q6c5iaapk2VyrKJkf9QqwftfX0vyJOlzTCShSJQ2d5CCFNOQhmZOppXHP7FySMXCZqePbz+/lxuX5qBRq7h5eR43L8/jyc113L+ukhannwSDhvPnpPHavhYcvhCfObeEj5yRjxDw0/8e5J3D7fx5fc2QcgGba7rYXDN4RZVpC5Nm1aFTqdnT6EKrFvzp/SrK8xKx6DW8fah9gOxxL4fjfu3lBXZ21HXTGxLaVN1FhlWPzaDBrFXj8IVodwdYUZhEXacXXygyoXLZI6WpDkWmzcCvblpEhyfID/+9jxUFSdR09bC5uouydAt/+NBSLp6XMeIxpJQ8vrGOFqefFYUz08jPnOjCNGZpvn3KX2BZNkPMzzwDDTzAlpouGh0+EgxDp7EuyrENK0lbkGzmkdsHyyrfsiKPBdk2FubayE82841LZ5NmNeAPRTHrNdjNOhIMWnbUOTjc6hmzHkyz00+PP4JJr2ZhtpXFeXa+cH4plnhDi5uX5w45ez36nrvJsZuYFxflsujUJJp07GxwsqWmq+/m5AuGaXH5cfpO3C8+3nz3irn8+3/OihXd2Y2889W13P/hpVy1KBuIrcjmjUJsrL7Lhz8UGdBIaKahGPkpwsO3LyN7isrxqlWCT5xdxDkjyO1Od84sTuGcslQEgzNpFuXY+My5JUPuF4lKzHoNZekJfVWvj2+q5er73ufeZ3fzzcvn9MlZmHQxrROA2s4eguEoKgHnzRm7nHWv68Ss1/DO4Q52N7rYXN3F+spOnPEgZYpFT36SiRUFSZSkWViSl8iC7IGGr6bTS0WbhzMKk0iy6EgwaFiYbcOsj1WV9rqUEiewhuNE+NP71exucPD4plr2NbkIx+Mos9ITuOvsQo60efjsEzuIDnPj9Ici7Kp38LG/bCbRpOWOMwtO4ehPLUp2zRTihZ2NfOHJnZM9jCH51JqivibfM5WGbi96jYr73qqg0eHjkvmZqARctiATKeHJLXXsbnDS5vbH1CnDUfY3u1hTlsq7h9s5d1YqD9++DK06pg1T1+VldsZAoyql5E/vV3PloizSrTHjH45EeXFXEx9UdpJg0JJu1fPiriaKUy2sKUvl8U21hONCad5ghFAkJlPc5g6Qk2igxRUYsApINuuYn23DGwyzq8FJ8JgU3XlZVgLhCBVtPeg1KkrTLENWy64pTcHpC9LZEwIpaXUHhtSUmUwybQa+f9U8Vpek9K1gHttYy3fidQ2vfWnNoEBqQ7eXa+/fQFdPkEhUck5ZKn+9c8UpH/t4omTXTBOuLs9mT4Mz3kVqatG/p+VMpTeLJcdu6pvh5tiNfO6J7ayv6Bw2XtERD9Lub3L1VUuadJpBBh5i3aQ+cXYRzU4fbx1sRa9Rs7okheuW5HDdklgXKSkldrOOwmQzywuT+MPbR6juOJqB1b+StMHhH1RZ2tkT5J3D7cO+z31NLtaUJpNs1rOzvntIAy8EVLb3DNA7SrfqmZWewLtHOga9fjJYWZjEnz+2fJAbLSF+rS7OSyQtruq57lAbj2+qo9npwxuM9MmH2IxaLl84MLNppjHzv7nTjC9eWMbSfDtPbqkf8Yt6qji7NIXvXTmXkrSZlVY2FFJK3q/o4JevHSIQjvZ9/rMzEkYMSPdyzeLsUZ8r02YkcxhVTiEEF8/LwGbUUtHmJs1q6DPyi3JstBxT6enyj81XrhKwq8GJ0zd0oFOtEizLt/elz87OSMDlD+ELRnj3SAdL8hLZfow+/mSwtbabl3Y1c9Py3AHbzyhK5s17zqE41UIkKvntG4epbPNgNWhYmJPBYx/U8sCHlrCiMAmrUTvjZAyORTHyUwyLXsOlCzK5dEEm/+/NIzy7oxFVfFZ1KtFrVNxzUdmQnednIr5ghE/+bSvvVwyepVqHCcb20usmeOjdKqJSkp9sJj/JxBlFyQMqJ6WUrDvcTiAU7WuxOBy9CodPbqmjur2HhTk2rEYt7w8zi+4tYBsNQohhfdUQKx7a3m9lYNZpONTi7svrnypGMRKV/OaNw1yyIGPA/yjDdlTS+/sv7uPvm2r5f7csxqBVU56XyGfOLUE9wZ3gphKKkZ/C3L6qgIferSLbbuTieel0e0O4fEer/3KSTKiIKT2OpzKCSsDjn1jJshEafM80XtnXPMjAZ9uNpFh0HG4bWRZ4c00XywvsRKKxdLzeWf/sjAT++alV/Qx2Pfc+GxM7y00ysqY0ldUlKaQm6Fmcm4gQgg8qO8lKNFCYYqarJ0hthzfme7cb6QmEKc+1EY3C7sajSpSHWz1oVQKbUTuqDJhIVFKWbh2gxgixG0tpmoVWl7+vDSCAwxfErFf3KWR6J7ER/bE0O/185/m9/O6WxUM+//nzS/mgqpPLFmROeIvPqYpi5KcwNpOW/zm/hPeOdPDHjyzjvF+uG9DppyVeAFKYYqLV6ccbGpulX1WUjBCxmdmm6k6C4ShRGatmPZ0MPNCnCtnLnMwEQuGYhvloCIWjNDr9A9w6B1vclP/wNRblJHLjshzeOXTU/Vbf5WNnvYPHN9UBsUKgBIOWRocPnVqF1aghyawjMX6D0KhUA3Ll52ZaaXX5+6pUw1JSkmamvstHhydwXI2YnuBAV01agp6unsAg1UiVgAS9lsrA0evuQLOTFQVJeAIh6rp8A7T0J4OC5OHTRFMT9Pzn82edtgYeFCM/5fnomYUcavHwr631fO2SWdz998GNtas7Yh2EIlGJLxjBoFX1qe31ctOyHK5dnIPDG6Sqo4fttd38+Nr5fX7h6o4eki06vvv8Xp7f2cTeRucAAaeZjMMbC1QmmXWUpllweEMcbD7qnhgN+5uHFt+SMqaNMlSXov5ZLy5/uK8YKBiJYtJpONzq4eK56SwvsA+ade9vdmEzalmWb8cbjGA3aVk7K5WPn13ED/69n79sqBlxvCkWHSsLk5DE3EgdnuCAKt9elhckDZK2CEchEImwv9mN3aRlWYGdrccpkuqVhWjo9o27zvzzOxv50oVlwz6v10w/LaXx5KRTKIUQucDfgAwgCjwkpfydEOL7wCeB3unLN6WUL490rNM9hXI4nN4Ql/zuXf7frYt593A7D79XPWIg0KLXYNapaXXH5IN/dv1CzjimFH84NlV1cvNDG7l2cfaMlV7txeUP8dKuZn735mFaXYFRGavh0GsEgfDYvktZNgNNw8jlLsi2kWM34vCG+KBqdBICF8xJ4+Hbl+EOhLnhgQ19la1DIUTMgA/XQ6A41UySWcfWmu4hb3ZWYyx76FCLG6cvRHaikexEI55AmGA4QoJRi0oIOjwB7CZd301ucV4iaiHGTWderRL85Jr53LLi9OkqNxQjpVCORwQlDNwjpZwDnAF8VggxN/7cb6SU5fGfEQ28wvD0BMMsybNzz1O7uGl5Ll+/ZBaaEZafnkCYlHjq2CfOKhy1gQeYnWklxaLjjf2tBEMR3jncRtMY2wZOByJRyZee3Mk3n9tDrt3E8gI7NoOGdOuJVfSah6mGPVH2NDr57NoSHvzw0lEXyb1xoI3PPrEdnVrFq19cw29uXkRhipkzi5P53NqBxVxSxpqNJw/RuKUkzUJlew9bhjHwAC5fmM3VXXiDYeZmJpBtN1LX7WV/swuLTk00GiUSjZJi0fcZ+PlZVqJRydbabnLHqan73ecUnfYG/nictJGXUjZLKbfH/3YDB4DR55IpHJesRCN/+NASfnDVPH7z+hE+urrwuLm9+5pczM20jlnBz2bU8vMbFoIAjVrFmtLUEW8o05WvPrWLNw+2sao4GZVKoBKCyvYeXL4QKwqSGEWLzwEkGDSM98f0s1cOYjVq+L/rFox6PC/vaeGVvc3sanBy7eIc3v7Kufz4mvmsLEriE2cVUp6biF6jwmbUEghF6OwJIgQDupJVtHkoGkEOoT+hiGR/s5vN1TEZBK1KoNOq0WvV7Kx3si0+YzdoVTQ6fOxqcJJk1o1Zp2YoilLM/M95pUylgs6pyLhOP4QQBcBiYBOwGvicEOJ2YCux2f6gNdrp2sj7RFiab+c3bxxhX5OT395cjt2kG9H3ur/ZxaJRdJ4/lvNmp/POV9eiUgme3d7AebPHXnY/lWno9vLGgVYybQZUwAfHuCyEgEXZNrq8oVG3z6vt8rGiMKnPfTEevHekg39uqeeWFXmcU5bKukOjq5t48J0qvn7pLJy+EFXtHj79921cvzSXb18RW2BHopJmhw+9Vo1Fr0GrFqhVgm89v5dntzeQn2TCZtINCPKPllBUIoRgU3UXSWYdJWkWNld3MT/L1ueiyUsyDRmjGAspFj33f3gJDd1e/vhOFb+4cdFJHW8mM24Jr0IIC/AM8EUppQt4ACgGyoFm4FdD7SelfEhKuUxKuSw1deZqo4wHCQYtz9y9ir9vrKWrJ8j3rpzLVy4aPuAEkDtGGeOuniC7Gxy4/SGklFy2IHNG5RSHI1Fu/9NmpAQBBCKDM5IiUrKzwUmTw8vKwqRRr2Q2V3cxL9PKohwbOo2KtAQ9szJOrojsic2x7Js/3bGci+aOrm3iwRY3f1xXxaIfvMa1928gx27iD29XcNV97/P8jkbUKkFOkonUBD1GnRqNWoUQgm9dNodvXjqH6g7vmPr9Hos/Hi8KhCL4gxGW5ts50Hw0EaCqw8OinMFB/YJk06g6Ml2/JIfXv7SG2RlWfv9mBYtnsLjYeDAuM3khhJaYgX9cSvksgJSytd/zDwMvjce5JpKuniB2k3aQmuBUQqNW8cOr5/cVpHx2bQnbart5e5hZ3mjbmEWjkr9sqMFi0NDdE+TNg20gYV62lS+eP/KNZDqxobKTqo4elubbCUeiQwZa1fH/fzgak9/NTzKi1aipGEELPS/JhNWoYUM8SJqdaCQ9Qc/2egez0hPQaVTsaRycjjnrOA0qAqEov3n9MF+6sIzbVuYN6FA1Ehuru7DoNWQlGjBoY9fA7gYnX3lqF+W5iRQM4Y4x6zXcfmYBh1rdfamdJ0JVu4d5WVa+evEs/rqhhq6e4IB2ki5fGE8gjEYlyLHHArZVHR5qOr0kmXT4VBF8/V6vVgmuWJjJubNSOaMoeUCl8OULM1ldknLCYz0dGI9G3gL4E3BASvnrftszpZTN8YfXAkN3Qp5CJMUV9xq7e4hEJIWplske0pD0rzgUQnBVedawRv6prQ18/KzCQdtf3NXEU1vrcfpCfP+qeSzJs3Nnv9d96pxiunuC/Or1Q1x7/3puW5nHDUtzppT2/YmwpbqTJXmJRKUkNMQsHhgk+VvbFQs8r4g32vD3q0fQaVSU59rYUj0wSNno8PXpphxqjRVTFaaYsRm17Gpw9LXN631uJA61uvnE2YXMzrBi0qlHXYzkCYQ53OoZ8D+7dUXekAa+P/9zXikN3T4KU8y8ebCV+q7RB95/deMiLl+Y2dcC0heM8LknBqf9Vrb3UJZuwahV0+jwYdBqECKAwxfkc2tLuH1VPr96/TBFKRauW5I9rMT18fTiFcbHXbMa+AhwnhBiZ/znMuDnQog9QojdwFrgS+NwrglHrRLkJZkx6TX8aQoKhQ2FZ4Qg1n1vHaHVNThN73dvHOa9Ix1ICYuH8dvbzTp+dPV8Pru2hHZPgKe3NdDlCfCvrfX8fWMtB1sGC1tNdW47I5/tdQ521DnY3zy0gfUNY0Q3V3dRkmohM142PzsjgXSrns3VQ2eh7G1yotccXRVWd/Sws95BdqKRlYVJA/qMHg9vMEKGzcATnzyDFMvobrRatWBhto3G7lhc4baVeXz3yrnH2SsmC/DXO1fw/avmUTzKiY7NqOVLF5RxdXnWgB6/F8/L4PZjZHxtRm1MN8ag4UCLO96KMECWzcj3rpzHly+aRZSYtEZBimnG9jA4VZz0TF5K+T4MIcIN0zpl0mbUjtoHOtl8+Ix8ki16vv7MbtzHGPxub4gvPLmDz64tIdNmZF+Tk9f2tVLZ3oNBo2JNWcqI7qmGbh8labHZlMsXZmN1J8/vaKCuy4d4F25Yksvd5xbxQWUnywuSprxaZapFP6ip9bGMJPi1t8lFps0wqqbUva3yjqWh20cwHB2y+Gg4nt/RyKfOKaY8N5HPri3hB//eP+g1CQYNszMSUIlYttDu+u4++YP52VZuXZ43Zt2ZlFEY2GSzjn9+ahUlaYNvCCqV4BuXzmZDRWffqqU0Hozt/ftImwezTk2mzUBRamyVsamqiw2VnXz+OK7C7p4gTU4fxamWadlA/lQwtb+Rk4hBqx5z0HKyEEJw2YJMzpudxvqKDv735QMDjMvGqi42Vm3ue1ycamZhjg2zTs1Ny3KHOmQfVoOW/c0uCgNmbCYt55SlsnZWGhVtHubGO++EIlEybUY06qkby+jP8UIu7ccxvs1OPxlWw4ivgaMiY0MRHWPa38t7m0m3GrhmcTYfWpnPWwfb6OoJoteo8AYjdHuDaNWqATeeOZkJHGh2c9vKPD63tmRMK4deluTZeXpbw7DPL8pN5Pe3lJM/grSAXqPm1hW5fD9+Y+ofyNdrVGQlGnB5QzQ5fDywrpIF2TauXJTFlfHerCPxz631/PS/B3nrnnMomqLu1clmasjJKYwLBq2a8+ek8/qXzuFfn1rFHavySTLr0GlUnF2agtUQu6dr1bHycptRS7JFRygSpcnhIxAe7KawmbRcPO+oyp9Bq0anUfUZ+N7jzcpImBbl47sbnCzOs7OiIInUhKFnqYFwdMgioV7MOjX13SOnVuo1qhHzt8dSv1CcamZXvZOH36tCSolOo+J7V86lyeFje52Dgy1uWl0BGvrp7xi0Kj63toRd372In1wz/4QMPMQqVIdCr1HFK2yXjmjge+nqCZJk1vHbm8tp6PZRkBybQO1tctHk8OMJRsixm6ho8/C1p3cPklMejt0NDlIsOvTKLH5YlJn8DESlEqwoTGJFYRLfuWIuvlCEBIOWrp4gX3t6F28caANizSUW//B1pARJbOn8q5sWMS9rZmrWhCJR/ryhps9VkGnTMzfTSoJBQzgajQdUJVLCoZaj/vrsRCPJZh1qFahUKtz+0IiSAQALc2zDunOSzTqMWjXd3tHl06dY9LQ6/RxqcfG1p3fzvavmYdRphtzfqFVzdmkKNy3L5YJxcDfOzkjgknkZvLKvZcD2L11Yxt3njF6G+ksXlvHZ80rQa9RsqOzgpV1Ng16zq6GbQFjS5Q3y5X/t5IlPnnHc4zY6/Ny6Im/Kts6cCihGfoajUatIiPthk8w6fndLOQ+sq6Kqw0ObK6ZtI2XMtbC9zoFrmEYSMwGNSmDRqSlNsxCVksr2HnLspkECXP1ZUZDE5niT7+xEA42O2AyzONWMQatif9NgITOtemS99sIU85i0W7QqQUqCnkaHj/crOvjqU7v48TXzKUu39N1sbEYt1y3J5uNnFfZ1uBoPhBDcfW7xICM/1oIvIUTfSm9elpXDLR52NjiA2A0xEIqg06jQqlUYtWo2VHbi9oeGbazeyy+uX8Bv3zzCF5/cwZ1nFbIwJ3FM4zodUIz8aYZZr+UrF88CoMXp52CLk288u7fPh5+ffHwDEY1KvKFIX7OM6YIQgvnZNmo6PYQiMCtdDJl5BDFDbdFrBsj7WvRailPVtDr9tDj99AQjFKaYUKtUJJl1tDj9hCNRIlJi1GuwGtS4/INdYGMpLtOqBdWd3r42fM1OPy2uFgwaFRfMTWdxrp27zy0m125EM0HNPOZkJmDWqQfkup+M1MWNy3J5cVczv791Mf/Z3USHJ8DuhqMroyVxRVWH9/hGvicY4YqFWSzNt7OhsgOjVk3pcWoPTjcUn/xpTIbNwLmz0vnx1fMx69VYDZq+9MChCEei7Gty8o1nd/P+kXb+8HYFu06yPP1Uc9mCTMLRmEBXVUcPdV0+8pJMZNkMLMs/Wjm5KDdxkDukodtLgl7D/Gxrn8Gr7oj1gt1c3UVdl5cmp59WV4Ca9h6KU4c2Ng3d3iHT0XpRCfrGsiDbNqDPKsTG/s7hds4pTeVnNyykMMWMSggOtrh4cWcjX3t61wl8MsOj16j5/PmlA7atKh696N2x6NQqdGrBGYVJ/PEjy/jYmUfrM1YU2DnQ4iY3yThszKSXYDjK4jw7ywvsrK/o4ILZ6fzwpf0jrqJOR6bXVExhQrhgbjpzMqy0uPxsr3OwNH9wmXiry88Fv3oHdyBMWboFly/MK/ta+OVrh7hjVQGRqOSq8ize2N+Kyx/mzOJk5mZZR51nfaqwm3X8864z+J9/7GRbncSkVdHm8uMPR0lNiDWqtug1fbnyC3NsMa19s44Mq4GN1V3kHEdBURCLcWiHqDa2xGUEynMTOdzqpiDFxL6mmP/frFNj1KnJtZuo6vCwsjBpWLeO2aDhq0/v5prF2extdLKvyUmrK0CyWUfOBGSF3XFmAfe9VYE7ECbdqid9FNlFw6ESguJUC2nxY1y+MBOnL8Rr+1vZXtvNzcty+fJFZSOmREop+feuJq5fmoNGpaKmo4eX97Zw15qiMYvLzXQUI68AwCN3LOONA23838sH+NKFZaiEYN3hNiw6DXeuLuD/vXUEdyBMgkGD2x/GpI99AaWkTyTtsY21fcd7YWcjf7tzBUxBOSKVSsVvbylHoxa8sb+V2RkJ7Kx30Oz09+WuGzQqEgwa9BoVbn8Ytz+MwxfCpI1p0jR0D18FuiDHRiAUZV8/GYMkk45su4GojCmEpibomZdtY2tNF/OyrBg0ajp6ArS5A+xtchKKSIQYPgunvsvH8gI7j2+s7WvCYTdp6QmEJ6S+w6BVc+G8dP69q4mvXDSLF3Y2ceuK3GGbkY9Es8vPwRY3zU4fmTYjQgg+dEY+dd1e1pSlDlmh3R8pJa/ua+XCebH3aTfrSLcZuHxhJusrOlh3qJ21M0xU72Q46aYh44nSNGRykVLy+v5WNlR2su5QG89/djX3r6tkc3XXANXAFYXDN5voz7wsK+fOSuXLF86akiJnr+1r4a7HtjEnMwGLTkNPMDyoCnZFoZ3N1bHZ9Kz0BLq9Qdz+8LBNW/QaQYJBS4cnyLK4MFdqgh6dRjUgI0cAywvsbB4mAyfLZgABTY6RUwkFsc/ZpNfg9Aap7vDy/tfX9s2SxxOnN8S6w21cXZ7N2l+uozw38YQay1S2e/jO83spz03ka5fM7tseicpRXSehSBQBfTGIaFTynRf20uoK8PahNm5YksPPblg45nFNZya6aYjCDEEIwUXzMvj+VfP4650rsBm13LWmaFDTkIZuL8sL7EO6dfpj1Kr5w9uV3PdWxZTU/L5wbjq/vHERapVgZ4OjrxagPzUd/fPhJQKG1Lyx6NWsLExiUY6dDk9sZq1WCfzhKDWd3kEplxLYXNPNisKhe+k2Of3x6tyR34MkpjrpD0Y41OrhpuU5E2LgIVYzcXV5rFVEps1AZfvIaaTDUZxq4YEPL2VzdRev7D2atTPaicCr+1oGVCy7/CFuXZHHRfPSSU/QMz/bOsLepx/KTF7huHzokY2srxi6BV1OopGsROOALBSIzWhtRl2f++OWFbmEI5KolJxZnMIV/USsJpv6Li9f/tdODjS7SbfqB1QLFySbqOn0sig3kY+szGNxXiJ2s57DrW4+8qdNhCKx78/sjAQO9sutVwni/VNHPrdWLSjPTRw2p/7skhTeq+gYdn8hoDwnkR31DqwGDW9/5dxTovVS3+XFqFOPSvagl8OtbjQqQV6SCY1axc9fOcjm6i6W5Nn55uVzjru/lJInt9Rx77N7uW5xNp8/v3SA2JrTF+KprfV8/KzCKa0kOxGMNJNXjLzCcfnYnzcPq3IJDNBxSdBr8IUilMRz0R3eEGa9Jl5RG2V+lpW9TS4W5dj4y50rsE8RVctgOMqj66vp8AQ4uzSVZfl2olJypM1NKCxZUZg0yHA8sK6SLTVdLMq18ch71YN0g3Lsxj7f/aJcG6FwFK1ahScQJtGko9Xlp6HbhwpYVpBEFMmuekffjWNBto1DLS7Kc+0cbHHh8sfkeY06NXaTjmSzliaHn9b4jfTBDy/hkvkjdwybTP67p5nPPrGdyxdm8ZubFrGpuosPPbIJgPe+tnZEGZFoVPLT/x5kY3Un4YjErFfzyB3LR5SOOJ0YychPeOBVCHEJ8DtADTwipfzpRJ9TYfyIROUg43Us/ZfO+ckmajp7+ma12XYjnT0B0hL01Hf7qOnoQYjY0vz/Xj7Az2+YGh19dBrVkBWcS/KGdqcAfPrcYj5NbJ+zS1O57v4NA563GjQUpZpJ0GsQcIy//+hqIQp9K6HFuTZCEYknEKbd7ScYkWyu6SLJpGNpvp0Otx+LQcv+Jhd1/RZP91xYNqUNPMClCzJ5+PZl3PXYNtz+EL+5uZzFeYnsqHMMKanRS5PDx6PvV/PI+9UsL7Czt7GbD+49XzHwo2RCjbwQQg38AbgQaAC2CCFelFIOltBTmHJIKfn037cNm8anVQtMOg2hcBSVgKiMGUt/v6CkUaumsdvHwmwbWYnGWEcmATUdPVR19PA1T2BMS/6pSqJRy8rCJLRqAQhCkSi+UASTSnC4zXN8v00chy9Mdb+2e70qjV3eIF21MV//0nx9X5WtTq3i3stm89Fj5HynKufPSef/rl3At57fw+ee2M4VCzPRqVU8sK6KX9008IZ/pM1NQ7ePj/15CxCr6+hdMb6yt4U7hnjPUsbaD/Zm7ihM/Ex+BVAhpawCEEI8CVwNKEZ+GvD7N4/g9IUwalX4QoODjfnJZpodPvY3u1hRkEQUONLqJtzvpV2eAOkJet4fxqe/7lA7NyzNmaB3cOqobPcggSOtMYO8OM/O7oZYCmVJmmXErlIDOXozSLfq+7Tgh6Is3cJ9ty2hbJpVeN60PJettV38a2sD6ys6uXl5LteUD1ScbHcHuOtv20g2x1YwTm8Qf78L670jHVy/NIfX97ewv8lFYYoFTyDE/GwbZxan8I9Ndeg0Kj53Xumxpz/tmGgjnw3U93vcAKzs/wKlkffU5GCLi9++eQQpYzrlZUkmLHoN2+scfa+xGjRUxIuGNg6TUtk1ggiXRiU43OrmrYOtrCxMnvJa9COxqaprQFpp/6rL0co/pFr0VPfL5slLMg0TkBXMz7byj0+ecdyy/6nKp88t4Z3D7bS6AvxzSz3nlg0sqFCJWJOV6mGaif/s+gUEw1FUQnDPRbMIhKIEwpG+zKLF+XbmxZVSpZQcaHaTZNaRMUJF90xlolMohwpxD1i3Ko28pyaPfVDb52Fw+8M4vCF2NzhYVnA0bXLHSUoahKOSh96t4mtP72HB91/lmj+s5x+b66ZkuuXxqOkcaIx6pYhzk4zUd40sS9xLQbKJc8tSmZWeQHGqGX8w0tdEoz86tYoHPrR02hp4iIm0/e+1C/oe/+LVQ3iDR2M/yRb9sCqXnzqnCLtJx1sH2/jD2xV85vHtvHWodUDq6LllqSQaY0H9v26o4bZHNnLG/73Zl/bpCYQ51OI+LSQQJnrq1AD070qRAwzWGFWYcpxdmsLbB9tocfmZl2Wjw+MnHIW9DU6W5CUSjkg0ajFgZn+idHhi2SE76x3srHdQ1e4hwaBlVXEyRq2asngj7KnMd66Yy5aabjJtBvTxscZkBvTUdzlGdQyjTg3IQX1fl+YnUtvppcMTJDfJyC9uXDiuSpOTxXmz07hgTjpvHGilqqOHT/5tKz++ZgGF8bTIj6zK56mt9Th8oQGVvxfPy0ClEry2r4VQRNLi9HPpEEHnHXXdJFt03HFmASkJev7fmxV8UNmJyxfizr9sodsbojjVzBULs1g7O41FObZhUy931TuYm2Udc2etqcBEG/ktQKkQohBoBG4BbpvgcyqMA40OH01OPysLkwZI8frD0T7DvqY0ZULO/fB78d66r8d+5Seb+Pn1C1lZdOKiWBNNfrKZxz6+gp+9crCvpiDBoKHFOfom2IFwdMj47LZaByVpFnzBCJ84q2hGGHiIFd/99pZyrr9/A4da3ayv6ORgs6vPyGcnGtn2nQupaHOj16h5YWcjtZ3ePjfM5QszqWzv4b97mllf0cH5c2IyB6/ta2FOphUJ1HZ6sRl1rJ2VxpsH2nh8Ux11nT19AnOV7T08+n41v3vzCKVpFi6el8HHVhcMqjUoS7fw7PYGrlqUHb8ZTx8mPE8+3tT7t8RSKB+VUv5kuNcqefJTg0A4wvIfv0Fukon6bu8gjfllBXYau300j7J7z3igU6v4n/NKWFWczLKC4dMaJ5tX9jbz5JZ6Oj0B3P4wNZ2jc9VATIFxOJkDgFVFSfz5YyumTBHZeOH0hvj+v/fx3I5Gnv/sasqHaSx/LNtqu3jjQBuXzMvgrxtq+PUoJBaC4QgHmt08v7ORf26pxxuMDJJRzk408vqX12DSaYhGY01MNlZ1Ut/l5SOrCohKOWR19GSiFEMpjJnhCqDsJi0Ob2hQo4xThRCw7dsXkjRCe77JJBqVfPKxrXTGpQ20anHcht+9LMq1saveOezzd60p4puXHb8ydDoipeSN/a2sr+zArNdw64o8cuwmnL7QsPnwvWmqVoOWQDgyqvaTL+xs7JNmeG5HA1/65y5MOjXe4MA8/exEI1+4oBSDVs3r+1u5dH4Gl87PQAjBmwdaSTRpWZJnnzKVtZNaDKUwPXnwI0v56KNb+KBqYOpjcaplTF2NxhspY77W3qX5VEOlEqwqSubH/zkAxCqAe2+MS/LtqFWC3fWOAemAveyqd/ZVBA/FYx/U8uULR5bgna4IIThnVhq+cJS/f1DL6/tbUQlBTWcPKRY9v725nNmZ1gGZSlq1qs9HPtr+wpctOOq7T0uIBWr7T1h0GhV6jYpGh4/iVAtL8+1cdUxD8fPnpNPdE+RQqxurQYvVqJ3SDXSm7sgUJhW9Rs1Prp3Pxb99t6/MHpgSWt1FU0yj/lj6i465A2GSzFpMOjXb4jfHohQzVcekBmrVgsV5dlQCStLMVLQNTh00aFXTMvA3WnQaFVctyuozqt5gmE3VXdR1etlW281jG2v5ykWz6OwJ8vbBNq5bks36ik5sRi1ZiQYW59nZXN3J3kYX1yzOHnK11//za3L4ePDDS3l1XwvP7WjEotfw/tfXYtJp+MYzu7nt4Y385/NnU5I2+Hqzm3XYzTqklOysd8Sa22dap8zMvj+KkVcYlqJUC9cvyeHJLUdLHXY3OFmab8flD9Hi8OEOxJa5JWlm/KHoiDrr48GHVuZRMIoWhZNJ8JhZelfPwFqBofy5NqN2QJ79kjwbUooBaard3hD/3dvMFQuzBu0/EzHpNKydNVgXPjvRSHluIgdbXKhELAAL8O3n97A4z86Hzsgb1cz+xmWxxL+L5qbx9Utm4w9FSIxrKf342vm4/GGu+cN6fnNzORfMSRvSgAshSLMaqG7vocnhI3sKBsVn7rRAYVz4zLkl8VL9GIFwlG213Rxp9VCankB5jpWF2TYq2nrImuAy8huW5vCjq+dPydlSf5bmjyzDrFLF2vvlJxn7CkmOXe7XdPpweIN9j3VqQXGqmX9tqed0RxWXJJ6dYR1QLf3Ny+Zw/ZKcIQ18Q7d32AYsKpUKm1GLo19zcpNOwyN3LGPTN8/HrFPjCQyv35SdaOSs0hTa3IEpWeOhGHmFEclLNvGhlflDPre9zoFWo2Z3vANStzdI6gTp0GRYDXz/qnl9X/CpjJSMKLi1vc7BjnoH9d0+StMtLMu3YzVqmZ1xVJ7AbtIiic3wi1PNGHUaKtt72FbbPaIhqWhzD/vcTKR/83KTbmjHxN5GJy/sbOK6+9fzh7cr+OuGGnbUDYwrrTvUxkPvVg7a16zXcGZJyqgKzxZPoUBsfxR3jcJx+dKFZby4q4munuCg51T9LuojcX2WsnQLJq2Gyg7PcRUsR4NJp+axj6+Y0sGt/vzh7Qr2Ng4dPIWYz94bCLO3ydXXTESvUbGoX+pgskVPbUcPoUh0gL59TzBCMBIdcrZa3+XlI3/azHtfWzvA+J3OHGh2ceV97/fVH+xqcJJu1fOvT60a8Lo9jU5e3tNCxwwRzOuPciUoHBebUcvZwxQ+hYfoknS41cPOBgcl4xQgzU82UzpNRLiiUckj71eP+Bq3LzQogyYQjrK5uou8JCMrC5PwBcPkJpnIHyL+4BhCD8gbDHPHo5tpdvonPC4ylalo83D7o5u549HNdHgC/Oil/YMKzO5cXUh+8kC5iN52jr989dAJd7w6Frc/NCXcN9NjajQKRtsfUuHE+MUNi8hPMvHgO1UE+xn23s5PQxEZpwt8qBvJVGVHfTdO3/CibADRYT6XOZkJJJl17Glw4vKHKUmz0OUZ+PnmJZlI7pc1Eo1Kttd18+3n91LV0UOWzUBDt29Ax6TThU5PgFse2tgnk7Hsx28M+bqX9zSzKDeRM/pVUPf+z57cUo+UjEuP2CNtHgqTzdhHUdPRK5E8EcyYmfyxGQ0K44tOo+LLF83itS+t4drF2fTeT0fyVe5rcpFhNbAkL/Gkzj3UbHaqcqTVw9xMK4mm4T8Xo04zSLlveYGdijZPTBJBQHluIrWdPST1cx2sLEzi4duX9blipJRce/96bnjwg74mLZnxIODpxtPbGvjKU7v6DPxI7GpwcstDG/nmc3todvrwhyK8eaCt7/kNVR0DxNJOlCV59mEbvvenwxPgpd3NJ32+4ZgxM/nppicxXSlIMfObm8s5sziZp7bWUztC2X4kKmlx+ekJhtGpBcHIic3sVxZOXc2aY8m2G9nf7EKjAq1KEJWSiITSdAt2ow6dRqBRqTizOJmolGjUKgKhyAA5A5cvjE6jIhSRVLR5SLHoeeSOZYPK/V2+MLsaBlbIDudWm8mEIlH+9+UDQ8aMRuKJTXX8d08zGTbjgNVXfZePXfVOVhWf/HWXlThyxtmuegdvHmzjyxeWnfS5hmPGGHmFU8uNy3J5fX8rQF+P0f7o1ILcJBNatQqHN3hSAdhzZk0fCeqzSlK4fGEm/9ndTP9ayiPxAOvyAjvv1xytIp6TmcDB5sEZMb0r03lZVh65Y9mQXY5sJi1l6Za+4C3ABVO0EniikFLy7ef2jtnA99LtDdE9RIzjkfeqyLEbR+w7Ox4syk0cEHCfCGaMu0bh1JNuNQxZng+xYGlle6zX67FBrrFw2YIMSoeoOJyqCCH45NlFwz5/rDv+QLObhTk2TNqBX8VwNPa5PvjhpcO2sQuEIwPcAUWp5j6FxplMk8PHa/tauPuxbZz1s7f559bxrx1482AbF/7mHV7d1zLmfTdVdXKoZeqksp6UkRdC/EIIcVAIsVsI8ZwQIjG+vUAI4RNC7Iz/PDguo1WYUmjUgiOtbkw6NWadGr1GhRCxjlH9y/YdxwlEjsQXzi+bkrnHI1Gem8il8zMGbbcZtQOC1r3sanAyL9vWF1BdkG3tS8F8elvDsOf50/vV1HcdzaS5YkHmtPusxkKjw8dXn9rFmT99i7se28Yr+1podExcJpE/FOUbz+ymZ4RCqKFYmm/n2R0NvLR7arTOONmZ/OvAfCnlQuAwcG+/5yqllOXxn7tP8jwKU5DGbh++UJT5WVZSLDqiUlKWZkGtEuQlHZ19VrR5yLIZWDFKiWCDVsWCbBu/uXkRszKmR+rksXz14lmDts3OSOjr+3oskajEoBFk2vQE+q2O1ld0DHuOymP0bS6cO/jGMlNw+0Nc+tt3eWqEm95E0O0Ncd39G6gZpg3hUGjUKu69dA6zM6zTP4VSSvlav4cbgRtObjgK04neoKvTH6Y2PqM8FPcPB0IRlhfYOdTixuUP0+T0E5FyRDndFQVJXLckm+uW5Ez5TlDHw24avRTy8gL7ADniXPtR99ZI6XdrZ6fyzPaY0UtL0M9oV83ueFrpZHCo1c2vXz/ML25cOGq1S2BIYbPJYDwDr3cC/+z3uFAIsQNwAd+WUr43judSmGQiUUl1Zw8pFt2Q/kdvKMqWmm6sRk1fd6nednhD8aOr5/HhM/JnjLvBbtaRZTPQ1K+xikYtUAmIyli+e12Xl6X5dnYe0ys3HI2SnWjkk2cXcsOyXIbjjKJkzixOptMT5PPnl04LyYcTJdduQqsWAxRRTyUv7mrC5Q/x548un3bX6HGNvBDiDWCodeC3pJQvxF/zLSAMPB5/rhnIk1J2CiGWAs8LIeZJKQfVegsh7gLuAsjLyzuxd6Fwymlz+wmGo8edcbt8Yfz9goMJBg0Lsm3saTw6mz9/dhofWVUwUUOdNM6Zlco/Nh8NCoYjkrL0BKxxxUmbUdMnP9xLYYoZAdx9TtFxP5MUi54nPnnGhBbSTBVa3X6SzDpaXcfPg58o1h1q53CrZ9q5EI9r5KWUF4z0vBDiDuAK4HwZd0BJKQNAIP73NiFEJVAGDGr7JKV8CHgIYp2hxvoGFCaHlvgMNcduoslx/DaAywrsqIUgGI7S6BiYWz9TK5UvnpcxwMgDfUVLAE7fYPdDs8OHWa8mNWH0+ikz3cADLMyxDdBJmiw6PAFmMb2M/Mlm11wCfB24Skrp7bc9VQihjv9dBJQCVSdzLoWpxfM7GilINrGlnwb6cOxqcLK1pjvW1aneMUhffabmdp87K42vXzKL5QV2MmwG/CMoU5amWbDo1fjDUZod/indx3Yy0GvU3HFmwWQPg/eODB8In6qcbHTrPiABeP2YVMk1wG4hxC7gaeBuKeXxrYHCtKGzJ0hagmHUvV5XFyezuWbwJfCpNUXctHx4v/N056NnFtLY7aPF6R824FySZqHR4SMvyUyKRc9Lnz9rxikhjgcfPmNoyetTybIR+gRMVU7KyEspS6SUucemSkopn5FSzpNSLpJSLpFS/nt8hqswVaju6Bm1XlB+kpEPqjpZUZA0wA0xKz2BL14wceXcUwGjTs33rpo34msq2jxY9BoOtbr5+Q0Lhi1+Ot2x6DUjNmM5FczOnF6uGlBkDRROkCSzjvYRFCj7k2o1UNvlY3NNF2admvlZVuxmHffduuS00By6YE466Vb9iEFDtz/Mw7cv5bzZM9N1NV5ctShrULC6PyadmvPnpJNi0bGmLJXFuYkYdWre2N/G+xXtPL2t4YQzdBZk28g+jhbNVEQx8gpjRkpJZZuHbPvoLvj+cdWeYITUBD0/vHo+thGUGmcax3aeU6sEkagkyazj3FmpfHZtCcVTvEH5ZCOlHJCV1YsQMbmIyxdk8rMbFg7ZXObyhZlcvjCTvCQzP3vlIEWpZnRq1YBA+EhkJxr5+8dXTssgt2LkFcbM1tpumpx+ckYp3lSUYmFepo2ttd2oVYJ7Lpo14cJPUwm1SvDT6xbw5/U1XDg3nfNmp5GVaMQfimDQqmdsdtF4IyVk2QyYdWo0ahWfOKuQ21cVoNeqCISjJOg1x60V+PS5xVS2e7hrTRH/88SOUZ/7CxeUjsukpM3lJxCOntLrX0yFstteli1bJrduHZRlqTDF+NwT23lpdzMlaWYq2kZX7v3njy5n7ey0CR6ZwunCydYGuP0h6rq8/ODF/UMmBPSnINnEK19cg0F78q5FKSVfeWo3d5yZz8KcxJM+Xi9CiG1SymVDPTe9a8cVTjk1HT28tq+V8tzEURt4gOd3Nk7gqBRON07WbZJg0DIvy8bDty/jeAup8+ekj4uBh9i4f3r9Ap7e1sCGylOTjqm4axTGxFsH2whGokSOdTKPwMIcG9+8bM4EjkpB4cSwmbT85uZynthUx55GJ1mJRlQi1qf4uiXZXDAnnWUF45vRo4139rrnX7s4d1YaxalmPjGCPPXJohh5hTFRkBLzJaqPM5P6/a2LyU40kp1oJMNmOBVDU1A4Ia4uz+bq8mz8oQhRKdGqVexvck1YM4+6Ti//3dtCuztAd0+QtWcXTsh5elHcNQpj4qVdzWhUgn3Ng7McVAI0KoFaJVhdnMzSfLti4BWmDQatGpNOQ7PDz8IcG52ewJhWrKOhos1NbpKR/712ASadmm9cOnvCs6qUmbzCmNjf7EIC0SEu/pWFydx322LUKkHiGKR2FRSmEj98aR9barpx+kK897W145YJ0+jwceODH5Bs0fOjq+fxpzuWU5By4l3TRosyk1cYNb5ghHPKUlmebx+U9w2wuaaLv2+sw2o4ffLfFWYenzi7CKcvxOqSZHJGWQtyPDo8AT73xHZc/jCfW1vCquKUcWkUPhqUmbzCqAlFo1w4N52H36siP8nY1yiklw+tzOMLF5RO0ugUFMaHM4qSefnzZ1OWbjnpLB6nN8RfNtTw6PpqDFoV9146m6vLs8ZppKNDMfIKo2ZjZSd3PbYNAItBC8SMvE6j4uNnFZ7yi1dBYaKYOw5dtpocPm59eGNfB7UfXl3O1eXZJ33csaIYeYVR4Q9FeOS9aiBWRl7XdVQTfl6WlS9dUDbtW/YpKIwnnZ4gF8/LYFNVJ5cvzOTKhZMzCTpZPfnvCyEa4zLDO4UQl/V77l4hRIUQ4pAQ4uKTH6rCZGLQqlkSVwBcnJuIu1+/zR11Dtb+ch3dPcHJGp6CwpRjQbw+5IXPncVda4onrT3jeMzkfyOl/GX/DUKIucAtwDwgC3hDCFEmpRy+a4LClKau08uD71SiVolBGvLJZh0/vX7BiE2nFaYHPYEw7x3pYFVxMjajEkCfCUzU+vpq4EkpZUBKWQ1UACsm6FwKp4De+NO8LCs76hx921MsOn5y7QLOLk2dnIEpjCvBcJRWlx9fUJmPzRTGw8h/TgixWwjxqBCit/43G+jf3LIhvm0QQoi7hBBbhRBb29vbx2E4ChNBjt3IrPQEDjS7WNGvNd1XL57FJfOH6vMea/a9t9HJpqrOUzVMhZPEbtZxx5kFShHbDOK4Rl4I8YYQYu8QP1cDDwDFQDnQDPyqd7chDjVk6ZiU8iEp5TIp5bLUVGU2OFURQnDenJiK5IEWF0vz7Vw2P4Mmh3/IwigpJesOtbOvyalI6SooTCLH9clLKS8YzYGEEA8DL8UfNgD9G3fmAE1jHp3ClOJza0vQqgXbax3oNCoOtLhodPpYOzuN8mN0PoQQ3LRs5vZuVVCYLpxsdk1mv4fXAnvjf78I3CKE0AshCoFSYPPJnEth8jHrNXz+vFKuWZxNuztAdYcXXzDCt5/bw73P7ub9adjJXkFhpnOy2TU/F0KUE3PF1ACfApBS7hNC/AvYD4SBzyqZNTMDjVrFDUtzuGFpDi5/iPVHOkhJ0LMg26a4ZRQUpiBKZygFBQWFaY7SGUpBQUHhNEUx8goKCgozGMXIKygoKMxgFCOvoKCgMINRjLzChNPVExyyYEpBQWHiUaSGFcYdKSW1nV46ewLsbnDS1RPkztWFioCZgsIkoBh5hXEjFIly/9uVvLynmb/euYKl+UkszU86/o4KpzXt7gAJBg0GrXrCz+UNhml3B8hPnvjeqlMFxcgrnDTBcJTHNtbywLpKshINXDI/gyRl1j5p1HT08MC6SrbXddPQ7UOjFhSmmPn1TeWUpFkm9NwtTj/b67q5bEHmcV/b6Qnw4DuV/PWDWnRqFbevyuejZxZgM2nxBSM0Onx8UNnJO4fbaez2UZhi5kNn5JFi0TM/y9anz97m9rPuYDsmvZokk452TwCDVk2KRUd9l4+Gbi/BiMQXDHOwxU27O8BDH1mG3awlEI7iD0UIRSRRKdGoBDajdkY1oleKoRROmr99UMN3X9jHFy8o5fPnlU5ac4TTEac3xPsVHbS5/eysd/BBZScdnsCQjdYBlhfYmZNp5dL5mSSZdbx1sA1fMExBiplMmxGLXsPcLOtxq5fb3H5e3NnE6/tbkcTiLh5/mG5vkEA4SqbNQIJBgz8UxaRT4wmEyUsyEYpE6QlE8IcitLkDeALhEc8zHAl6DXnJJlRCcLDFRSgyvnbse1fO5brFOdhM00NTf6RiKMXIK5wQB5pdeAJhluTZ+drTu3lmewMlaRY+emYBV5dnkWCYHl+OqUplu4ffvXGE1SXJrC5JIdGkw6LXUN/l5e1DbWyo6KSy3UNlu2dYg36ifPXiWXx2bcmQzzU6fHzm8e3sqneM70mnKMWpZgpTLOTYjeQmmVALaOj2ceWiLBZk26bMhEYx8grjztIfvY7TF+Jn1y/gnqd2D3huUY6Nf929Cr1m4n2sk0kkKjnY4mJTVRdmvZqL52VgM2p5fX8r1R09zMm0cqjFTYcnQCQqSTBoSbbouHJhFlajhkA4SiQqCUckTU4fVe09bKzqpKazh6013fhCR+WeEvQalhbY2VbTjfsEZ7+j4folOXxsdQHzs21AzKXyq9cP0+UJ0ur2c7jFTY/SUAQAg1ZFikXPysJkrliUydklKWjUk5OwqBh5hXGhodvL2wfb6OwJ8ts3jgBQlGrmyoVZ/O7NIwNee3V5Fr+7ZfFkDHPMHG51s6/JycrCZA61unljfytXLsoiEI7S2O2jJxBmSX4ijQ4/h1pcNHTHDPKxboIkc2y23b/J+VAYtWqiUhIIRyf6rY2ZC+ak88CHl6BVq3j3cDvfe3Ef1R09kz2saUGCXkOaVY9KCPRaFWohSDLrKE1PYGGOjXPKUidshTuSkT+pwKsQ4p/ArPjDRMAhpSwXQhQAB4BD8ec2SinvPplzKRyf2s4edtQ72FTZSZrVQLrVgEYtuHhuxiDfopSSRoePHLtp1Mc/0uahqyeEQavmykVZ5CUZWZybOOTs5a2DbTh9oSnbJzQalRxuc/PSrmYeereKYGSgwX18U92Yj9nVE6RrFM3M+8/QpxqdPQF+8p8DtHsCvLK3hYhS3zBq3IEw7vbBq6y3D7WTlqDnr3euYE7mqf8+nJSRl1Le3Pu3EOJXgLPf05VSyvKTOf5M52CLC4c3xKz0BOxmHc/taKCrJ0RRqplVRcloVAKNWoXbH6K209u3hB6OJ7fU88C6yr7H87KsXL8kh+d3NtLs9FPf5aXbGyTXbqLZ5ee9I+2UplnQqlXMzrBSkGwi0ayjMNnMu0faCYajGLRqsu1G1pSmYDfpsJu17G104vSFePugh79vrMPpCw0ai9sfZk+Dk7NKU8b9czsZAuEI9/xrF+sOtZ9w0G8ms6POMaCHr8LJkW7VszjXztcvnU1hyuSkbY6Lu0YIIYA64Dwp5ZH4TP4lKeX8sRxnurlrpJREJahVArc/RKvLjz8Upd0d4FCrm31NLuo6e7AatXgCYYxaNTajFm8wgssfm+VaDVqi8f+BWiVQCYHLH2JHnYNub5Bks57OngBSxlwgKiEoS0+gINnE7EwrJp2adncAly+EUafGotewuaaLbz239zijnxhy7EbuPqeY8tzE496UTjXeYJg3D7Tx1w01bK3tnuzhKMxgzi5N4asXz2JWRsIpiU1NmLumH2cDrVLK/o7ZQiHEDsAFfFtK+d4wg7sLuAsgLy9vnIYz8YQiUc79xTrC0ShatYpGh4+JCG90eAJ9f7+wc2p1UEyx6Fmcl0hZuoX8ZDOzMxKYm2mdtOCTlBKXL0yXN4gvGKHDE6C2s4cDLW521Ts42OJW3A8KE85DH1nKRfOGbm4/GRzXyAsh3gCGGvG3pJQvxP++FfhHv+eagTwpZacQYinwvBBinpTSdexBpJQPAQ9BbCY/1jcw3ngCYZ7YVEtBshmXP4zTF2J1STLRKNR3e9nb6GRDZScVbZ4h3RQzkaIUM2eXplCel8i8LBuhSBSNSkV+sumUVCkORzAcZU+jg/UVnby8p5mazh78oakXzFQ4fdDFXZ9TiZNu5C2E0ADXAUv77RMAAvG/twkhKoEyYMr5YrbVdrOjrpscu4mzS1Ow6DV4gxF+/fphDra4J3t4k47VoOGyBZkkmrS0ugKcVaIjNUE/bsd3ekPcv66CAy1unN4gxakWbliaw5klQ/vy3z7YxuOb6qjq8FDf5R33IhgFhZMhGIly2yMbuX5JDnMyE7hk/vErfyea8XDXXAAclFI29G4QQqQCXVLKiBCiiFgj76pxONe4szDHxsEWF//Z08y22i6+fslsvnhBGV+8oIwDzS46PAFcvqOVfA5vkH1NLnbWO0aVSTHdUasEdrOOj55ZMOYergeaXZSmWYZ034QjUdYdaufbz++lxeXv276rwclLe5rZ/b2LhlwlBCNRClNMlKZbsJu0mPUaKtt6eHR99djfnILCOJFo0vKty+aQbjVgM2rJTTKROEUyy0468CqE+AuxFMkH+227HvghsSbeEeB7Usp/H+9YUynw6gtGEAKkBKcvFAuamrS4/CH2Njj5z57mE0qzm64kmXWUpVtIMuvItZsoTU+gPNdGQbIZjVpFIBzh5T3NVLR5sBq0dHtDvHO4nYc+spTcpKNpmtGo5KevHOTdw+34QxF0mlhBSVaikVy7ieI0M/OybBQkm4jF848SiUo6PAGanX66e4I4fSG6emJFOi/ubKLZ6T922AoKE45KwH23LRmVXs9EoRRDnQD+UITttd28tr+V9RUdHGnzkGzW0XkazN7Hgk6jItMWm73YTToybQZyk0yUpScwOyOBHLtxgLGWUtLuDlDf7aWuy0t1hxd/KEI0KjHq1CQYNKQlGNBrVDy7o5HKNg8RKQmGY1lLYSVwqjAF0agEd55VyK0r8oacoEw0ipE/CaJRye2Pbub9io7JHsq0JD/ZxCfPLqKmo4e9TU4OtrhxeE+PgLXC6UmmzcDivFgKcVFKbGXafzU7EZwWRt7lD/Hc9kayE400OnzoNSrykky8V9HRl0eebNGzotDOwpxEMm0GTLrjhyTCkSiV7T109gTYUedgV70DhzeE0xciFI0SjcZmmU2Kq0BBQWEIDFoVywuSsJt05CebWJSTSGdPAKcvRLrVQH6yOVaIeBLyxqciT37S+cemOv7vvweP/7rNR/3oxng1Z36SiWSLDqtBS4JBiyTmUuj2BtGpVZj0GkxaNXazjisXZWHUqmlx+Wlx+mlz+6lq71GMvIKCwpD4Q1HeOzKyJyDFomfrt0dMZDxhZoyRPxF8oQgVbR4q2jyTPRQFBQWFCUFp5K2goKAwg1GMvIKCgsIMZsa4a1YWJfONS2dP9jAUFBQUxoxJN3HyIDPGyJfnJlKemzjZw1BQUFCYUijuGgUFBYUZjGLkFRQUFGYwipFXUFBQmMEoRl5BQUFhBqMYeQUFBYUZjGLkFRQUFGYwU0qgTAjRDtRO9jiOQwowHSQplXGOP9NlrMo4x5+pPtZ8KWXqUE9MKSM/HRBCbB1O7W0qoYxz/JkuY1XGOf5Mp7Eei+KuUVBQUJjBKEZeQUFBYQajGPmx89BkD2CUKOMcf6bLWJVxjj/TaawDUHzyCgoKCjMYZSavoKCgMINRjLyCgoLCDEYx8sMghLhRCLFPCBEVQizrt71ACOETQuyM/zzY77mlQog9QogKIcTvhRBiMscaf+7e+HgOCSEunuyx9jv/94UQjf0+x8uON+bJQghxSXwsFUKIb0z2ePojhKiJ/x93CiG2xrclCSFeF0Icif+2T9LYHhVCtAkh9vbbNuzYJuv/Psw4p831eVyklMrPED/AHGAWsA5Y1m97AbB3mH02A6sAAfwXuHSSxzoX2AXogUKgElBP5lj7je37wFeG2D7smCfpOlDHx1AE6OJjmzvZ12e/8dUAKcds+znwjfjf3wB+NkljWwMs6f99GW5sk/l/H2ac0+L6HM2PMpMfBinlASnlodG+XgiRCVillB/I2NXwN+CaiRpff0YY69XAk1LKgJSyGqgAVkzmWEfBkGOexPGsACqklFVSyiDwZHyMU5mrgb/G//4rk/S/lVK+C3Qds3m4sU3a/32YcQ7HVLs+j4ti5E+MQiHEDiHEO0KIs+PbsoGGfq9piG+bTLKB+n6Pe8c0Vcb6OSHE7vhyuXfZPtyYJ4upNp5jkcBrQohtQoi74tvSpZTNAPHfaZM2usEMN7ap+DlPh+vzuMyY9n8nghDiDSBjiKe+JaV8YZjdmoE8KWWnEGIp8LwQYh4xt8exjFt+6gmOdbgxTehY+04+wpiBB4Afxc/7I+BXwJ2namxjYKqN51hWSymbhBBpwOtCiIOTPaATZKp9ztPl+jwup7WRl1JecAL7BIBA/O9tQohKoIzYHT2n30tzgKbxGGf8XGMeK7Ex5fZ73DumCR1rL6MdsxDiYeCl+MPhxjxZTLXxDEBK2RT/3SaEeI6Y66BVCJEppWyOu+baJnWQAxlubFPqc5ZStvb+PcWvz+OiuGvGiBAiVQihjv9dBJQCVfGlp1sIcUY8U+V2YLgZ9qniReAWIYReCFFIbKybp8JY41/wXq4FejMbhhzzqRzbMWwBSoUQhUIIHXBLfIyTjhDCLIRI6P0buIjY5/gicEf8ZXcw+ddhf4Yb25T6v0+j6/P4THbkd6r+EPvHNhCbtbcCr8a3Xw/sIxZh3w5c2W+fZcQuhkrgPuIVxZM11vhz34qP5xD9Mmgma6z9zv8YsAfYTeyLk3m8MU/itXAZcDg+pm9N9nj6jasofh3uil+T34pvTwbeBI7EfydN0vj+Qcy9GYpfnx8faWyT9X8fZpzT5vo83o8ia6CgoKAwg1HcNQoKCgozGMXIKygoKMxgFCOvoKCgMINRjLyCgoLCDEYx8goKCgozGMXIKygoKMxgFCOvoKCgMIP5/xCEIu2dCe8oAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Change the world!\n", "* Reproject the world GeoDataFrame to another common, global projection: Web Mercator\n", " * This is one of the most common projections used for online maps (e.g., Google Maps) and tiled basemaps\n", " * https://en.wikipedia.org/wiki/Web_Mercator_projection\n", "* Look up (or recall from memory) the appropriate EPSG code\n", "* Use the GeoPandas `to_crs()` function to reproject the world GeoDataFrame to Web Mercator and create a new plot\n", " * If you didn't review it earlier, now might be a good time to take a look at this documentation: https://geopandas.org/en/stable/docs/user_guide/projections.html#re-projecting" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAFAAAAEQCAYAAAAnPvN1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAQpklEQVR4nO2deXCc5XnAf4+0Wsk6rMOybNmWJXxjA8axOQMED0cMgXK0BNxOCoGG0EDSNmQSMqSdXqRhaCdtpy3gaSEhw5UQruEw92AOG2PjS76ELdtYhy1Lsu5jtbtP//hWiizvSis9krwr3t/Mjr59v/f73nd/+s53n+9ZUVUcIyflVHcg2XECjTiBRpxAI06gESfQSMILFJHHRKRORMrjqDtbRN4TkS0isl1Erh7r/iW8QOBXwKo46/4M+K2qLgNuAf5nrDrVS8ILVNV1QGP/MhGZKyJrRWSziHwgIot6qwOTI9O5QM14dDDhX0AZUN7v/TvA/Mj0ecC7keliYAdQBRwHlo9133xj/h8aZUQkG7gQ+J2I9BanR/6uBn6lqv8mIhcAvxGRM1Q1PFb9STqBeIedJlU9O8q8O4gcL1V1vYhkAIVA3Vh2JqlQ1RbggIjcBCAeSyOzvwAui5SfDmQAx8a6Qwn9Ap4GaoEevGPbHcBpwFpgG7AL+LtI3cXAR5HyrcCVY90/iTTsGCFJtwsnGgl9EiksLNSysrJT2ofNmzfXq+rUWPMTWmBZWRmbNm06pX0QkUODzXe7sBEn0IgTaMQJNOIEGnECjTiBRpxAI0kvcP3+Bl7eVoOqsqGygdse30h5dfO4tZ/QdyJD8fqOWr731GecOSOXF7dUs+1wE+2BIM9trqIoJ52iyRkn1FdV+g3C0hEIkum3KUjKLVBVae3q4dXtNUyfnMHFCwp5d08dDe0BunrC7KptYWqON0j9xPqDfPR5PQBHW7pPWMcv36ogFLaNRiWdwHBYWb+/nurGDi5ZUMhZs3LZXnXiLjt3anbfljZtcgaLZ3jfM03PzaCpI0AwFEZEuGHZTLZ8cdzUn6QTWN/WzaHGDr5o7KA7qKw+t4THbjuHm1eU9NXJ8qf2TX99yXTys/wAHG8PsKGykdQU4Yn1B7nx4Y/5x1d2cbSli6b2AB9UDH/wOuGPgV09IaqbOtlV08L5c6aw50grn1Q2MiXLT2F2Ov/xzj4mpflYuaiIZzcdBuC8OVP6lu8Ohnh/Tx2XL55ObXMXy0vzuO3xT/loXz3BsLK9qpnzfv4Oq88tYdvhZlq7g5xTVsCktBSyM9KG7F/CC3xxSzXvVxzj9fIjnFuWz8aDx5lTmEVRjp/6tm7uWTmfR9dV8sPLF+BLEX68aiF5mWkEgmH8vhTWrKtke1UT739eT01TJ+U1LQgQHHDse3qjJ/97T35Gaorw06sW8RcXzxmyfwkv8IZlM6k42kpxbgbpPm/XrKxvp7K+nXuvmE9uho/LTy9i3rRs/vLSudx5yVyOtnSRliqUVzezp7YVX0oKz3x6eMgTRlqqcHrxZDJ8qVy6sCiu/iW8wPS0VO66dC7fuWQOWX4fq9esZ2dtKwBv765jkt/Hg2v3MK8oh3uvXAh4J47PDjUSVmVxcTYVR9r65JXkTyLT72Pv0da+NrL8qaSnpfLaDy7i1R1H+PaFZaSkyMmdiULCCwQoyvnD9dy9Vy7g0XUHAC+O4+H397OkOIfmju4Tlimdksn9z+9AVQmGlYvmTSEtNYXyqmYOH+/kskVFVDd1kJXuo6UzSHaGj6aOHr51fmnc8iBJBPantDCbTw78IVRmdkEmD/7JUhZOn3xCvXUVxzh/3hTy0lOprG+jqqmbKVl+VBW/L4W3d9cxM38SnT1h5hRmcdsFpSjg9w3vwmRULmNEZJWI7BWRfSJyX5T5IiL/GZm/XUS+MtK25k7N5oHrz+DcsnxuWDaD71xcdpI8gAMNHfzrGxV8WHmc7nAK4ZBysKETgPbuEGeX5JEqwqGGDs4pK6CkIJOF03KG3R/zFigiqcB/A1fgffH9qYi8rKq7+lW7CpgfeZ0HPBz5GxfhcJhwWPFFTiLfPKeEps4epuWks3x2Hs3t3eRmpffVrz7ezob9Dawozae+tZtjLd3MKphEZyjAP1yzmAde2cvy0gK+aGzjj5fP4JqlM5hdkDmizz8au/C5wD5VrQQQkWeA6/AiBnq5DnhCvW/xN4hInogUq2ptPA2kpKSQ0m9fSUtN4e6V82jr7OHTgw2s+fAAF88r5OqzZgCQN8nPWTNz6egJUt8WIKywr66V2786l9IpOfzo6wuYmZfJrtpmfCnQ0No+YoGjsQvPBA73e18VKRtuHQBE5E4R2SQim44dG/zOIHtSGgcaO9lT08L3n9rCD57ewuHGDrIy0vjZtUv4+Y1LmZzho6qxjQVFOVy+eBoAC6ZPJivDR35WOocaO+kOQnlVE2/tOkL7gJPRUIyGwGinrIEXXPHU8QpV16jqClVdMXXqVIYKPbly8TSm5WVQWpjJ2vIjfbdtvWSmpzEzP5OpORlsPnTife+8omyuXzaLcBge//gQnYEQGek+QqEQwWB8EXGjsQtXASX93s/i5MjQeOpEpf/wUzRm5WdSkJVGSUEmP151OtnpJ36kBdOy2VvTzPXLZkZdV11rF3/6fxsBeGlrNctm51Ocm4Ev3rPxKERP+YBKvIgpP15k1JIBdb4BvI63JZ4PbIxn3cuXL9d4uPnRj/XxDyujzmvqCOjeIy0xlw2Hw7phf73uq2vV7/5mk3b1BLUrENS6li6NHLM3Dfr5rQIjgq4GKoD9wP2RsruAuyLTgnem3o8XgrtitAR2BoL6k+e2DVmvP6FQOGr58fZuVVXdXdPcV2cogaNyIa2qrwGvDSh7pN+0AnePRltR2ub8OQV0B0N998pDLhOjPC/TO34uKj75ujIWSXcnMpBJfh/XL5s1rGVSh3GrNhRJLxCg6ngHU7LSmeQffAvcf6yN4twMMv0+mjt6aAsEOdbaTX5mGk0dPZQUZFIw4Cw+FEkvUFV5YUs1371k7gnlHYEgB+s72FXb4t377jrK6+W1pKWmcP83TudvXyxn4OhWXmYaN68o4c8vLGNm3qS42k8qgc2dPRysb6ezJ0QgGOKjfQ1MzUnno3313LyipO9buPbuIF976D3q2wInraMnFOKfX9l9kjyApo4eHl1Xid+X0jc0NhRJITAQDPPB58e456ktdPaEAG/wsyekZPpT+Zcbz+yTd6ihnft+vyOqvF561xGLb11QGnffkkLg4cYOnt9SfcIH7wl5m9D8aTlce9YMOgNB/veDAzR2BFhf2TDitrLTfXQF4n8uJym+lZtblM2ykryo83ZUNfHw+/vYe6SVM2fl0tzRY2qrODeD2VPiH1hIii0QYGdNS9TysMJDb1SwfUkzb+46ivWpjc/r2th2uImlMf5hA0n4LfClrdW0dvWwdFbuoNdvb+y0y+vlgdd2c7SlK666CS/wn17Zzd88u438LD9ThnmNNlI2Hmjk5a3xPSmbFLvw27uP8vbuo6e6G1FJ+C0w0XECjTiBRpxAI06gESfQiBNoxAk04gQacQKNOIFGnEAjTqARJ9CIE2jECTTiBBpxAo2YhvRFpAB4Fi/D5EHgm6p60uOPInIQaAVCQFBVV1jaTSSsW+B9wDuqOh8vLedJjzj0Y6Wqnj2R5IFd4HXAryPTvwauN64v6bAKnKaRRxUif2M9oafAm5Gsu3cOtsLhROknAkMeA0XkbWB6lFn3D6Odr6pqjYgUAW+JyB710hufhKquAdYArFixIuGzQw4pUFUvjzVPRI72PjAjIsXESPaqqjWRv3Ui8gLewzlRBSYb1l34ZeDWyPStwEsDK4hIlojk9E4DVwJDpnVPFqwCfwFcISKf4z0r9wsAEZkhIr1B59OAD0VkG7AReFVV1xrbTRhM14Gq2kAk7fCA8hq8Rx9Q7xm6pQPrTBTcnYgRJ9CIE2jECTTiBBpxAo04gUacQCNOoBEn0IgTaMQJNOIEGnECjTiBRpxAI06gESfQiBNoxAk04gQacQKNOIFGnEAjTqARJ9CIE2jECTTiBBoxCRSRm0Rkp4iERSRm8PhQufaTGesWWA7cyCDRpv1y7V+F9yPyq0VksbHdhMEaH7gbhkyWHU+u/aRlPI6BcefRhy9ZlL6qnhQTHW0VUcpiRt9/qaL042TEefSTgfHYhT8F5ovIaSLiB27Bi+6fEFgvY24QkSrgAuBVEXkjUt4Xpa+qQeAe4A1gN/BbVd1p63biYD0LvwC8EKW8L0o/8v6kXPsTBXcnYsQJNOIEGnECjTiBRpxAI06gESfQiBNoxAk04gQacQKNOIFGnEAjTqARJ9CIE2jECTTiBBpxAo04gUacQCNOoBEn0IgTaMQJNOIEGnECjTiBRsYrSv+giOwQka0issnSZqJh/X3h3ij9R+Oou1JV643tJRzjEaU/oRmvY6DLpR9lVrxR+uBy6dtwufQNuFz6gxBPlD4ul35s4onSd7n0HYPiBBpxAo04gUacQCNOoBEn0IgTaMQJNOIEGnECjTiBRpxAI06gESfQiBNoxAk04gQacQKNOIFGnEAjTqARJ9CIE2jECTTiBBpxAo04gUacQCPW8LaHRGSPiGwXkRdEJC9GPZdLPwZvAWeo6llABfDTgRUmei59k0BVfTOS5hhgA16S7YH05dJX1QDQm0t/QjCax8DbgdejlLtc+gwRpS8i9wNB4Mloq4hS5nLp9yIitwLXAJeparQP7HLpx0JEVgE/Af5IVTtiVHO59Afhv4AcvIdntorII+By6ceNqs6LUe5y6Tviwwk04gQacQKNOIFGnEAjTqARJ9CIE2jECTTiBBpxAo04gUacQCNOoBEn0IgTaMQJNOIEGnECjTiBRpxAI06gESfQiBNoxJoGeczJz0wjHDVmaWzJSItv20p4gW/98GunuguD4nZhI6YtUEQeAq4FAsB+4Nuq2hSl3kGgFQgBQVWNmTY+2RjzIPN+rFTVsyeSPBifIPMJzXgEmcMwUsEnG+MRZA7DSAUfEXwnwOzZs+P4CKcYVTW9gFuB9UBmnPX/HvhRPHWXL1+upxpgkw7SxzEPMnep4AdnyCBzJngqeNFTcJsULyJyDGgHRvpLOIWjsGypqk6NVSmhBQKIyCYd4bXjeCzrbuWMOIFGkkHgmkReNuGPgYlOMmyBCY0TaCQpBMab3GLAMiNKdCEiJSLynojsjvzs5V8NusBg93mJ8sK7/fNFph8EHhyifireAO8cwA9sAxbH2VYx8JXIdA7eOGfMZZNiC9ThjzuOONGFqtaq6meR6Va8Z5xj5nhICoEDGGzcsZdhJbqIhYiUAcuAT2LVSZhv5UZp3LFvdVHKhnW9JiLZwO+Bv1bVllj1Ekag2pNb9MeU6EJE0vDkPamqzw9a+VSfIOI8sK8CdgFT46zvAyqB0/jDSWRJnMsK8ATw73HVP9Vy4vxQ+/COaVsjr0fiWOZqvDPofrzDQLxtXYS3u2/v197Vseq7WzkjyXgWTiicQCNOoBEn0MiEFSgij4lInYgM+RWqiPwy8q3iVhGpEJGmuNuZqGdhEbkEaAOeUNUzhrHc94Flqnp7PPUn7BaoXuhIY/8yEZkrImsjMTofiMiiKIuuBp4eTkMT9gWUAeX93r8DzI9Mnwe8O6B+KVALpMbbRsLcC481kcGBC4HfifSNNaQPqHYL8JyqhuJd75dGIN7hqklVzx6kzi3A3cNd6ZcC9YakDojITQDisbR3vogsBPLxIs3iZsIKFJGn8WQsFJEqEbkD+DPgjkig005OHKVeDTyjw7wsmbCXMePFhN0Cxwsn0IgTaMQJNOIEGnECjTiBRv4fIYhCrO1IMsEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Workaround for Antarctica (more discussion later)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAARAAAAEQCAYAAAB4CisVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABpcElEQVR4nO2dd3hb1fnHP0fbU957Jo6zd+IsyGCGPQNhz0ILtHTwK6W7dDBKoaxCWWWvUsIMgQCBELJ34ngk8d7bkq0t3d8fshXLlrc8cz/P4yeWdHXvkSO9Ouc97/v9CkmSkJGRkRkIipEegIyMzNhFDiAyMjIDRg4gMjIyA0YOIDIyMgNGDiAyMjIDRg4gMjIyA2bUBxAhxEtCiBohxOE+HPuYEGJ/20++EKJpGIYoI3PSIkZ7HYgQYjnQArwqSdKMfjzvx8BcSZJuHrLBycic5Iz6GYgkSZuBho73CSEmCiE2CCH2CCG+E0JM8fHUq4C3hmWQMjInKaqRHsAAeQ74oSRJR4UQi4B/Aae1PyiESAXSga9HaHwyMicFYy6ACCGCgaXAf4UQ7XdrOx22FnhPkiTncI5NRuZkY8wFENzLriZJkub0cMxa4M7hGY6MzMnLqM+BdEaSJANQKIRYAyDczG5/XAgxGQgHto3QEGVkThpGfQARQryFOxhMFkKUCSFuAa4BbhFCHACygYs6POUq4G1ptG8vyciMA0b9Nq6MjMzoZdAzECFEshBikxAiRwiRLYS428cxQgjxhBDimBDioBBi3mCvKyMjM/L4I4nqAH4hSdJeIUQIsEcIsVGSpCMdjjkHmNT2swh4pu3fHomKipLS0tL8MEQZGZmBsmfPnjpJkqJ9PTboACJJUiVQ2fa7UQiRAyQCHQPIRbgrSSVguxAiTAgR3/bcbklLS2P37t2DHaKMjMwgEEIUd/eYX5OoQog0YC6wo9NDiUBph9tlbff5OsdtQojdQojdtbW1/hyejIyMn/FbAGkr8Pof8NO2rVavh308xWf2VpKk5yRJWiBJ0oLoaJ+zJhkZmVGCXwKIEEKNO3i8IUnS+z4OKQOSO9xOAir8cW0ZGZmRwx+7MAJ4EciRJOnRbg77CLi+bTdmMdDcW/5DRkZm9OOPXZhlwHXAISHE/rb7fg2kAEiS9CywHjgXOAaYgJv8cF0ZGZkRxh+7MFvwnePoeIyE3JsiIzPuGPWl7DIyMqMXOYDIyMgMmLHYzi/jZyqbzXywr4I9xY0EapSkRQaSGhlEWlQgU+JCCdLKbxMZ38jvDBke25jPu7vLfD42PSGUt25bTKhOPcyjkhkLyAFkjJBXZaSgtoVpCaHsKGhgX2kjWekRZKVHkhgW0O/z5VQaeHVbMXGhOj4+0P2OenaFgZv/s4tXb8kiUCO/XWS8kd8Roxyzzcndb+/jiyPVACgVAqfLXcT71k53d0BSeADnzYzntuUTiAzurO7YFavDyc/e2U9ulbFPY9hd3Mjtr+3hhRsWoFUpB/hKZMYjchJ1lPPOrhJP8AA8waMjZY1m/r25gLXPbcdgsfd6zke/yO9z8Gjnu6N1/O6DXq15ZE4y5AAySlm3r4w739xLTmXfP+hHa1r4+IDvDgFJkmgXj3rp+8IBjemUSXJvkow38hJmFFJjtPDYxqOUNJjQB/Q9ealUCKYn6D23JUnC4ZJQKxW8tbMUs93JdYtTsTt7VqFTKwXJEYGkRgSSHBFITIiWeH0AF8yKH/BrkhmfyAFkFGG02Hnk8zze31uO0eoAoNnc+5KknV+ePZlZiXre3VXKW7tK2FfShEap4O3bF/O39Tm02tznXDwhgu0FDd2eZ3qCnvNnxXOgrJkLZiewMC2CA6VNdLDRkJEBRrkm6oIFC6STSVDowc9yefbb4/1+Xnigml+unsIV85O4/fW9fJlT7fW4VqXA6nB5bmfGBlNQ24rDRz6lM2ql4OqsFN7ZXcqu35xBiE7NsRojj27MJyMmhBuWpPYpcSszdhFC7JEkaYGvx+QZyCgiNnRgH8RbT53AuTPjUSgEOwrquzzeMXgA5Fe39PncdqfEK9uKCVArsTslfvvBId7aWdqWzK2isdXGny/us2WxzDhDTqKOAlqtDvaXNnHFgqQBBZG3dpagVSnIrTKiUQ3Nf+mMxFBufnkXr28v8doJqjJYhuR6o51mU9+XluMZOYCMAnYWNnDx09+TU2nkojk+lR575PfnT6O43sRlz2ylvtU2BCOEXUWN7C9t8rovMSyAv4yy2cdwLMlf2lLIKQ9/TVmjacivNdqRA8gI43RJ/Or9gwC8vLWIaxalEBbY952XG5emsWhCBD98fQ8m2/BZAYcHqnn1lixiQ3V+Pa/TJfU7CFjsTl7+vpAP95dz2TNbaTINTRAFOFzezF8+PYLR4uBv63OG7DpjBTkHMsLsL22k2mAF4JODlVgdLp65Zj5Gi52oEC3f5tXy+FdHfT43LlTH786fxr3/O0hhXetwDpv7L5rBxOhgv5zL5ZL48EA56w9VMTk2hANlTfz14pmkRAb26fmtVgdljWb+8UU+F8xJGLKSe5dL4rcfHKZ9BbfhcBXlTeYBtRKMF+QAMsLsLW7yur3xSDUalYKoIA3BOhV5PVSMXjgnAadL4rNDw6cOGROi5Zerp3C+H2tCyptM/PzdA0iS+/UDXPncNt69fQnJEb0HkchgLXF6HWsWJPP7C6b5bVydEQLmpoR5lnIuCd7ZWcLPz5o8ZNcc7fhLVPklIUSNEMJnrbMQYqUQolkIsb/t5/f+uO54IC0qqMt9B8uayKk08vSm43yZU+PzeRqlgkvmJqJRKXjpxoVEhwzPVmqN0YrZ5hh0TciXR6r5cH85r20r4kdv7OXHqzII6SAbUNlswWhx9Pl8Ny9L57fnTR3UmHpDCME1i1K87ntnd6nP9oKTBX/lQF4GVvdyzHeSJM1p+7nfT9cd85ySEdVlClzaYGZpRmS3z5mRGMr3vzqNqfGhACyaEMnc5LChHKYXKyfHDOr5R6uN3Prqbv78SQ6Pf3WMw+UG7C6Jm5alERGkIVSn4oYlqUxLCO3zORUKgUIx9IVu6VHBBKhPNBRWG6xyABkskiRtBrovbZQB4Ju8GvYUe/+ZAjRKPrprGVlpEd73qxVe38gACgF/uXgGH9yxzDPjcLkk/vN9Id/kD48JV3JEQJ+WFT2RFB6IQkBdi5W6Fnf+55lvjjMxJphdvzmD/b8/iz9dNLp2d9pRKgQ/O3OS57ZGqSCn0sBDG3KHZQdotDGcuzBLhBAHhBCfCSGmd3fQeHKmsztd1Ld9QMA9Lb/smW384cPDWB1OcqsMNJlsRAZryak64cU1LyWMEJ3aU87ejkuCqGAtKqX7v62s0cQN/9nJnz4+gq1TsdhQsbBToBsIARolGTFdE7DPf1cAMCwzicHwg1Mn8PDls0gMC2DxxEj+u6eUZ745ztObjo300Iad4Qoge4FUSZJmA08CH3R34HhypntlaxE/en0vrrYp7urpcQRqlLyyrZgvj9Tw+vZirntxJ3ani0XpJ5YsZ0yN5dfrfLfOby+ox+WSeHVbEWc/tpnvjtYNy2tpx187DldleecSZifpeesHi3GNgW9xIQRXLEhmy72rePXmLDbnu/8Pnt50/KSbhQxLAJEkySBJUkvb7+sBtRAiajiuPZJcOi+Rx9bO9nyjBmiUfHjnMk7JiOLb/BoyooM5VN6MyebkgUtn8tvzpvLni6Zz7sw4ZvvIaWhU7sRpXauV33+YTesw1n2046/Px5ULk73qXVZkRlNjtLLi4U1YHcP/ugaCEILi+lbKGk0snhDBny6aftI1HA7LNq4QIg6oliRJEkJk4Q5cXZs2xhFWh5PV//wOnVrJ5l+uAkCnVjIpNoSXblxIbpWBCdHBaFVKNufXcv6seG49dQIAL39fyDVZKRzoVPn59NXzmJ0chtMlccOSVF7Z1q1p+pDhrxlCoEbFY1fO4fZX92BzupidHIZaoaCi2cL9Hx/hr5fM9Mt1hpoAtZLtvz6dmBDdSTf7AD8FECHEW8BKIEoIUQb8AVCDx5nucuBHQggHYAbWSuPwr/3d0Vq+yavltCkxLJ0Yya2nprNkQteJlkalYFZSGACnT4vhf3vKaTbbCQvUAFBttPKf73NRK4VHu2NCVBArJ7uXdEqF4E8XzeCC2Ql8driK9/aU9avtfzAcr+17I15vJOgDsDldzEzUc/rUWIwWO/eunsLVnZY3o5mYtkrcTbk1PPx5Hs9dN3/QSeaxhF8CiCRJV/Xy+FPAU/641milosnMHW/sxWhxcEpGFEIIbls+sdfnbTteT2iAyhM8agwWcioNWOzeSdEfLJ+A2e5E3ZZAlSSJTXk1vLGjuMuxQ8me4kaazfZ+CR11R2pkILOS9J4PXIhOzY9W9v438wcul+S3ZO3x2hZueWUXoQFqjte2yAFEpv/88aNsjBYHWpWC6R3qF5pNdj4+WMG1i1O9jj9abUShEOwsbOCNHSVsyq3lzGkxmG1Ovsnruvv0yOd5LM+M9tgrCCFoMtmHNXicNiWGZ66d5zdhZZ1ayXPXLaBhiBoAfeF0Sfzl0yNsOFzFpntWolMP/rV8sK8clwRNJjs3vbyLJ6+ay7GaFrLSIliaMb5TfXIA8QN7ihv54kg1MxP1/OemhbyxvQSjxc6PVk7kcIWBZ7897hVAnt50jCe+OkpaZBAf3rWMpROj+Nv6HIrqW1l3x1JmJunZXdRIamQQaqXgvT1l/OKszC47IPeeM4VtBfWU1JuIDNYQoFZS2Wzpov/hLw6WNVPfYiPBj70fcXodcXr/NuT5IqfSwAf7yvnuaB1HKg3unItyYHsIkiRhdbioNVr56Tv7KeiwrJMkuOvNfQCoFILH187lvAGW/bdaHQRqlKM6MSsHED8wKTaYf145hzOnxSIEPPvtccx2J1uP1/PuD5dgsjm56829/HDFRGYk6vnfnjKsDhf1rVZ0aiXnzYqnyWzj/o+PsKuogdOmxDI/NYL6FitljWb+vmY2wT7c4UJ1atb/5FTUSgXKtum4xe7k5+/uZ/2hKr+/zroWK+v2lXPnqgy/n3soeX9vGfe9fwirw0VYoJo/XzSdq7JSPH+zvuJySRyrbeHKf2/D6ZII1qqoaO5eD8XhcgswnTszrt9B4IHPcvj3twUEapTcdVoGt54yYci0XgaDHED8QKhOzcVz3ToeHx+owGx3b0MeqTRww0s7Cdaq+ORgJZfNTwLguesXsPa5bUSH6CipN/Hw57msmZ+E1eHizjf2MSc5jLBANZ9nV+GS3DUS6+5Y5nPN3nkKrlMreeqqeVzc+D0Hy5r9/loNw5Ss9QeSJPHoxnye/Npd4HXZvCR+fe6UAUkwFta1cu0LOyhvMnvuM/ShV0epUAxoBrEp190DZbI5eXhDHmWNZlZmRhMWqGFhWviomZWMvpA2xlkyMZKHLpvJs9fOZ+nESPaWNBIepGHtwmQWpburODNigjl/VgJrFybzeXYVnxys9LwhzHYn2wrq+exwladt/EBZc792WRQKwbIhWnuvHUM7JBsOV3mCx49Py+AfV8weUPB4bVsRl/7re6/g0RdCdSqeunpuv68HcOHsBAAS9DqiQ7TMSwlHpRTc9J+d/Oyd/QM651Agz0AGidMlUdpgQgLSo4KICtZy5cIUdhY24HBKvPfDJcxP7Vr+/ccL3dX8dqeLpPAAlk6M5Mufr+CVrUXsKmpAo1IwOTYEldJt1RAepOnXuO45azLr9pb7XXLw04MV3HXapN4PHAW0Ly8umJ3Az8/MHNA5XC6Jf355lMZ+ShimRQbyys1ZpEZ27bbuC3eszGDVlBgvmw6A7b8+fVQ178kBZJD85/tC/vJpDkLA1LhQpsSF8MBlM8lKj+DdHy7p9nmSJCGEQK1U4HBJ/OXTHFZOjuZ+P1UzKhWCM6bF8Pr2kkGfq515KWFctzjNb+cbSvKrjfz981yCNEr+esmMfv9N28uUbG0Bvr9SkQlhAThc0oC3vBVtHj/t42gff8goMzmXA8ggWTzB3cMiSe6cx5FKA2lRQfzkdO9v6cK6Vj7aX8FPTs/AYHZww392EhWs5WdnTOKe/x7A6nBxqLyZ5ZOieG5zAVqVguWZ0bz0fSHzksNZt7+cH66Y2K+lyVnT4vwaQCqaLARoxoY37sGyZix2F9cvSfVsffeV0gYTV/57G7UtViSJPtlfdGbr8XrOemwzq2fEYbU7cUlw5rRYTw/QwxtyCdGpmZMcxpKJvqUbms12LnpqC+fMjOfe1VP6PYbhQA4gg2R9JzWwZRlRFNe3suFwFQvTwgnSqjBY7DzxVT4Ol3vW4ZIkjlYbqWq2EKRVYXW4UCkEd58+ic8OV/PAZ7k8eOlMrnp+O9UGK/H6ALYdryen0sBndy/vs3jQkomRhAeq+z399sW1i1P44wXTPZ3Aoxmbw8VLWwpRCLfQUHfkVRlRKwUTooO9CsvMdmePuyt9xemS+PTgiffHwbJmGk02EsMC2JBdRUFtKxqVgg/vXObRdulIkEbJ09fMo9U6enuD5AAySDqaOC2dGIEA/re3nG3H6zFaHSzPjGZWop5PD1Zxy6lpANz3/iEUQlBlsPBVbjValYK/r5nN8sxoft6WIHviq6MerdQjFQa+/sVKnv+uAK2q71NxtVLBGVNj+e+eskG9xuSIgC7Si6OZA2VNHKk0cMHsBJ+Kb+386v2D7Ctp4oXrF1DfauWKBckIIfxSZeuLuhYrD2/I87rP5nDxdW6NzwDy/r5yHlifw4K0CA6WNbEwLYLpCaGjKojLAWQQ1BgsHpMmpUJw07J0fvDqHuBEAu/Tg5U0mWzE6rXsK2kC4A8XTmPtc9sxWh3Ut9i4+/RJnDM9FoDSNquAjt+Ah8qbufhf39PQamNXUQPv/nBJn6blLpfE1uOD71msMVi548IMFKNk67A31u0rB9xJ7e5otTrILndrsGjVbk+d17YX8/cNeUyKDSYlIpCShuGxbUhpK313uiSv2pSyBhONJjsbj1R7tGIDNUoeumwWF7Tt0ow0oyeUDZCGVhuPbczHZOu7fiZAtR92J2JCdTy+dg4alYIJUUFEBGmZnhCKtlPBz/aCBkobzOS2CSTH6wP493XzmZ2kZ8mESJ74+iivtuUqfC1PShpMnnLv3Cojj36Rz8cHKnodn83p4sI5CUQF928Hxxd//uQIjUNol+BP9AFqlArBkQpDtx2yj27Mx+Z0EahRohDCXdqeW4PR6mBvSdOwBQ+ADdnuor/bX9vDs98e5+fv7OeZb46zr1M3NrTVhXyeS0U/t5Q7U+QnFf8xPwNxuiRarQ76muc6XN7MJwcrefbb49x3zhSmJ+g5ZdLAayYumpNIsFbFkomRBGpUzEjQk11h8DqmfdutyWRnR0E9iyZEMiUulA/vOoUP95djsbt4etMxrl2cwk9On8TGI9WeLlxfvLy1iLd3lRAeqGFZRmS3Oww6tZIblqQRr9fxt/U5A+6buXFZGs9tLiCn0sgpk4ZevPn7Y3Ws21dOTqWBM6fFcteqjH5N2+9dPQWVQvDa9mI+2F/OJXOTvB5vNtt56ftCwP2BtDtdWB2uYZOF7MynByuJDs7my5zqLr7GvihtMHPZM1u5c1UGFU1maoxWlk6M5NJ5Sb0+F9wz008PVfqlovikMdd2OF088Fkur2wt8sqqa1UKlkyMRB+gZs38ZKYlhKJSih6XCE0mG98fq2fF5GgC1EqvaWdxfSuHyw3Ut1p54qtjHs3PdjQqBQ9eOpNL5yVhd7r4cH8F9/z3AADPXjufFZnRPPn1UT45WOn1LahSCJ+7AZfOS+TRK+Z0O9anvj7KI1/koxD0Och2JESr4smr52KyOTl7ely/y7/7Q43RQnaFgd99cJiyRjM6tQKL3cV/blrIqgEKObdvl3fE5ZKYc/8XnkrSf6yZzfPfFXhmiGOV7fed7rOvqPPSqL/I5tq418Uvbinscr/V4fJ0v364vwKVQuCUJFZmRnP9kjROmRSFWqmgsdVGtdHCE18dZdvxelRKBWcciyUpPIB4vQ6rw8XahcmolQp+8va+bot9bA4Xj391lHNnxnPzy7s4a3os0+JDOVJpQAjQqRX8cvUUbliaxu8+OExyRCCRwRpWTY7hzR0lvLbdW0To/b3l3LFyIhkxIT6v194ns3xSFJt8dPn2htHq4JZXdvPImllDGjw+z67iF+8eoKVNBzYzNpiyBhOTYoLJqzLSZLJ1mUn0hfbg8dzm4ySHB7JqSgw6tZLIYK0ngJjtzjEfPMD95VVc30qjyc7clDBsDncNy7IHv2ZCdBCxoToigjTcfEq636Qpx3wAsbVtgXan7WBzuChrNPHS90V9Ol/7t/ymvFoKaluJDNbwm/Om8pO39ncpZX5rZwlCnJD5W7evnJuXpfPE2jmsP1TFp21bvFqVgkvnJaEQ8NH+Cv544XRsTheRwVpe317CXy+ewZXPbef21/bw+i2LmJ8ajsnm5Isj1QgB//vRUqbGh/Kb86by/t4yLylDjUpBVbO12wBy66kTOHdmPJ8eqhxQAAnRqnj8qjmcNiW238/tK0erjfzsnf3MSQ6jvsVKQV0r+gA1+XYXsaFa/vF5Hk5J4uvcWlZkRnPp3MRetTw6bsu6XBL1LTb+tj6XCVFB/Pu6+Tx02Syu+Pc2wJ0zmRIXMuaDyJXPbfe6LQS8e/sS0qOCvJLpr24r4pE1swfkw9wZfymSvQScD9RIktRFj1+4vwYeB84FTMCNkiTt9ce1q5otPLQhl39cMduntsO7u0v57Qe+BYr7wt6SJi57Zlu3j3dcAe4sbGBnodu24f6LpnPKpCgmRAXhkuBv63NYPCGC/X84C6dLQqNSsGZ+Ei5JouNc5afv7OeXZ0/2JFMlCdQK9/pfp1by4g0L+MNHR8irdr/ZJ8UEMzGm+90GpcK9XfySj9lXT2hUCk7NiOK+c6f6VFD3FwaLnR+9vpcZiXryq41MiA4mWGtld1EjANkVbs8YcDcqfnyggq9yqnlkzWyCtCpKG0xkVxhYOTkanVqJJEn8d3cZh8qbOXt6HDuLGthZWI+q7W9YUNfKpc9s5d/XzvcEjbd3lbBkYuSYDyCdkSS44aWdXTyT7U53fcqoCSC4jaWeAl7t5vFzgEltP4uAZ9r+9QufHqqkodXGSzcu7FIpeXVWCsdqWnh5a5G/LtcrCuGeOkcGadhZ2MCqKTHkVhk4VN7M9oIGrlucilat4P295VQ2m71yE3UtVhQKwUdtuywKgacuYeuxOh7ckMs7ty9m8QNfYbG7yK4wsPqf33HrKen8+HTfPSp/35BHjdHq87HOKBWC56+fz+IJkUPmMduRn79zgIggtSfw1rU0kBYZ6Cl+S4sKorFt+7udzw5XUdpo4n8/Woo+UM2db+7lsSvnMCtRz+8/ymZzfi1alYI3d5b4XEoaLQ6ue2mn57FgrWrc+tsOteG6vyQNNwsh0no45CLg1TYd1O1CiDAhRLwkSX4zdd1WUM+v3j/IdYtTyYgJ9kgEKhSC+86dwvaC+mH7hnFJ8LsOs56nNh3z7KocKm/ml/876HlMqRBd3uSPbcynovnEcqnJbCOFQEID1Fy3OJUQnZrIIK1nSdVstvOPjflMig3hjKkxXjsWDqfLy3OmN9bMTxrS5UpHdhY2sKe4oUuncceZZPvsqzOHyw3sLmpkQnQQGdHBXDArnkv+tdXjW9ubqFLHv/kPV0zkN93YaMj0zHDVgSQCpR1ul7Xd51cOlDZx9Qs7OPOxzVS2fQAtdievbi3myavm+qUeYiD09Gb29Q1Z3mRmQlQQWWkRPHvtfI8A84xEPWsWJPPJwQpP8FAqBNPaqhh/+PoeT8FROyqloseCqo5MTwjl52f57lrNrmim2mDBYnficLp4fXtxF9X4/vLk10fJiAnusjvUMVnrcLn/doEaJY9dOZvTpsQghFtkWiEEFU1mmsw2Vvz9G0/w6A8L08L5Nr+WI5V9D7IyJxiuJKqvjJfPbQohxG3AbQApKb1rTwgB1y1O5d3dpRTVu7c9TVYHOwoaWDwhkjX/3kppg5l/fXOsX2bN3Q5wmLhoTgK3LZ/oM6+zpYOZVFyojg/uXMYl//qeJpOdFZO7mnGlRwX1KC40OzmMaxalcMGsBJ/NclaHk1tf2U2ARklwW96h0WTnvnOm+PSv6Qu7ixr47mgdyRHeS4ezpsVy7sx4frPuEK02Jzlts0aTzcl3+XW8dONCqpotNJpsXP38dprM9kF51ewqamRXW75Fpv8M1wykDEjucDsJ8FlK2V9nuhCdil+unkz2n8729BN8dvdyLp6bSGyo1vPt3Wiyo1KOjVJst3yh4IaXdnpmGi6XxBX/3sbSB77ivb0nelvKm8z888t8XrhhAY+vneMzb/HTM7rXwlieGc2Hdy7jigXJ3XbaalXulviyRnNbQ5h7yfHB/t6rYX0hSRJ/W5/DzEQ9pQ0nlmo6tYLHrpzDaVNjiG2zS0gJP6FwXmO0UtVs4UBZEzVGK42mwQWPk5lIP83Gh2sG8hFwlxDibdzJ02Z/5T/acx0AH965jKc3HSOi7Y8jhOCRy2dzxYJkXC6JJrONn71zwB+XHTKiQ7T84sxMcioN7Chs4IInt7DujqXE6XXMTtKzfFIUwVoVf/k0x7Pl/K9vjhOn13H9kjSf54zX63zmWgDmJOl9PKMrs5LCCNIoPR68E6KDePDSgZk/vbWzlH2lTSzsJLSUFhnk7il6cRcFbaXWBXUthAaoMJgdHK9tIbfKwO2v7Rmx5eh44PL5SfzpQv+Ylw+XsdR63Fu4x3Bv497kj+t2RqNS8LMzM8muaGZvSRMXzkpAH6hm+aQoao3WUW9+HKxV8c09KwlQK/nHxjwum5fElQuTWbevnJ+ekclvzpvmOdbulPjr+hyiQ7Q4XRJf5tR0G0B0aiVnT4/tIrSsELCijxWekUEa3rl9CVuP1RGgUXLZvKQBdYVuyq3h9x8eJjM2hJ1FDZ77E/Q6XrhhAX/8KNvrfrtTIrQtkVrZbOGml3cBUNcyNvpyRiNf5VQjBhj8OzNcxlIScKc/rtUXpifoSdAHEKh1T8n/9c1x/vllfo/9JSONWin46yUzCGpTX//ZGZm0WBw8s/k4950zFUmSqDJYiA3R4ZIkblyWRrPZznObC/jpmZNIjeg5Ufrb86bxbV6tVxHaz87IZH5qeJ/GJ4QgMzaEzFjfBWu9IUkSD3yWy3ObCwB3gVo7WpWCd25fglal5O1dpV2emxIZ6FEEk5csvROv11HZg56JUqHgyyPVnDNzYHYTHRnzlajd0a4harTY+VeHbdTRyh0rM7wKe1RKBVq1kpuXpdNssrOzqIGHNuTS1JZ/ePDSmdxz9mRuWJrGzsKGXr1HEsICuHhuIm/sOKFQph5Gm4Bv8mo9wQPA2SESzEsJJzkiEKvDiUal8CyTwN0D1GrtX/L7ZCQtMpCiehNxoTp+fNokfr3uUJdjTp0UxT1nTWZWkt5vuqpjvp2/N9RKRa9K3O07CSO1rg5oCxRd7tcoiQ3VoQ9Uc+a0WGJDtdS1WKlrsfKztpbv6BBtn42LbjklnZmJek9h2uS4gc0mBoLd6b2Vfaz6hBmTVu1+G6oVClyd3thzU8I8misyXQnUKPns7lP5+hcrmZWk59/XzefD/eVexwjhrox+7ZZFzE4OQwjhN1GicR9A3t5Zws2npHWrMnXh7ATKGkxolAo+/+lynrxqLksmRJIZG0xsqJaIoKEXsZ2fGo4+sPfrTIk7oVpltDp45Is8j95FTqUBh7Pn4qkJ0cF8/ONTWHfHUpZnRpOV1lUtfqjo/PfvqHvyTV4tm3JrUCgE95w92d33c+5UXrsli9o+VtCerPzpwulMjQ9FoRC8fdtiHt2Yz47CBhLDAjh/VjwPXDqThy6d1W1+bLCM2yVMO9cuTkWlVHDDkjRO/8e3FNW3egqXooI1/PWSGTy6MZ+fnp6JPlDNBbMTuGB2ApIksbekiUc+z8PicJtat5db+5uwPgQPSZLIrvCu5XC6JGqNVmJCdfz2g8PctCyN82f1rlQ1ITqYV2/OGvB4B0L7tizAovQIbA7vEuv2gPLDFRMJ1qr4Nr+W2hYLpY2DE84ZD0yJC2FKXIi7K9xkZ+3CZB75Io/iepNXDutv63PYfLSWL3++grTIwGGRPhz3AaT9jyiE4Nnr5lPfYiO/2sgfPsomKliLVqXkDxdM7/I8IQTzU8N5+PJZ/OHDw5Q0mMhKi/DaIfAXnx6qJP2LPH5x1uRuj3G4JMw++hqufmEH58yIY09xI40mG6unx42oZmZelZF1+8q5d/VkLx2O5IhAVk6OJixAzd/XzOaip7Z4Hvv9+dOYkXhiO3l/aRMbj1SzKD1iVHmgjAS3r5jAfedM7XL/rGQ94YEaj7/vRwcqeH17CVcvShnS5sfOjPslTEcyY0NYMjGSKoOF1dPjWDM/mce+zO/xOckRgbx0UxZf/mIlcXotOrX//2SS5A4i5U3mLrmCdtRKBX+5uOvW27GaFo/7WkFtq6cJb6R4fXsxX+dW89/d3kLOSoXg5ZuyeGTNbL47WuvVbzMtwb00kySJ5zcXcOqkKGYmhg7J33osccHsBO4927edQ0yIzhM8/vLJEX7yltvQe09RIxb78Km4n3T/Q//65hhVzRb+vmYWq6ZE87MeqjQ78/MzJw9Z3qCgtpVlD37NqQ9t4pu8Gp/H9OWbZSD9IP7E6nCSX93iSYx25u+f5/HYxqNcNs+94xSoUXoCyPHaVl7dVsS/vjlOdoXBL7q1Y5WlEyN5ZM2sXnVPqpot/KdDp3l+jXFYxa9PmgCSX23kvvcPIUnw10tmEKJTMyE6uF+O52lRQcTpdSxM61vtxECoMli47dU9/GbdIY7VtHgUusAd/Hrj7Z2lfRJcHgpcLomL5yYiBGw95lsN3u50H3P/J0e4aHYC+39/lkc+UqmA0kYzeVVGJkYHY3e6mBIXQmbs0EzJkyMChlRlbaDMSAzluesXoFX1buJ1uLzZa5n35FVz+/WeHiwnRQA5VtPCnuJG/nzRdO5clTFgnQtJknjg0ln9bsrrLzanizd2lHDGo996jJT/tj7Hs1Tp7bk/fmsf5z7+3bBOZYvrW/nBq7upMVi5bfkE3t1TyndHuyqgZaWHU1Dbwi9XT+GPF06nyWTjb+tzeHFLIX/+JIdlGVEIARFBGo7XmsitMhIe6J/tdSHcFa+L0iPIiAmmtMHs3gFr2yEKGiWue9Pj9WiUCprban56qoNpL5YEmBYfyuQBFvoNlHGfRAX31N8fiaVv82tpNNm4d/UUT0n1UNNu5zClnzUbRyoNPLwhj99fMK33g/3AP77IZ8uxWm5Ymsb8lHDUSgUPb8jj1EnuhsiGVhsbj1TxRXY1X+XW8M6uUpIjAqlqtmDuFOgWpUewo8OO16GyJtKjgigchBVBWmQg5Y1mKpotXp47OwsbSAjTkRkbTEFtK6EB6h6rOAeLSiGYHBeCQgjyq40+pR7e2V3KofJmjtYYef76BdQYrFyxMNnH2by9b35y+iQmDXMAOSlmIP5iRWY0KRGBLM2I5MxpwyO6s6+kkcpms8d8qD980KmgaCjRqBQEalRMiQ/hgc9ysbV5/T6wPgeAu9/ex6vbivkq153fcbgkKppMPpcQnQWGYvQ6BAzKlzc6ROuRRuxMRZOFXUWN1LfaiOmjbehAmRofSnaFW50u3oeCejtHKg3YnRKvbSvm2x7sJuJCdYRoVTyyZjarZ8QNxZB7RA4g/cC9tRuBVqVkbTffCP7GJcEPX9vD653U2HtjbkoYVy1MGbZt0CsWJPPNPavQKpVeRWPBOhWfH67EZHPSOVY4XJAU3lVKMDpYS2KYjvkpYWSlRyC53FqmsxJ77xxemBbO7CQ9s9u6jCOC1KiVos89NAfKmpmbHEaITtXrLlBEkNot/JQe0efgFtDhnEX1JqYndLW07MjqGXFdAmpHhBDctCxtRIIHnCRLmKGgodXGhbPj2V3U6Bcj5p44UNbMgR4EgRL0OlZNiabV6qKuxcqi9AjOmRnHYxuPdvnQDhVZ6e7dqYNlTcxPDeeOlRNJjwpi/eFKHtmYT32L1esbN1SnIjLYLcuYlR5BdnkzrW1BpsFko7zJQnmT9991R2EDi9IjaGi1cbTGu7w9IkjDpJhgr6VPe1NZbIiWgtq+l8PvK21CrRRoVQpPjwm4g7LZ5kQfoKawrpWIIA25VUYK6lrJSgvH6QKlUpBTYcDYlrcIUCtJCNNRVG8iWKtid7G3eJEvwaiOLJkYyQOf5WKw2Lv1Kvp5D/VDQ40cQAbImgXJWB0uXBLMcAzOzV2S6OJm11dmJ4exdmEykiQRFqBhZpKe5IhA7nv/IJ9nV3HXW/v480UziAganj6fWUlhxOl1HKtu4dfrDnnUvjRKQWicmpgQLTVGKyabk2SNkvBADfnVRmYkhOICgrQqj0+PL9oDRFZaODs7KIlNjA7yCh6AJ5dRPYByeLtTwu50YnWYWZYRSbPZ4fE2bqejaVjHsaRFBjItIRRJkiiuN3G8tpXp8aFdBLQB9pc0MiMxlKpmSxeJAo1KgV6nJj0qiOM1LcxNGbrdv4EiB5BBcO3iVAI1So7VtPDFEd+1G30lNkRLckQgSoVAwi2+7KvytCNRwRqSwgK47/1DnDE1huevX4AQgmaTnS+yqwlQK/kqp5qJUUHD+i314Ge5rNtX7rVssDklth1vYGpcCE1mO4EaJU6nREmDiRWTomi1O2lstRGkUbEgNRyB+wNU0WymsM7bpzZYo6Rzc7Ukue9v8bMKebw+gD1FjcxI0hMZpPHICkD3Tn9F9SbPrAUgPFCN3eUiISyABpP3csQpuQWi56aEkRgWgFat9LRMnD8zHgSsXZg8KoMHyAFk0GTGhvD7D7MHfZ5qo9XrmzI6WEtSWECXqXpHpsaHkltlQCGg2WRnb0kTmbHB2Jwu9vzuTCx2J3uLGyms94+Rcl959Io5TE/Q8+dPjnjdvzAtnF1FjZw6KQqbw0V9i5XJcSGUNJoprGtFo1LQYnF4/g5T40MIDVAzMTqI47WtCAHLJ0UzIyGU57/z9rnZXdxIVnoEEYEa0qKCeGNH8aC32xekhtNidWBxuNhd1MjsZL1XAOkrjSY7CiFIiwoiIlBDgw+T8vbZTXuNUYhWxR8unI7TJfH9sTrWLBienFt/kZOogyROr/Mq9vIXtS1WShtM3bbcC+FWnD9e20pKRCAVzRae3nSMn72zn6NtplM6tZKlGVFcsyjV7+PrjZuWprVpu57A7nQxPSGE747Wcai8mWUZUYQHqLE7nKzIjGZuUphXEK1utqDXqXn/jmX8Y81sFqdHcM9ZmeTXtGDrVPIfrFVx/ZJUnr1uPhfPTfAkclMiApkY3TdV+o6kRQayt6TRywpEktzCT/1lZqIetVKwp7jRZ/BoJzZE65m53HfuVPQBajRKhc9erdGCXwKIEGK1ECJPCHFMCPErH4+vFEI0CyH2t/383h/XHQ0MZVGZxeFC26mqMCstghCdiiCNkl1FjcxM1PPEVXOJCtGyIjOaf66dy9KMqCEbU1+RAJPN+2/TYnUgEMSGatEHqPnFWZOZlxqOweqgqtnMjqIGlkxwJ2MD1ErUKgW3njoBfYCas6bHcvn8ZCbGBDMvJbxLteXpU2M4f1YCOZUGLnl6K2WNZvfspsGdg2hP8vaFuclhFNWbuixRDpY143BKzErSe8kRdMfCtHBiQ7QcKm+mytBzHmZSbDDVRiu1Ris3LEnl6kVuR4J9pU3c+7+DHCxr6vP4h5NBL2GEEErgaeBM3Orru4QQH0mSdKTTod9JknT+YK832sivHh6zqnkpYdQYrF7dwD8/M5Mfn5aBJMG/rpk3ou5qX+dW85dPcwgLUBMdokWpUJAYFkCt0cqU+FAum5+E1e5kzbwk9pU1ceN/dvHHj7O5/6IZqJUKdhfVow90LxnaK0Kjg7UsmRAJQIhOzWXz3ebaP1o5kXkpYTz/XQEVTRaO17aw4XAVDqeLzNgQstIj+Da/1uMlolYKdha6He/MNidxYToOlLp3tcID1aiVCtIig7A4nDhdUo8zSgl3IJmfGobAnUhVKkQXxbuIIA1Gi73PCdyIQA3nzYwnMljDb893F//VGq08/tVRdhY2EK/XeRwGRhP+yIFkAcckSSoAaFNevwjoHEDGJUFDbP+oVSmYFh/K3k47ABqVgqhgLUIIhGDErRlbrQ6ig7XsLWn0+jAFaZRcuziFy+e71/B7ihtICg/g/86ezN8/z0OnVvKnC6fz/bEwXtpSgNMJgVoVOpWClMhAt/K808VbO0s4Wt3COTPiWDIxkkUTIjlc0czjXx5Fp1aQHhXMf74v4gfLJ/C786aSGRvMofJmFqaFk1NhIEir8CwPYkLds4dp8W6NjQNlzR7rz5gQrZd2SXfsKW7y/O5ySsxO0qNRKXC6JArqWmlstXmqiHsiIzqIQK2K3547lZmdPHaqDRbOnBrDL8+ezIJhFH/qD/549/tynfPle7tECHEAtx/MPZIk+cw89tdYarzjy/To7Omx/PrcqaRG9n9tP1QEaVVtcgQngodOreDNHyxmVgfriOJ6EzEhOu5clcE5M+K444293PveQa5elILF7sJgsZOVFsHSjAhK6s3c+PJO8quMHi+a17YXkx4VhBBQWNdKRnQwGpXgaJWBh8ubWTE5mtTIQJpMdrYXnJitCZuTGQmhHK4wcKjcQHpUEGEBaoxWB+lRQQRqlARpVBxs85zpLz3V6XQkKy2C8CA1X2RXMz8tnN1FjVyzKKVL8AD3l8Tn2dX8YPnEfo9nuPBHDqQvrnN7gVRJkmYDTwIfdHey/hpLjTSLJkQMq25FWmQg/3f25FEVPMAtS9i5DHxhWoRHg7OdyGCtx9RoQnQwj105h3mp4cxLCWdKfChVBgv/uGI2585I4IUthewoaPAEj3YK61opqG1FkuBoTQtRwVrmpYUzJyWMtMggtCplF1NpCShrMnt6ikJ1KkoaTWhUSmJCtGRXGNhZ1IClF0/dwXDrKem8eksWSydGseVXqwjRqpidpOeP3fQrNbbaeqxCHQ34453fq+ucJEkGSZJa2n5fD6iFECOf6fMDaqXCp2LUUCAE3LQsnYyY4W2Y6gtLJ0Z66VAoFYKL53S1P14+KYr0qCAsdid//CibbcfruGxeEgqF4K5VGZhtTrYV1KNRKYjrw1IiVKeiqK6V747WY7Y5PR+4mYl6FqaFk5UWQWKY+zxNJju5VUZOzYjE4ZJQK5UoFe6mtmUZkX76S3SPRqUgt8pIVnoEiWGBLEyLcAstbfVuU5AkCYPFzqMb87lxWdqQj2swCGmQRhtCCBWQD5wOlAO7gKs7LlGEEHFAtSRJkhAiC3gP94ykx4svWLBA2r1796DGNxxY7E5W/H0T1b1k2v3Bo1fM5tJ5SUN+nf7SbLZTY7Dw8Od5bUEimJlJel78roC8aiMmm5O8KiPzU8M5XtvCJz8+FbvTRbXBwoToE53S7+0p47J5iQghOFjWxPt7y4nT69h2vJ45yWEcqXQLDTldEiFaJdsLG726d/UBahalR3Ck0kBZm56qSiGYmxLGrqJGFqSGs7u4EZXC3YszIyEUjVpBjcGCSqHwKgAbClIjA3n4slksmhCJzeFi0d++JC0qiHV3LPMc8+nBSn734WEaWm28+YNFLJ04st+1Qog9kiQt8PXYoHMgkiQ5hBB3AZ8DSuAlSZKyhRA/bHv8WeBy4EdCCAdgBtb2FjzGEjq1kr9dMpNbX909pMZHUcGaEU+Wdoc+QE2IVkWN0cq3+bWUNJi44T87uzTzNbTaqDVaUSkEGpXKK3iA23Yxr8qIzeFiVlKYZ+chMyaYGYl6Hvgsl41t+Ya5ye7cysHyZkJ0KowWB81mO18cqfY6p8Ml4XBJTIsP9fSitK9UAtq2w9MiA1ErFSyeEOGVO/EnCgH/uXGh5zW3J8Ivm5eE3enib+tz2Ha8nvIms2cHajTuvHRk0DOQoWSszEDaqTFa+NX/DvF17uDK2n2xPDOaR9bMIiak92n9SNBksnH/J0d4f69bQiApPMAzA+hISkQgKoXg5ZsXktKLm15njGY7P3x9D0cqDUyIDvLshMSEaGlstXXbrg/uZr/OqvqJ4QGYbU4aWm1EBWuoa7F1KVf3N2dOi+X5672/zA0WO/e+d5D0NsU7tVLB2oXJXrmjkaSnGYhciepHYkJ0/PWSGUyKCWJFZrRHik+tFAOqhmznvJnxvHD9glEbPAAe2pDnCR6BGiUJ+gDUPlqB27ttr3l+B1l//ZK3dp5wyrvnvwdY/vAmXt1WRHmjCadLQpIkjyLXt0drsdqdJIUHoFYqPC30NUYrcXodmh6rRL2DS4hORUyw1rPVOrFtVhAepB7SDuaNR6rZ1UnZP1CtpNZo5ZZT0rl+SRpXZaWMmuDRG3IvjJ+J1wcwLUHP7csncttruwlUKxBCcLy21bP+7omoYC2ZscE0m+3kVRlxuCRuWJo2rDqXAyGvyt1NHKhRkhkT0q39RVG9icXpEWxvmw389oPDfLCvnMvmJfFNXg11LTbu/zibP36UTWSwltQId0n5vJRwwgLU7C5pYmp8CNsLGogM0pAcHkB+dQsVzRbmJIeRXdGMxd51JyWvqgWNUmBzSkyIDqKi0cy+NgFqnVpBRZN7tnSsxt2aX99q43jt0PQQ1XfqulUpFTxz7fxeHRRHI3IAGQLuO2cqL24p4AenTuAPH50od9ld3EhWWgRVBjMgKGkwoVYKfn7mZM6YGsPx2hacLjhvVrynIvInb+1jy9HafpViDzc7Ctzr9vkp4eTXGNnfS9l1R+sKp0tiR2GDVyu+w+UuZa9tK+0GKGs0E6BWMCtRz8Fydw6kvtWGwWx3C/qoFVw+L5GIYB3XvLCjyzWDtEoyY4KxOl1UNlm8tmtnJYV5LW9arO4eo7nJekoazF2WNHOTw9CoFF3kA/pKXpWxiwBQX0rjRyOj+2ttjBIbqqWiyYLd6eK25RO8HttZ1EBJg5mANiGZ125ZxI9WTmRSbAirZ8R7fG6VCoE+QM381HA+PVSJy+Xq1bpyuJEkiXvfO8itr+4mNkTHwfKmPvUGOfqgkqbqtBwRAu5YlUG10Vt3xe6S2FnYwLf5dbz4fTHzU8O5/6LpBKiVBGrcP+CWLTTbnRwsa6a2TccjMTyAGQmhXXIjRyoNZMQEI4RAqXBXrJ42JZrUyACWT4piX2kTuVUGFqaF91tnZUpcCDefktav54xm5AAyBAghePTK2RTXm7hxaRqLfMwe8qqNZKVFEBva8zfPdYtTcbgk6lvtlDQM7RZjf/n35gK+OFLFjAQ9AW15j75otw5EZrGy2UKz2d5jZ+r+0iae/OooqybHsOXeVbx4wwJ+d95UUiPbxtQWk9obFC1tW8u+OFbTwt6SJkxWJy4JWiwODGYHm4/WAe7K230ljV2aHXvj9+dP69KlPJYZP69klKFVKblhaSrv7CrlxRsXcs3z27uUOx+uaO51JyI8SMNnd5+KTqXkaI2xy7bnSFFrtPLG9mImx4WwreCEB8zsJD2xoeE+S/DbcUoSyREBlDb0z/f2r+tz+Pzu5T53VNp5a1cpKRGB6DRKXt9ezE9Om8Q396zEaHHgdEkEaJQohODq57cjBNS12HpUe2+xOcltq1+xOVzMStSjUAj2lzYxK0nP0eq+SyXeffoktGolHx2o4CIfRXZjkZNuBtKddeRQkBETwiVzE7E5XLx6yyKSI7xrOCKDNT0aG+VVGflwfzn3f3yEr3JrmD2KagKe23wcfaC6S92Lyeb0yAxEdOPnYrG70OvUZKVHcEpGFIvachi9Udpg5tv8Wl68YUG37QMNrTZe3V7Ma9uKUSsF1720kzvf3EtogJrwIA06tRKNSsEbP1hEiE7dZ6sIpRBkxAYTEaThWFsH9sGyZmYl6VEqBHOT3QLQnU3HwgLVrJ4exxu3LuJnZ2ZyqKxpxAvD/MlJOQNpMtlwSQyLTmhaB9+OS+cm8fhXRz23K5osVDSZSehQHPbilkKyK5r5wwXTiQ3VMjkukbOnx/HFkWpue203NyxJ4/SpsSPuqFZSb0KvU3dZVrUbHR0qb0YfoGZ2kt4z81IpYF5KBLuKGzyBp302ERaoZmZiGPtK3d28AWqlz6XOHz7KZsevT2dKXGi3Np7t+rLtiWdfxXdalZI7Vk7E5nBRa7SS14Msw3mz4vnxqgxSIgN54bsCvulgs3CorIlTJ0XSbHJwrKYFp8vFI2tm8W1+HcsnRXHW9DgvlfoblqaNmS3avnDSzUDUSgVhgRpyKw19arf2J2lRgV6KVk6XxEMbcmkv5itrNPGXT49Q3mhGH6AmrO0bXKdWcuHsBP504QwcLomqZjOPf3mUB9bnUDNC/rGJ4YF8f7ye0k7FYhrlibdUs9nO4QoDWWkRzE7WkxIRxM6iBq9Zi6mtxqPJZGdnUQP6ADUrMqOob7Vhsjm7/NS1WGm1OXnu+vkkdOOrkhDmdp/LqzKwIDWcX5/ru1dpQVoEr9+6iIXp3euNXr0ohb9ePIMp8aEEalTcsDSdGYluK4bwQDXp0cEYzQ72lTaRERPM/RfNYPWMeMw2B2dMjfUKHsC4Ch5wEgaQdpZmRA2bUnk7l8xNYt0dy7h8fhLt76MP91dwzuPfccGTW1jz7Fay0iJYs6Brr4skSeRWGThtSgyNJjtpUYHMSQ6jvtXG/tKmYe/aDAv0bTHQ+QPidEnsLGrAZHVS4GO5ENgpoVjX4g4c3SVaXRI8tjGPmBAd95w9mfBANYlhAehUCualhKFWCoI0KnYUNjA9Qe8Rmu6JCVG+80p3rprIXy+e4Qnk4C7ZbzdkT4sKIrvCgNXhIistHIfTxYHSZjRKBXesyiDcx/vr2/xaHtqQ2+N4xhIn5RJmJJmRqOeRNbO5a1UGH+wvZ+ORaibHhbA5v5bUiCCqmi0Ea1XsKKgnRKf2ONcLITh/VoLnHDP6YLI0lDS0WlmYFk5+tZFmswOBu8rU6eqaYwrRKqnyYXsRpFFi6BT4FKJ7tXNwS/+9uKWIS+clccncRN7fW86WY3WoFMIjuhSkVfHJj08hMzakTwV4CzrlLaKCtdx9xiSuW+xbSzY8SMNZ02KJbiuhP9y2ZJoQFcQ3+TXE67XdanhsPVbXxcpzLCMHkBEiLSqIn56RyU/bvs1KG0zc/fY+IoM1/N9/DyCEYGp8KA9eNsvL/3Q0YLDYeXd3GRa7k+kJeqoNFhpNNuxOydOfMjtJjyRJGC0OSnz0xABMjgvporQ2JzmMPT1U60YGaQhPj+DvG/K4fcUET52HwyUxJS6EH582idOmxPTLBnNWUhgrMqM9FpKrZ8R2GzwA5qWE89z1C/gmr4Zv8tx9T3F6HfoAFUII/runjHNnJfjMvUyIDqKs0Uy1wdIn5bPRjhxARgnJEYG8f8cySupb2VnYwF/W57CzyG387IvGVhshOhUq5fCvQkN1as6bGU9ls5n6FhtalQK1UoHd6f5m7ViyvzAtnEazHYfDRVxYAGFtOQGb04VaqSAmREON8UQuSt3N61Er3bqjZrvTo2da32rj7GmxTIoN5vxZCUyN79kmsidOnxrjCSCOzqYz3bB0YhQZMSFcvySNb/JqPdvZk+NCKK5r9RlAstIjyIy1s6+4kWkJelIi++95PJqQA8goIyUyiJTIIJySxEcHKlF2Wr+XNZp4Z1cplc1u+cCp8aGsnh5HSkQgRyoNBGgUTIweesGhG5am8fiX+eRUGVErBWEBGsx2J1Pj3C3zc1PCUCsUqFXCrf7VYOZYJ4+bKXEhJIYFegWQ7naX5iaH4XBJXjMWk82Bye7kqqwUsiuaWX+oks35tXxw57J+JyvXzE/m6U3HqDZYyeyjw71GpWBWkp7bV0xkanwoVQYzoTo1QVqVZ+nZEZPNQahO7ba51KnYXlgvBxCZoeHs6XFUG6w8ujGfs6fHcaTSQFZ6BI9uzGfDoUpOmRTNnuJGPtxfwYOf5RIeqKbRZGdFZhQv3LCw229yfzEjUc//rZ6CxeHC6nCxs7CBjJggCmqNzE7S09Bqo6TexIK0cKJDdJT4KBrTqhQ0tvmkRIe4G+e2Hq9nfmo4Vc0WEsMDsDtdtFgd7CxqZFKsd7LzeK17tvb69mIMFgdzksMID9IMaKcjQKPk4jmJfHGkmuSIAEw2B4G9CGbbnW5zLEmSWJ4ZzYOXzuLrvBp+tXpKlzE4nC5yKg3MSwlnVqKe/aWN6FRKJEka0zszJ+0uzGgnLFDDj09zCw9/sL+ci+ckcv/HR/j0YCVOCcx2p5cYbbtu6Lf5dfzg1d1dvu2HgszYEGYm6kGSWJQeQVmDGYtD4kBZM5LkbqBXCIGrU1ZUrXQrhB0oayY5IpCs9AgU4Fn2FNS0oBCws7CBfSVNHK1uITJIQ5Op607T7uJGTDYHSyZEUlzfwtVZAxfi/ukZmbx+6yI+z67m7Z2lvR7vdElICA621blkpUdw3zlTfQcECeanRiCEoLCulS9zavi/9w74fE1jCVlQaAzx2MZ8r0I0nUrBzCQ9hXWtHmPm5PAAKprMRIfo+OHKCQgEyzOjhzQR+3l2Fb9Zd4iIIA351S2oFKBWKQkLUHPj0jTi9Tq+yq3hw/0V7q3ztuSq3SURr9dS2dxVCjIhTIfDKXkppE+ND6GgthVrJ+HjqGANKoUgTh/A+z9aimKQRXZ7ihsI1qq7dQUE91IyPFCDQsAdb+zl0nlJXDA7weexdS1WbvzPTu4+PZMzp8UC7kK874/XceWC5EGPd6gZUknDtgusBh7HLWn4giRJD3Z6XLQ9fi5gAm6UJGmvP659MtG5CcvicLGrqJGwQDU6tYLJsSHo1EoSwnS02pz88aMjTE8I5S+fHOHFGxeyPHNoVO7Pnh7HtPhQdhU1sHRiFOFBaorqWkmLciukA5w+NZbM2BBiQrT8/sNsj3pYeKAGk83F1LgQLA6X21C7yUxVs7tCNystgmqjBaVCEBagJjM2GIvdhcPlIipYi9Xu4miNEZVSwaNXzPbLh3F+au/SCQfLmnngsxxeuSkLnVrJg5/l+gwgpQ0mfrPuEEEaFTbHie3blMhAUiLHvm3JcDnTnQNMavtZBDyDb+8YmW6oNlh4Y0dxl/vVSkFiWAA5lQbqWmyUN5lZmBZOXpWRhanhBGiVzE0J55Ev8lg6MXLIdm2SIwJJ7tCJOznOO4kYpFVx56oMwG3XmFdlAMntTg8Slc1mijvlSUoazJQ0mD2m3HqdmkPlBs/jOrWSnEojkUEanr1u/rA2Gp47Mx6HS+KKf2/nZ2dO4nhtiydogrtd4r+7y/j35uOkRwVxoLSZR9bM7nKevuRaRjPD5Ux3EfBqm5DydiFEmBAiXpKkSj9cf9zjcLq4972DRAVrabE6PMuVxLAA6losOJxuAeL23pC9xY3oAzXs6lBPEaBWUt9qGxW1B5VNZo7WtJAcHkh2hYEAjbJL8GgnLFDtyTF0Nra2OVycOimKf145Z0TUvC6cncD2gnp+s+4w586I82rwu/nlXSiEIECjJLu8GbvLxbGaFo7VtGCwuPMei9Ij2V/aSHighkUTht5WYijwx9eRL2e6zr3KfTkGcDvTCSF2CyF219bW+jrkpGP94Sq+ya9ld3EjyeEBno7P+lYrAkFedYtXY5lTokufj9nuZOXfv+HX6w7xzq4SLCNUDVljtLAprxaD2UFBrTvRO8PHlmc76ZGBzEsJZ1F6RBe3smnxoTx//YIRlQL8zbluvZHPsqu8LCGSwgPZXdxIaYMZk93F4vRIlmdGs+FwFQazndOmxBCn17EsI4o5KWEcqTBw/Us7+SK7CgCjxc5ozk+2448ZSF+c6fpyjPtOSXoOeA7cSdTBDW18kBIRSIBaybSEUI7XtmA025mREOquJeiHBYHZ7uTNHSW8ucPdgzMjUU9aZBDLM6NICh+eeoSYEB03LEnlcHkzFoeLwrrWHitPQwPUNJnsno7eKXEhNJnsBOtU/PXSmejUfa84HQqCtCruv2gGN/1nJz95ax9PXzOPhWkR/OT0SdS1WKkxWimobWFtVjJ5VUb2lDQSrFMRolNjsTtpaLFxpNLAjEQ9p2ZE8fauUo5UGnj8q6NMiQvl0rmJnDEt1isJ7nJJ5FUbB1U45y/8EUB6dabr4zEy3fD+3jJmJum9RHRcUt8rJn2x9Xg9W4+7KycD1EoeuHQmp02NIVTnu0nOn/zhgun8/qPD5FUZmZ4Q2qP4kN3p4kjFibxHbpWR1IgA7l09eVjG2hdWZEbzyJrZ/PaDwzS2zfwyYoJ58weLAfeOS6xei1al5IJZCRgtbhOu6BAtsXodqVFB2J0uLp2XSFZ6BP/dU0qIVkVOpYHPNUr+uj6HrPQIXrhhAaE6NQ6XRH61kRCdirhQ3YhUI7fjjyvvAiYJIdKFEBpgLfBRp2M+Aq4XbhYDzXL+o+9kxoZ4BY/wQDV5VYZeFd77itnu5Kfv7Of2V/f45Xy9oVAIrlnklmq0Olwkh7tLvlU+dlCMFmcXv5fKZmufdkqGk0vnJfHRXcvYXdzAC98VUFzfyq6iBuxOFymRgZ7dqGsWp3DP2ZOJDNYihPDMoNRKBZHBWnRqJX+5eCYf3nWK1/l3FjZwzfM7OFzexBs7ipmRqCcpPJAtx+ow2XrXoR0qBh1AJElyAO3OdDnAu+3OdO3udMB6oAA4BjwP3DHY655MXLs4lauyTkzg0qOCGMTko1vqWobemrOdqfGhSJJ7OzRIq2JhWjgBGiUZMd47KWa7k1lJ3p3HNqfLkz8ZTWTEhHD78onE6XV8nl3Fv78tcFcOH66kyWRjZ2GDW7yoyohCuLd4K5u9k8fttSeNJhtnT49FoYB4vY4/XzwDCYmyRjM3LUv3+NisnByDwF2cVmMcfm0YuZBsjFBjsHDKQ5uwOV0ohLsjtKHVRkFdKxkxwVgdzn5rjHbmkTWzuXz+8PnuXvfiDr5rEyluZ15KmFe/S3SwltoWKwtSw6lrsXoSlbcvn8B93QgFjUaazXaUAvaWNLJ4QhTf5NUQqFGydGJUj7UrxfWtmO1OpsSFUtpg4rcfHObC2Qlc5uP/aW9xI+lRQT51SAaD7Ew3DogJ1XH1InfhkUtyl3A7XBKLJkRwrKaFBP3gPHN/clrGsAYPgLOmx3W5r8ZgZWVmNPNSwogL1WFv0xdptthJiQxkfmo4WekRbDnadYduIGrvw4U+QE2wTs3yzBg0KgVnTY/jlEnRnuAhSRJf5VSTXdFMZbPZswMTE6LjcFvtS3JEIK/cnNVtxeu81HAUw9xXIweQMcTdp08iqIPORUmDydNnsqOwgSlxIcxNDutSL9EbWekR3HXaJL+OtTcsdicvbSnscn98mI7iBhN7S5qoNliY0Lb7EKpTY7G72FPcyM7CBo76cI17c2cJ3/kILKMZh9OFyyVx/Us7ueWV3Zz3xBbueGOvR1TpQFlTl79TTyJJ+m6U4oYKOYCMIcKDNNy0LN3rvo5GTrlVRvaVNnnWx31lQWr4sFtnfne0zqciurVtaxfc+/z7SptYmBZOWYMJm8NFYps+iiRJ2Dr0xBwobeLhz3K7tXsYbThdEve9f5AFf/2Sv63P8VrKXbEg2SNrYHe6yKky8NsPDvX7GsORJxrzAcTmGF1ubUPNPWdP5s0fLGJ6W/GVr2m7EO4iq74SMgLboQfLmojzURUb0KGuIypYQ1pkEFUGC9GhWhxOFw2tNgI1Sn597lQ0KgWSJHHnm3u5/NmtGK0OVgxRv48/aTbZeXRjHm/tLKXJZOeFTjOM+94/xK/XHaKh1cbuokYkCd7bU0ZzPzt3w7ux1bA5vLfGB8PYLcJvY7SbTg8FSydG8cGdy/jDh9lsPV7X5fGcSiNp/RCqGQnf3dS2wNCugZoSEUBSeCACiQWpYQRp1RyrMXpmIwnpAewobGBhWjjPX7/AI3Rssjn59KC7IkCnVjBrFHnndMd7e8t4etPxHo95c0cJnx+uoqVNtd5id/HdsVqPLm5f6C6Z+nl2Vbd5lP5y8n36xglqpYJFEyKI6fQtnpUezpS4kD6378frdR6bguHksnmJpEcFedb6JQ1mDGY73x9vYHdxE4fKmr10NSRJYk5yGK/fushLJT1Qo/TYO6xsS1COVrIrmnnq66P844u8Ph1f32rzki749fvuNoTeqGq29Dgz91fwgHEwAzmZ0SgVtFjsBGmUHnuEo9UtNJrsaFQKj45oT/zk9EmeIqfhRAjBHSsn8n/vHfTcF9ghQdxgshGsC2BSTDCNbdvVSoVApfAOEBsOV1HRpvje2fF+NOBwuth4pJo/fpxNtWFwdTYGi4PffnCY+akRXeplOhIaoOLFLYVcnZUy5EnV0RuuZXqlstlCXpWR2clhtFrs1BmtTGrT8zxY1gySb41RpUJw6dxEHrpsJmsXJnd5fLi4bJ73tnFFJ+uHqGAtZY0mIoI01LXYqDZYaTJ5NwmabCeaAk+dNPosI3OrjNzx5t5BB4927E6Ji57a4lna+CJQo+KHKyYQpB36LwZ5BjKGKWkwMTEmmH0ljZjt7inrzsIG0iIDCdQoOVJpZG6ynn2lJ0y9V02O5u9rZhM1gh2s7SgUgrhQHVVt7nrtgklqpWBidDDZFc1YHRIFdS0Ea1VcvyS1i9NbVnoE+gA1KydHj2hXbnc0mmxd/IMHS6vNyfUv7uCNWxd3a18hhEDVz+38gSDPQMYwZY1mgrQqT/Bop6jeRFDbhzFArSREd+J74omr5o6K4NHOwg4J3KhgDVlpEejUSorrW7E63J+8+anh3LVqIr9cPaVL41hyRCC7f3sGj6+dO6zj7ivBWlW/63L6wt6SJrYc65pAH27kADJGkSSJkvpWzDbfuh6lDSZmJemxOSVPrYhGqRjx9vfOXD4/iahgd1K0sK6VnUUNGC0Or6CYXW7osTx7qBXoB8OMRP2Q/c1HQz/Q6P3Ly/SIwezAIUnkVvl2la8yWFEK4dWx+8vVk0fdh21FZjSnTY4hMzaY8ibvHEhWegRzU8KYkaT3687BcKJWKoYszzQaKvdH17tJps80mmzdFgoBTI8PweY80So/M1HPjUvThml0/eP2lRMp8FGaXt7kNqN6+LLZY1o3NCu9d7nCgWw/+zKvGm7G7v/KSY5GpaAnAfIgnYqdhY0EqhXMTwnj+RsWjqjwTE9MjA4mJSKQgk6l7U2tNl66ceGYd29bNKFroZ5KIThvVjwL0yJYNSWGBL2O3cWNPPRZbp90XmJDtcxPDe/1uKFGDiBjlOwKQ49bg8FaFUKAye7iJ2dkuv1YRjFpUe7K1FVTYogN0REZrOGSuYkk+PCXHWvs6aC4dv6seMIC1cxOCmPNAu+lzcK0CJ69bj5XPLuN2clhrNtX3u05H7h0Zhebj55wuaQh8Z+RA8gYZf2hSmJDtZQ0mHw+XlDbyrf3rMLqcHpqQ0Yzz147n1arw+9aFqOBlZOjeeXmLKKCNUxP0Pd4bFSwlnV3LGNPSQNf5lR7NUu2kxgWwIrMmH6N4UBZE81mOysn9+95vTGoOa0QIkIIsVEIcbTtX59zKiFEkRDikBBivxBCVggaJC1WB1/mVGMwd19MVFRvosZoGRPBA9xLsvEYPMBdk7EiM7rX4NGOPlDNaVNiefiyWT4fP2t6bLcm5N0xNyWciiaL33duBrso/hXwlSRJk4Cv2m53xypJkuZ0p2wk03cOljVhtDiwObvvdzhzWixzU0Z+jSwzcFZNieG6xanEhmpZNTmaYK2KP180nVtOSe/9yT4I0iq58819PLQh129jHOwS5iJgZdvvrwDfAPcO8pwyvRCiVROv1/nU03jxhgUsnhDpKSSTGbvo1Er+fPEM/nThdBQKQbPJPqjelh2FDRyrMfL3y33PbAbCYN9lse3q6pIkVQohultgScAXQggJ+Heb94vMANlV1EB0iJbKDr0jk2KCiQzWMC0hVA4e4wyFQrC7qIFGk51QnWpALnYfH6jgnBlxWO0uZiT2bSnVp7H1doAQ4kshxGEfPxf14zrLJEmah9sj904hxPIeric70/VCq9VBUKe6iPBADfdfNIP4QWqjyoxOdGolP3h1dxcR6r6wu6iBu9/eh1Ih+NulM/w6rl6/qiRJOqO7x4QQ1e0et0KIeKCmm3NUtP1bI4RYh9tPd3M3x8rOdL1w+tTYLn0Q4UFqj36ozPhjWnwoNyxJ5drFqf16Xm6Vgbvf3s95sxJYOtH/3cqDTaJ+BNzQ9vsNwIedDxBCBAkhQtp/B84CDg/yuic1L2wp8Cq6CtQoOX9WwqgtFJMZPAqF4E8XzSBO33dz9A/2lXPeE1tIiwrk8SvnDM24Bvn8B4EzhRBHgTPbbiOESBBCrG87JhbYIoQ4AOwEPpUkacMgr3vSUt9iZcPhKq8iomeunT9me0VkhgZJknjmG7ds4q2nThiSIjIYZBJVkqR64HQf91cA57b9XgDMHsx1ZE5gdbgI0amICtZ4dmFe+K6AmYn6UV9tKjN8CCH47O5TqTZahjQvJs95xxh7SxqpNlhxdSgBaWi1oR3FWqCjFXsPdTTjAYVCDHlSXX7XjTHqjFZiQrQcrmjy3PfPK+fIW7cD4O6393WrpyLTN+QAMsZIjgjE6nB5liu/O3/amClXH23865r53UoCyvQNOYCMMRLCAmg220mOCESnUtA5NWa02Lnv/UM8v7lgRMYnc3Ihz3vHGJNigrlyYTLv7Crl7OmxuCTvdXywVsUfL5w2IlYNMicf8gxkjKFSKjhvZhznzIjDaHHwTX4dVR1K2oUQcvCQGTbkADIGWZ4ZwxULkimsa6XZZONn7+xnU57PImAZmSFFXsKMUVZNiWHLvafxTV4NWekRI2KQLSMjB5AxjFIhOH1q7EgPQ+YkRl7CyMjIDBg5gMjIyAwYOYDIyMgMGDmAyMjIDBg5gMjIyAwYOYDIyMgMGDmAyMjIDBg5gIxDiupaue7FHbhGg327zLhmsM50a4QQ2UIIlxCiW8MoIcRqIUSeEOKYEKIn8ymZQdBksvHJwQpyKg08fPmsIZOxk5FpZ7AzkMPApXSjsA4ghFACT+O2dJgGXCWEmDbI68p0wuF0sfa57SyZEMk5M+Nle4cxiiRJY0rkaFABRJKkHEmS8no5LAs4JklSgSRJNuBt3I52Mn5CkiQe2pBLfrURhZBnHTVGC09vOsZTXx+lodXml3NKUvfLQZdL4q4397K9oN7r/maznQ2HK2k22ft8nfpWG+/sKhnwOIeb4eiFSQRKO9wuAxZ1d7AQ4jbgNoCUlJShHdk4Yd2+cp7/rpA/XTidEN3J3d5UbbBw1mObaTa7P7SNJju/O39wE94ao4XdRY2cOzPe5+NPfH2UTw5WsuVYHR/deQqJ4QHsLmrgl/87SHG9ieWZ0dy+fALLMty+LN/k1bCzsMEjDpUUHsD6Q5VUGawcqzYyLSGUtVkpWOxO6lttOJwS4UFqYkL6bukwXPT6bhNCfAnE+XjoN5IkdfGB8XUKH/d1G85lY6n+848v8rl6UQo3LE0b6aGMKP/5vpAXtxR6ggfAi1sKCdWpufmUNEJ0aiqbzX1a3u0raeTr3BqO1bRwtKaFuhYrX+fWYLY7EcC0hFAaWmxUG618erACgCaTnZWPbEKlUHgZn2/Or2Vzfi0rMqOZEB3EGztKsDm6F3TeVdTI1N9voPOk553bFg/I1nIoGZQzXR8pA5I73E4CKgZ5TpkOBGiUnDG1O1vi8c//9pTx8Oe5VBusPh9/7Mt8vs6rYWVmNE9tOsb0hFCWTIzk+iVpJIZ1DSbbC+q5/bU9XoEI4L09ZZ7fPzlY6fNaLgmv4NGRb/Nr+Ta/b3atvlZMz357nPTooFE1ExmO+e4uYJIQIh0oB9YCVw/Ddcc9kiQhSe619ru7ylg+KXrcutO1WB18tL+CqxedWNZuL6jn75/nsae4sdfnHyht4kBpEwAHy5o5WNZMZJCG25ZP9Dpu2/F6rn5hu88P8EizKa+W0x/5lkvmJXLh7ATi9DosdhcZMcEjNqbBbuNeIoQoA5YAnwohPm+73+NMJ0mSA7gL+BzIAd6VJCl7cMOWaWy1cekzW9lWUEet0cqG7Cr+8mnOSA9ryFi3t4zffnCIP39yhKK6Vj47VMm1L+zoU/DojoLaVq/bkiTx2vaiURk82jFaHby6rZjLn93GKQ9t4urnt7PteD2OEfK4Gawz3TpgnY/7Pc50bbfXA+s7HyczcI7WtLCvpIldRSc+QP/bU8bvz582aus/JEmitMFMVIiGQI2KYzVGooN1bCuoo8lkZ0ainmnxoV7jb2y18Y+Neby3pwyX5M5pbDxSTYvVgWMQhXJalYIL2+xALXYnD36Wy/aCenKrjIN+ncNJjdHKVc9vJ16v4/OfLSd0mJXpTu6U/RjG1fY1WWc8se43Wh3sK21ifmr4SA2rWxpabTz19TFe+r6Q6xanct6seNY+t53EsADKm8ye4x66bCYhOjXNZjvF9SbW7SvrktsoaTANejwXzE4gKz0CcOcmXt5aNOhzjiSVzRbOe+I73r19ybDWAMkBZAzSZLJ5pu4Gi4MAtRKz3V18tP5Q5bAHkPYaifzqFupbrCzNiKKiyUyITkWL1cFbO0p4fUeJpybjrZ0lvLvbvbPfMXgA3Pu/Q8My5vf2lHHrqelkxoSMGw+d0gYzSx/8Gp1KSYhOxcToYH5y+iSWTBy6nRs5gIwADa029AFqlANYaphtTi56+nuK693fwk6XxIK0cL47WgdAXYvvnYih5Kmvj/FNfi2ZscF8lVNDvF7HgbJmFqaFk11hwNSpstLhkga1/PAHU+JCmBwbwq6iRnYPIo8y2pAkMNudmO1OaoxWthXU86cLpw/ZFr8cQEaAJ78+ynt7yliUHsHKyTFcuzi1z8+VkNAoFcxO0pNf3cJpU2LYfPTE1mCtcXgDiNnm5I0dJVQZLJ5ZUU3bGDrmZ0YbjSYb3+TV8sKW8TH76ImKTrM8fyIHkGEmr8rIhbMTmJcSTnpUYBc7hvxqIxOjg7udnQRqVGz8+QpK6k3oNAqCNCr+8cWJboLCulafzxsKLHYnP393P1UGS+8HjzKqDVZuennXSA9jWLhoTuKQnVsOIIOg2mAhNlSHzeFCrRSIPvShZFc08/N3DwBw16oM7jl7Mg6niy9zapieEMpTXx/DJUnMTQnnllPSAahsNhOiUxOsPfHf5ZIk3ttTxju7Sqno4ExX2WzBZHMQqBna/9rKZjPXvbiTYzUtQ3odmcGRoNcxNX7ozNflADIIPj5QwfQEPVq1gj9+lM2VC5O5ZpF7OVJjtPisGMyMPfGf+cKWAqoNFrYX1lPa4D3N/ORgJR/uL+f0KbHUtlj4OqeGKfGhPHfdfF7cUsiDG3J91itolAo0w1BM9tq2Yjl4jHIC1EruPC2jT19sA0X01GU40ixYsEDavXv3SA8DcFdCBqiV2BwuAjRKLHYnOvUJD9rN+bWEB6l5d1cZGTHBPP7VUb7+xQrCAjVe55EkiUe+yOPpTccHNI5grXtnozsunJ3AE1fNHdC5+8Ph8mbOf3LLkF9HZmAoFYI/XjCN65akDfpcQog9kiT51PuRZyC94HRJPPvtcR7bmE+AWolCIYjX68ivNpIRE0xMiA6XJKFTKzlSYfDKB/zxo2wyYoK5c9WJbwEhBP939hR2FTWys7Ch3+PpKXicMTWWP1wwPFIre0tGb4JUBtYuTPZL8OgNOYB0wmxzolMrOFjWzKa8Gr7MqeZwuQFwF2oBniar/OoW8qu7n8Z/sN/dM/jh/gp+uXoK3x9zl52fPyue9MigAQWQnvjpGZOIDNb69Zy+OFjWxF8+Gb9l82MdIejXzt5gkANIJy54agvTE0L57HBVjy3X/eFoTQs/ePXEUuzTQ747OQeKSiH47XlTmZGo9+t5fbE5v5Y73tjbbcepzMizenocU+NDh+VacgDphNnm5MP9Y0dtICs9gkcun01KZOCQXsfmcPHc5uM8ujEfWat5dLN0CCtPOyMHkA5Y7E70Aeou5dWjlWUZkbx286Iha55zOF18eqiSD/dXcLCsiboW/8gDygwtyRFD+2XSkZMygNidLtSdtjprjVYueHLLqC6Kmpmo5+ZT0kiJCMJqd5IRGzykwePSZ7ZysKx5SM4vM3QEdNgdHGpOygDyxFdHWTIxki+yq/nl6sk0tNq45eXdozp4AFQZLMSFBgxLs9yz3x6Xg8cYZThniidlADle28KTXx8D4EBZE/lVRlrHgJR+rdHKtS/u4O3bFrMwLWLIrvPOrhIe+SJ/yM4vM7RsPV7HebN8C0D7m/Gpf9cL+oAT/Sf7SprGRPBox+mS2JRbM+Dnrj9UyYtbCn3aFJhsDn7x7oFha6mXGRryq4dPFGm4nOmKhBCHhBD7hRAjUlr62aFKDpY1AXQrzz/auW5xKuvuWMoPV07s/WAf7Cxs4I439vLnT46w4XBVl8cf/CyX/+0t8/FMmbHE3pIm7v/4iN/KEHpiyJ3pOrBKkqQ53ZXEDjVv7Srlmhd2UNdi5dRJ0VyzaOx5zqxZkMTclPABy9Z9dvhE/cmbO7uaF/lD6Utm5HG6JF76vpDi+qHvzB4OZ7pRwTkz4jBa3OpYALctnzDmTJg67xz1l015J5Y+voKFxT52lnIy3TMpJpj371jKpNih68JtZ7hyIBLwhRBiT5vzXLcIIW4TQuwWQuyure2bh0ZfOHNaLEEaJYfK3TsLqZFB7PvdmbxycxbXLU4lKXz0e8nuK2ka8HMrmsxeHb8NPjL1YQEaAtRKLp+f5JESkBlbfHzXKXzxs+XMSxkeWcvhcKYDWCZJUoUQIgbYKITIlSTJ57JnqJzpooK1PHXNPMI6JFBVSgUrMqNZkRlNZbOZS/+1lcrm0buV++y3x718UbqjsdVGeJB3F3DH2Qfg0VDtyL+umQeAQiHIrTLw4pbCQYxWZrhJ0OuYkRg6pO37nel1BiJJ0hmSJM3w8dPX4NFu84AkSTW4bSCyBj7kgbNqcgxzu4nM8foAnhyGNvjBUNlspsbYc4ArqTfxzLfeUgFNJluXYOArMisUwlOYlh4VhFZ1Um7SjVnSo4OGNXjAMCxhhBBBQoiQ9t+Bs3AnX0cdc5LDUI1STxUAu1Pi9x9k02TyXn5YHU4+PVhJXpWRjTnVXhqYzWY75z7+XRcTpfvOmdLjtbQqJadOivbf4GWGnIigoe/E7sygsohCiEuAJ4Fo3M50+yVJOlsIkQC8IEnSuUAssK4tMqqANyVJ2jDIcQ8J+dUtI64W3hsbsqv4Nr+Wx9fO4azp7pWlRqng75/nUlRvQgi4aemJ/EWNweIleQjwf2dP5tZTJ/R4na3H6th2vM7/L0BmyBhK6cLuGHJnOkmSCoDZg7nOcCBJEg9uyB3pYfQJs93Jj97Yyzu3LWZBWgRCCH56RiZPbTqGzeEiTn/imyg9KojpCaFkVxiICtbwwKWzOHNarM/zSpLEt/m1vPR9EZv7aAItM3oYrsRpR8bWPqYf2VFQj90p8emhSu45K5N3dpeOqQ+N0yXx47f2se6OZcTpdVw8N5GL5ybickm02E6olqmUCt78wWJyKg1MSwjttoak2WTnV+8f5DMfBWYyY4PcSgOLJwxfKz+cxJqou4oaWPPsNgAmx4aQN4zlv/4kIyaYX62ewqopMQMyqtpwuJIjFQbe21PWZakjM7YID1Sz93dn+j2R2pMm6kmbZl+YFsGc5DCAMRs8AI7VtHDrq7tZ+9w2qnvpJrY7XRgtds/tw+XN3PnmPp74+pgcPMYBjSb7sGvZnLQBBNwaoqN406Vf7Cpq5NJ/baW+G2vLw+XNzL1/IzP/+AUXPf09W4/X8cWRapyjPGks0z/aLU6Hi5M6gKycHMPFQ+jaNdyUN5m58829ODrple4raeS6F3d4FN0PlDZx3Ys7eXdX6UgMU2YIeX+YmyFP6gACEBUy/HvnQ8n2ggYvz5mj1Uaufn4HjSa713FOlzTqBZRk+s+uokZ2FNQP2/VO+gBiHYcNZO/tdc8sLHYnd725z2fZusz45W/rc3AN09L0pA8gZY1jQ0C5P5Q2mCmpN/HQhtwxnSCWGRgHypp5b5iWMid9ABmvuw9f5Vbz6rbikR6GzAjx0Ge51HWTUPcnJ30A6W3rc6zyxFdH5R2Wk5j6Vhu3vLIb8xDLdZ70AaRjXcR4onPSVObk40BpEx8fHFqTtJM6gDicLuxO+VtaZvxSMcSFZeM2gPRl+q5SKnj5poVEdBLfkZEZLxwobepSF+RPxl0AcTjdHq4XP/19n7ayVk6O4Z6zJg/DyGRkhp9NebVc+dx2aoYo1zcuAkhelZFms50Nh6vYfLSWv63P5VB5M5uP9q27dl5q2NAOUEZmBNlT3Mj7+8qxOpx86+eO83ERQP70cTavbi3iv7tL2XjkhPZnX7cxJ8WEcO3isWfzICPTVzbl1nDzy7u49ZVdHPKjZem40APJqTSw9Xg9aqXwcp37OreGo9XGXuXtlQrBXy6eydKJUXx2uIpqg4XdRQ3Iu6Ay44UdhQ2e3+9+ex/r7z4VnR9MuAfrTPd3IUSuEOKgEGKdECKsm+NWCyHyhBDHhBC/Gsw1O9PYavNsWdqdUhdj4Ztf2UVpHw2Tzp0Zz5NXzeXd25cMq8O5jMxwUlDXyhNfHfXLuQa7hNkIzJAkaRaQD9zX+QAhhBJ4GjgHmAZcJYSYNsjrejBaHD0+XtpgZu1z27sIEfeEJEmY5P4RmXHMsZoWv5xnsJqoX3S4uR243MdhWcCxNm1UhBBvAxcBRwZz7XaEoNdtWLPdyTPfHOe+c6f26ZxWh4vwQHlrV2b8EuwnV0Z/5kBuBt7xcX8i0FF4ogxY1N1J2pzrbgNISek9sZkcEcje353Zr4H2hk6t9Ps5ZWTGI35xphNC/AZwAG/4OoWP+7pNTw6VM52MjIz/6TWASJJ0Rk+PCyFuAM4HTpd8KzSXAckdbicBQ1ugLyMjMywMdhdmNXAvcKEkSd1tdewCJgkh0oUQGmAt8NFgrisjIzM6GOwuzFNACG7D7P1CiGcBhBAJQoj1AJIkOYC7gM+BHOBdSZKyB3ldGRmZUcBgd2Eyurnf40zXdns9sH4w15KRkRl9jItSdhkZmZFBDiAyMjIDRg4gMjIyA0YOIDIyMgNmVJtrCyFqgb705EcBw+vpN3SMp9cC4+v1nKyvJVWSpGhfD4zqANJXhBC7u3MPH2uMp9cC4+v1yK+lK/ISRkZGZsDIAURGRmbAjJcA8txID8CPjKfXAuPr9civpRPjIgciIyMzMoyXGYiMjMwIIAcQGRmZATNuAkhfBZ7HAkKINUKIbCGESwgxJrcNh1JIe7gRQrwkhKgRQhwe6bEMFiFEshBikxAip+09dvdgzjduAgh9EHgeQxwGLgU2j/RABsJQC2mPAC8Dq0d6EH7CAfxCkqSpwGLgzsH834ybACJJ0hdt2iPgFnhOGsnxDAZJknIkScob6XEMAo+QtiRJNqBdSHtMIknSZqCh1wPHAJIkVUqStLftdyNujZ7EgZ5v3ASQTtwMfDbSgziJ8SWkPeA3qczQIIRIA+YCOwZ6jjHlTOcHgedRQ19eyximX0LaMsOPECIY+B/wU0mSDAM9z5gKIH4QeB419PZaxjiykPYoRgihxh083pAk6f3BnGvcLGH6KPAsMzzIQtqjFCGEAF4EciRJenSw5xs3AYRuBJ7HIkKIS4QQZcAS4FMhxOcjPab+MN6EtIUQbwHbgMlCiDIhxC0jPaZBsAy4Djit7XOyXwhxbm9P6g65lF1GRmbAjKcZiIyMzDAjBxAZGZkBIwcQGRmZASMHEBkZmQEjBxAZmXFKf5oAhRCPddiVyRdCNPXpGvIujIzM+EQIsRxoAV6VJGlGP573Y2CuJEk393asPAORkRmn+GoCFEJMFEJsEELsEUJ8J4SY4uOpVwFv9eUaY6qUXUZGZtA8B/xQkqSjQohFwL+A09ofFEKkAunA1305mRxAZGROEtoa6JYC/3VXtAOg7XTYWuA9SZKcfTmnHEBkZE4eFECTJElzejhmLXBnf04oIyNzEtDWtl8ohFgD7sY6IcTs9seFEJOBcNx9P31CDiAyMuOUbpoArwFuEUIcALLxVoq7Cni7P1IY8jaujIzMgJFnIDIyMgNGDiAyMjIDRg4gMjIyA0YOIDIyMgNGDiAyMjIDRg4gMjIyA0YOIDIyMgPm/wEl7y5TENOdRQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#https://tipsfordev.com/how-to-remove-shapes-that-cause-a-problem-upon-reprojection-from-a-geopandas-dataframe\n", "from shapely.geometry import box\n", "crs = pyproj.CRS.from_epsg(3857)\n", "bounds = crs.area_of_use.bounds\n", "gpd.clip(world, box(*bounds)).to_crs('EPSG:3857').plot();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Take a moment to consider the two plots 🤔\n", "* Note the range of axes tick labels and units\n", "* Note map distortion" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Define a custom projection\n", "* Set the origin of your projection on the (self-proclaimed) \"Center of the Universe\" – Fremont, Seattle, WA, Earth\n", " * https://www.atlasobscura.com/places/center-of-the-universe-sign\n", " * You'll probably need to look up some coordinates\n", "* Let's start by creating a proj string (make sure you use sufficient precision for decimal degrees)\n", " * https://proj.org/usage/quickstart.html\n", " * Choose a simple projection that accepts a center latitude and center longitude (e.g., orthographic)\n", " * See reference: https://proj.org/operations/projections/ortho.html\n", " * Your string should look something like `'+proj=ortho +lon_0=YY.YYYYYYY +lat_0=XXX.XXXXXXX'`\n", " * Make sure the order and sign of your latitude and longitude values make sense (sanity check!)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Reproject and plot\n", "* Use GeoPandas `to_crs()` method to reproject the world GeoDataFrame using your local projection, reducing our beautiful [multidimensional universe](http://mentalfloss.com/article/501926/how-many-dimensions-are-there) to a 2D plot\n", "* The `plot()` method returns a matplotlib axes object - store this as new variable called `ax`\n", "* Modify this axes object to add thin, black horizontal lines where y=0 and a vertical line where x=0, producing \"crosshairs\" on the origin\n", " * See the matplotlib `axvline()` and `axhline()` methods\n", " * The \"line width\" keyword `lw` may be useful" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAR4AAAEQCAYAAABmwxumAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABb2ElEQVR4nO2dZ3Rc1dWGnzNdvfduy7JsWZaL3A3GmI6x6RAIPRBKKMlHCiEJTiehJ7QQWui9dwO2wbjKvclNvfeu6ef7MdJYsro0mhlZ91mLBbr3zr1bg+adU/Z+t5BSoqCgoOBOVJ4OQEFBYfyhCI+CgoLbUYRHQUHB7SjCo6Cg4HYU4VFQUHA7ivAoKCi4HY8JjxDieSFElRBi7yCvv1QIsV8IsU8I8dpox6egoDB6CE/l8QghTgZagJeklNMGuHYS8BZwqpSyXggRKaWsckecCgoKrsdjIx4p5XdAXddjQoiJQogvhBDbhBDfCyHSO07dCDwhpazveK0iOgoKYxhvW+N5BrhdSjkbuBt4suN4GpAmhPhBCLFJCHGWxyJUUFAYMRpPB9CJEMIfWAi8LYToPKzv+LcGmAScAsQD3wshpkkpG9wcpoKCggvwGuHBMfpqkFLO6OVcCbBJSmkB8oUQB3EI0VY3xqegoOAivGaqJaVswiEqlwAIB1kdpz8AlnYcD8cx9crzRJwKCgojx5Pb6a8DG4HJQogSIcQNwJXADUKIXcA+YGXH5V8CtUKI/cAa4JdSylpPxK2goDByPLadrqCgMH7xmqmWgoLC+MEji8vh4eEyOTnZE49W8BC1tbWEhYV5OgwFN7Jt27YaKWVEb+c8IjzJycnk5OR44tEKHmLVqlWsWrXK02EouBEhRGFf55SploKCgttRhEdBQcHtKMKjoKDgdhThUVBQcDuK8CgoKLgdRXgUFBTcjiI8CgoKbkcRHgUFBbfjTbYYCmOIZqOF2hYz1c0m6lrNNLSbaTPbsNsleq0ag1ZFoEFLqL+OYB8tzUYLjW1m/PUa1GoVFpudvOpW6lrNtJisBPloSQn3I8hHi06jfB+e6CjCo9ArLUYzWo0avUbd6/kAg5YAg5bkcL8e5/aVNrLmYBVvbS3BYrcTF+zDvsJ6/rexkMomI43tFiqbTNS3maluNtLYbnW+1kerJiJAR1KoH8nhvoT66aluMaFVCaICDSSH+5ES7kd6dABdDOMUxhiK8ChgNNvYV9bIxrxaWs02JkcFMDMxmKQw3aDvIaWksslISX07h6paeG59PvVtFgB2FDXQUNxA/upDvb5WoxIE+mgAgc0uHaLUaiGvtpXKRiNWe08HBX+9mqkxQWTGBzInKZTZyaFEBOh73lzBK1GEZxxS0dDOrpJGdhTXsyW/jopGI2dkRHP+zDiy4oN6HUlIKZ3HzVY7aw5WkVvexOGqFnaXNFLe2I7FNjyLFatdUtdq6XbMZLXTbLL28QpoMdnYUlDHjuJ6thc1IL7PJ9hHw/wJYcxODiEywEBssA9qlTIq8kZcIjxCiGDgWWAaIIHrpZQbXXFvhZFjt9vZW9bEtwcqWX+4ll2lDejUKs7MiObO09JYNDEMjfrYukpVk5G/fHaAHYX1BPvqaDVZKW80MjMxmIY2C0V1bbT0IwruxGKT7CpuIC0qACHg2fX5fLqnnIzYQJLD/Aj10+GjU7NgYjihfoMfwSmMLq4a8TwGfCGlvFgIoQN8XXRfhRFytLqFR1cfIqewjupmM0vSInj40hkcqWrhu8PVPPTVQe632VEJgUYl0GlU7CltxGixA1Bc3+6814aj3mn6aJeQW9Hs/Dku2IevD1RR1WwCICXMl/iQIiZHB5IWHcDi1HBig308Fa4CLhAeIUQgcDJwLYCU0gyYR3pfhZHR1G7h091lvL2tBJUQ3HlaGruLG/hgZxnf5J7Ybcl2FDcwOcqfuBAfjla1kF/bRn5tG+uP1nLypHDK6tvx1avx12tZMjmCOEWE3I4rRjwTgGrghQ5z9m3AnVLK1q4XCSFuAm4CSExMdMFjFfqitKGNe97dQ0ZcEBq1in2ljfzm3T2eDsutHKxsYVpcIBMj/DDb7PjpNbSbbXx/uIZ1h2rQqgRnZkSztaCWyAA90+KCOH1qNAZt77t4Cq5lxJ7LQohsYBOwSEq5WQjxGNAkpfx9X6/Jzs6WihGYa6lvNfPChnysdsn6wzUcrmyh3WLzdFhOGta/SvDiK936zKRQH0w2SUWj0XksPtiH6CADu0oa0KgE0+ODaDHZyKtqJjs5lOggA2dOi+G0KVFujfVERAixTUqZ3ds5V4x4SoASKeXmjp/fAX7jgvsq9ENTu2MX6M2tRby2pYiiunaiAvWUNRgHeOX4obCuHZ1asDg1jOK6Ngrr2ilpcPwTHagnLtiXrQX12CWkRwfQZrHz4c4ycita+GB7CadMjmDFjDh0feQyKQyfEQuPlLJCCFEshJgspTwILAP2jzw0hd5Yk1vFnz7ZR35Nm/NYoEGDr041pkVHCOgcfPto1c7RWnyIDxfMjOPFDQX4aNX4GzTkVbf2cycI8tES5q9DAGF+OuwS6lrNxAQZnD/7GzRUNhpJjfQjIsCA1SZpN9tICvNDJeCzvRUcrmplzcFqlmfGctrUSLSKALkMV+1q3Q682rGjlQdc56L7KnTw0c5S/v55LuVdpg0qAYEGLQ3tln5e6XriQ3x4+NIZ3P32Lorq2vq9NjrQQEWTEV+dhqQwXzLjgvjmQBU2KZkSE0hqhD8np4UzOymEh746RE2LiUcum8G6g9UcrmrBV6cmOzmEqxckc7iqmWlxQZz64DpqWkzOZ8xOCqHJaEEAWrUKjVpwUmoES9MjeDunhHe3lxAX7ENCqC8RAXqqm03sLG6g2WhlcWoYG/PqsHUkKWpUgtRIf5akRWC22jla1cwrmwt4d0cJyyZHsmJmLH567Wi+veMClwiPlHIn0OtcTmH4SCl5Yu1R/rPuKM3G7nkzKuHYRna36ACcOz2GsoZ2p+gIAQ9dkkW7xUZOQT07iuopqG1Dp1Hx9FWzCfPT8exjW/jjL5dS32rm5iXtpEUFdKvJyqtuIdCgYdmUSML99SxNj+Se9/dgtjq29afFBfLrs9L5eFdZN9EBsNslhytbuh3bVdzI42uOkBEbyPWLUgjy0RDsq+eKeYm8s62EZqOVUD8tkQF6LpoVy6HKFnYWN2K1S3IrmsmtaGZOcgih/gYqm4xEBQn+/kUu3x+pZkZCCJdmxxPsp2RKDxePNPRTFpf750hVM7/7YC9bC+qd38Text8uyKTdYuPPnzhm1RqV4NT0SP5z1WyEEFhtdhraLfho1fjpNfzqt7/jl/f8nhBfbbdkxf7YXlTPT1/eRnXzMaFJjw5w5uwE+miYFBnAzuKGQb1Pm3+7jKhAQ6/naltM/HC0hv97a1e3DOzYYAMpYX4IAXUtJufrdVo1i1PDuXJeIiqVUtTaG/0tLivvmBdhsdq5/bXtnPbwd2zqMvzvxMeLtnp/+/4eksN8yYoPAhxlD1/trySnsB4AjVpFuL8eP71jUG23w22vbidz1Ve8tbUYi80+4DNmJYbw0c8WcV5WLJ2VD52iE+qnY0p0INsKj4lzuL+eszKimZEQTFywDwat4887IkDPU1fOwld37P2zH/fehvnrWZEVx5s/XcDJacdaQZU1GKloMlLeaCTYT0er2YbJaqe+1cS3uVWU1Lc7R2UKg0ep1fIS3s4p5g8f7utzCzwqUE9lk6nXc54gKlDP/Z/ncs856fz5kwPk17RyTmY02UkhvV7vb9AwJyWELQV1bMyrZeXM2EE9JybIh3//aCY/PXkClzy9EaPFhgQSQ33ZnF/X7VqT1calc+JZODEcg1bN5rxa1CpBUpgf4f66bjVopzy4lupmE7OSgpmVGEJtqxmj2UZkoIFHLs2iusXEM+vy+GhXGXnVrcxODuFIVSsBBg1mq40gHx3+esHvP9zLncvSUKsEU2ICFUuPQaIIj4dpNVm54r+b2FXS2Ot5vUaFzW73KtEBSArzY0ZCMDMTQlg4MYwQXy3nZMb0aVWRW97E5rVHuWR2PKtWZPRpt9EX0+KCePvmBdz26nZig33YU+p4vzrXulLC/VALuP7FHFQCVEJ0q2oP99cxJSYQlRBUN5uc61M/HKnlhyPdS0He3FrEzMQQrpibyF2nT+JHz2wmp6AeX62K5HA/Dlc2kxSmZVdxPVNiA9lwtIYfz0/i8W8PY7VLbl2air9e+Wj1h/LueJAPd5byq3d2Y+pnqN7fOXejErB0ciQ3njyBOcmhgGOU8dcLMvt93ZrcKlbvr+Tim6L45ZmTndOvoRIdZECjFhyuaiY10p/qZiOlDUbmpYQiBGzKc4yA7BLsx61d1rSY+f5wzaCeU99m4Wh1C1a7nee+z+fmJRP4aFcZWwsc1fwGjYraVjOtFhu1rWY25dXQbrZx69JUlj64llaT1fl7Kp5BvaMsLnuA6mYj172wlb1lTZ4OZVjcd95UrluUMuB15Y3t/PvbI7y2uQj/fe+x+pXHiQkaWV2UlI5dp1c2FSJxZGx/vreC+Smh2CUYrTaOVrXQaj42ZTVoVdilw85jQrgfta1mGjt2A6MDDUQG6mkzWfEzaDBo1GQnhXDL0lQOVTazraCO+BBf5qaEsuyhtTS096zK99WpmZscSl5NK43tFhrbLfxkcTLXLExBSkgMG58106OduawwBN7ZVsyv393jtbtV/bF0cgSXZidw2tT+ywkOVjTz1Noj5BTWk5UQzLu3LODjF7aOWHQAhHCspXQdZZU3tpNTUE9pQztN7WamxQZisUmK6tqoajLSZnEsCEspyatpJdBHQ3KYL21mGxVNjsXjrqhVgo93lXHK5AgiAgys+ngfVc0m5qWE4q/XUFLf3q0avs1sY+2hauZPCCU22MCmvDqeXV9AUrg/52bGkFvRxOQoxTGxK4rwuJFrn9/C2kPVvZ7rXKvwVtQqQVZCMGdnxgx47Yc7S1k2JYpHLpvh/LB9PIqxxQT5cF7WwKImpaTJaKWi0UhBbStb8uvYcLSWA+XdR54bjtay4WgtWrXgpydP5Idfn0qryYaPTo1Oo8Jml9z7/m62FNRTVt+OsWM6nFfdSmqkP1NjAmg0WjFZbAQaNAQa/DFa7PjovGdX0tMowuMmbn5lW5+iA94tOgA2uyQ5rKe/cm/86qz0UY5meAghCPLREuSjZXJ0AGdmRAOQW9HEiz8U8N6O0m5b4xab5J1tJVw2J4GE0GPTJbVKcP9FWXyxt5zffbCXzHA/7HaJ0WqnxWjFLsFHo+bzvRUcrmphwYRQQnx1BPnqyIwLUlwRUYTHLdz66ja+2FvR47jAYdc4FrhhcQorZwxuC3yskR4dyP0XTec3Z6ez/kgNDW0WUiP9mRjh32MbvitnTYshOzmU59bn8+XeCoRwiFJnFnVmXBDbCusoqGnlllMm0thu4c2txWTGBREbbCDMf/xmPivCM8pc+d9N/NCLc59OoxoTiWe+OjWnpkfyyzMnn/BrFMG+OpZPH5q4hvvr+fVZ6fzqzMnsLmnkb58dIDM+iN0ljezu2PI/Qiub8+u4Y9kkfnF6Gmarjc/2VBBgUHNqetQJ/772hpLtNIr87dP9vYpOXLBhTIgOwFXzk3j8ilkuM8jaUVTPQ18dZDC7qR/uLOVf3xx2/myyeo+/0PEIIUgO8+O+FVNZnBre6zX/+uYw/1l3FJ1Gzfkz4wg06Hj4q4MYvcg3yV0owjOKJIT6EnacwbhWLWgzj40/NJWAJV3KB1xBTJAPF8+O7zM/qbHdQm5FE1JKYoJ8WDAxlIdXH+Kipzbwq3d2uzQWV2K02NhT2shlT29i9f5KfrpkApfNSehx3d8/z+Xvnx/AbpfMSQnlrGkx/Onj/ZQ1tPdy1xMXZao1ijz01aFu1eOxwQb0GjX5Nf37ybiTOckhrJwRx+8+2Os8plYJ1CpBhL+edYeriQn24em1RzkvK4Z/f3uEhjYLZ06L5qJZcSQNcsG5k+ig3os0O/nLJ/t5e1sJl89J4EB5kzOjOyHUh+evnTP0X3AU2V5Uz4RwPzRqFc9+n8ejXztGZ81VLRyuauEni1N48JIsftulyh7gP+vy2F5Yz81LJnJqeiS3nDKRv392gLtOS2NipL+nfh23oox4Rol3thXT0G5BpxZcMDOOhRPDUIFXic4jl2Xx/LVzuHh2PF2XGS6ZHc++P57JN/+3hN+clc7LGwvZVdJAk9FKXLAPFU1G/vXNYf7xRa7LY/rduVP558XTkRIy44NI6ki+u33pJIJ8vMcHJ6egjjW5VSz+xxruemOnc0qo6RBtcLTaKa1v5/Ub5/V4/daCeu5+exe/+2AvIX46/nphJg+tPkhl09g1cxsKSubyKHHmo9+RV93CpMgAKpuMGLRqSr1oOH3twmT+sHwqqo4PyXeHqilraGd2Ugipkf79Lnja7ZKj1S2oVIKJEYP7hl61ahWrVq0acpxbC+poNVk5ZXLkkF87mlhtdn768jbWHKxypkJoVIJrFiZzyykTOevR752+QX+/MJOZicE8tfYoH+4sAyDYV0tDm4VpsYH46jU8e002UuIsvA00eI/IDhclc9nNVDa2E+GvI8gnhC35dSSH+RLiq6WisZ0wf72z35MnOHtaNH9ckUFEgL6buJw8hLUclUowKSpgNMLrQWdNmLehUat47to5FNS08m1uFYermpmbEkpmXBA+WjUv3zCXH47UsCmvlm8OVNJqsvL75VP54UgN81LC+NePZvLd4Wpe31xEY7uF85/4gccum8k956Tz1Nqj3HXapCEX0o4lFOFxMZ/uLueNrUUYrXZyChzeNAW1bRTUQlKYbw8fGHcSoNdwxbzEHqKjMHySw/24fnH3urU739hBY7uFyVEB/N8ZacSH+LK1oI49pY387/q5/GddnrPgdunkSNYerOKnL2/joqc38Juz0rnppAm8tKGQGxanOEekJxrKGo+LaGyzcOcbO7jtte0cKG9yik5XCmvbBlxcHU2aTY5yAUV0RpffnzuV6EADL/yQz7n/Ws8jqw+zJC2SBRPCyIgN4l8/mtndG2hyJPedl4HZaudPn+zn7Me+Z0pMAB/vLvPgbzG6KMLjAr47VM2Zj37nnL/XtPTeSHV6fBBbexGk0WRKTCChfjrSowP488oMLp4d79bnj0fCA/T8/cJM7j13KhqViud/yOf/3tqJpp/Ry4/mJnDhrDgAKpqMXPfiVmpbzOwsbnBT1O5FmWoNkU15tWTEBhJg0NJmtvL3z3J5eVPhgK9Ljw7gYIX7bDDOnhbNvedOIT5kfFoyjIRmo4VdxY1sK6wnOkjPxbMThlxfJYRjofnszGhMFjvvbCvhk93lnD8zrs/r/7B8Kt8cqKKx3YLFJvnTJ/u595wpBBo0TBjkIv5YQRnxDIEv91Xw/Pp8AgxathfVc+6/1g8oOgatirkpoRytbsFkdd/6zqa8WnLLmwe+cAywu6SBOX/9mt99sIc9fTg1Qk8f5eHio1Wz6uN9PPL1IX797h4ueXoDzcbhdfOIDDCQEOrLz09P49zp/Vf2B/vquO+8qd2O/fWzA7ydU0JV84m1za6MeAbJO9tKuPf9PSyYGMaDXx7kybVHBqwon5UYTEFtG1uO8wZ2B4E+2gF9c8YKU2ICOW1KFK9sKuLVzUUkhfo6+3QFGDRYbJKC2lbign24fnEKr24qQqt27LxpVIIFE8NIDPUddNmHRq3i/VsXsvKJH8irbmV7UQPXv7iV/10/F1/d8D8y2kF017hgZhwvbypkR1EDBq0Ko8XOU+uOMjU2EKvdzorpsagH2aXDm1GEZxDsLW3kz5/s56r5SbSarTy+5ki/10+LDcRotbO9qME9AfbCJX2s5aw9WMX9n+eiEoL3bl3oshqs0WBHUT3/9/Yufnv2FExWG2F+OmpbzRTUOvyS9x/no7OjqIFPdpd3O6ZRObyXr12YzMWz47HZJZOi/Nlb2kSon47UPjKFAwxaTp0cSV51PuBI+LvrjZ08c/Xoto8TQvDX8zO5/JmNpMcE0tBm5lBlC/e+v4dfnTmZmX9ezes3zicjLmhU4xhtxr50jiIbjtTQZrbyvw0FfHbnSby0sZDXtxT3+5p5KaHsLWviSFVLv9eNNuWNRh7+6iDf5layo6jemTG9JreK3IpmTFYbei/uiCCl5NoXtpJX3coHO0v5bE85ta29L9r3R6fh+/82FrD83+t5b3sJi/+xhkv/s5E739jB+sM1ff6/unROAqFdau3ctdA7NTaQ/10/F5WAo1UtzE0Ooclo5fkNBSxLj+LyZzbR0Db098Kb8N6/PA+zt7SRu97cyed7Krh0TgKXPr0R8wC9oNKi/D0yreqNVzcX8a9vj7CvtIkXNxQ4ixBNVjv+eg1PXjnbq7fVW802py/yV/sqR1zN35mg/7+NhdS1mgk0aMiIDeRodQsXPPkD63sxgt9eWE9dq5kfz08kOcyXjNjAEcUwFGYmhvD6jfN5+YZ5xIf6Eh2oJ8igJa+mBYnk7Me+xzSGq9qVqVYvbCus54b/beXq+UmcOz2GT/eUD1jukBLuR0WT0euMvVbMiCUu2MfZvfOnSyZyyex4Jke7J/N4uPjrNdyxbBL/+ubwgII/HJqMVt7KKQFKALj+f1t57ppsTpp0LIO703kwMz6IH89vZ0K4e3eWhBAsTA1nYWo4a3KruOvNnWQnBfObc7K54cUcLnp6Ax//bLFXf4H0hctGPEIItRBihxDiE1fd0xNszqvlrjd38MDFWfzijMnsK2viN+/uJiG0b0/fWYnB1LSYaOqlA4EnmZkYTFKYX7eWwTe9lEPIcVYd3soVcxOZEuOeUYbZaufGl3I4UnVsJ1AIwaLUcAINWtKjPdusb2l6JG/fvABfvZY9JY28c/NC8qpbufDJDR6LaSS48p28Ezjgwvu5nR1F9byZU8wHty4iKyGIMx/5joue2kCQj5YWY++iMi8llO1FDTT3cR7gynmJXLswGXdnv6/M6umm99+rs8dMTkh0kIH/Xj3bUdnvhvfOaLHz7Pf5o/+gYZIWFcC/fzSTH81NZHJ0AO/espB9ZU2s+mifp0MbMi4RHiFEPHAu8Kwr7ucJqpqMNLRZePjSGYT56/n7Zwc4WOn49rPbZbeulF0prm/r974JoT7ccspEVq3I4MPbFjM93j27EXcsm8TlcxN7HE8OH5p/jqcpbzSyr6zJbWb4X+2v9PrWQwEGrbNl8uNXzOTlTYW8unngJFZvwlUjnkeBXwF9TsaFEDcJIXKEEDnV1X13W/AEVc1GfPUalqZH0my08PS6oxytbuXhS7PQqAQtJisBeg1pUf7MSe7eGzzEt2/7gsRQXz674yRn9nBmfBAf3LqIJ6+cRfoorrHc2eHt681b5f1R02Li+fX57C1t5Jnv8pyLzO6grtXMPe/t9mqb1a6ckRHNTxan8JdPDnC4cuwkjI5YeIQQy4EqKeW2/q6TUj4jpcyWUmZHRLjWTnO4GC02PtpVRqBBi79eQ3FdGxc/tZEPd5byxBWzWD49li9/fjK3LU0lwKDhUGULEgjz0zEzIZis+CAa2vpf1zl+4U+lEpyTGcNnd5zE7aemuvx3CvbVcseySS6/r7v4dHc5Sx9cy58+2c897+3hnMxot/chfyunhAue2ODxlIjB8quz0pmXEsotr24flJe1N+CKEc8iYIUQogB4AzhVCPGKC+476phtdk6fEoVBq+b9HSWc8ch31LSY+PePZpIQ6otOo2JihD/zJoRxsKNlSU5BPbWtZnYUN7CrpLHf3a6EUJ8+PzQqlWBeSpjLf6eGNgs7itxbiOoqPtxZyl1v7nCul+XXtNJqsvVpnj6a7C9v4spnx0a+jFoleOLKWQQYNPz9c9e7Qo4GIxYeKeU9Usp4KWUycDnwrZTyxyOOzA0EGrT46NTUt5r5zbt78NNrePXGeaRGHpsGma12fvHmziHfe25yKM9c1X+W62hZZLi7At5V7C1txGI79o3dYrKy6qN9XJLtmYr6yiYTf/10bOyX+Ok1vHT9XLbm17GruMHr16nGZQLh8e1EDlY2kxYVwHu3LCQ9uvv2rdVup24I33oGrYrl02O487RJ3fpr98ZofJv66tQeGSGMFIvNzptbe2aFW+2S7w5Vs+P3p/PaT3p6F4823+RWYRmFPKLRIMCg5X83zGX1/kq2F9Z59bTLpcIjpVwrpVzuynu6GqPFhsnS/Q8pJdyPd29ZSGJYTwsJX52Gj3+2mB/PT8Svl97XOrWKM6ZG8epP5vHp7YuZFhvE6v2V7CxuIHOAeprC2v53xIbKT0+ewMbfLCPTTTtnruTT3eU09ZGS8NGuMoJ9tYT6uz//qK7V3Kupm7cSaNBy29JUPtpVxrvbSz0dTp+Mu8xlvUbVY7cnKrD/Kc+kqAD+cn4m95w9hdyKZny0anYWN+Cnd3TZ9NGqeTOnmPs/z+WMqdE8cEkWKYPYtl6YGsbUmMAexY7DJSXcj6B+dtm8mbRof/6yMoPH1xxlWpzDvMyRWQwTIhzm8xWNx6whVKJ7v/kLZ8aRlRDMrpIGqptN7Ctrom4YtV29cf8Xubx0/Vyv6nLRHz46NdcsTOGfX+ZyxtRIAn28L2F03AlP5y5Tm9lKbkUzsxJDBnjFMfz0GmYnOa6fGhtIdbOJd7eV8Oz6fEJ8dXx426IhJefFBPkQG+zjMuH5y6cHuGBW3Jg0CV+TW80z3+UxMyGImYnBPPb1MQeAbYX1/OqdXdx6ykTOnhZNbLAPbWars2D3l2dO5ral3XcI7XbJ/vImNuXVsrO4gS/3VXRbPxoKu4obOOvR77hhcQrXLUoZsimYJ0iN9Gd+ShhvbC3mppMnejqcHow74enkTx/vJ7eimbdvXjAon5SutJis/Pvbw7y2qYhmk5UfzU3gjyumDTml/roXtrDmoOtymlpMVmpbzMQG913e4a2kRvrT2G5h7aEa1h6qYUVWLAfKmzjcsaX9Vk4Jvzornad+PBuAlzcVsmBCG6H+Om5Z0vODpVIJpsUFMa1juvvNgUp+/uZO/nZhJvvKmvjvd3nEBBuoazHTOojOruWNRv7y6QHWH6nhuWvmjAnxuXZhMr99fw+l9a3EhXhX4ui4XFx+cu0RqppN7C5poLB28A32zFY7T6w5wqqP9nHOtBh+e+4UfntOOn+7IHNYdTxqlQqVcDjeuYoXNxS47F7u5IypUfxh+VRmJgYDjh2u478QfjhyrIL8qvlJvH7TfJ64YtagOjEsmxLFtt+fzvLpsaiFw6On1WRj9S+WDKkebO3Bap5bnzfo6z2JSiX4yUkTeL2XRXtPM+5GPN8dquZgeTPzJ4SRU1DXZ8Wx1Wanod1CuL8ek9VGq8nGxqO1rDtYzUs3zMWgVRPmrxuRp/FPTkphUWoY1y5Mpr7NQkl9G4+sPjTsUZBOo+LyOQk8vz6fKTGBLJjo+jwhV9NmtqLXqFGrBOdOj2FRahjXv5hDgI+WVedN5dnv8/l8bzl2CS9tLKSyyTjsqUOnkN195mROmRxBTmE9UYEGbl4ygTvf2Dno+zz45SH2lzVxSXYCi7x8BzE10h+7HfaXNTI11ns2Hcad8CxODSenoI5DFU2cNjWq12/L/JpWbn11O1GBerLig/nucDUvXT+XqEA9/70627k4PVIj9XkpocxLCUUIQaifjlA/Hf+8OIuT/vktRsvQt3CDfbQ8ufYo72wr4dqFyWNCeLYW1PPrd3azckYsdimpa7Ww/tdLEUJgtNhoMlqci8i7ihs4e1q0S56bnRxKdkezwHMyY/hqXyWf7ikf4FUOzDY7H+ws44OdZfxsaSo/Pz3Nq6dety5N5aEvD/KH8wK9xkJj3E21VCqBr15Dk9FKVZOJf3f0vAbHguS2wjoeXn2Ikvo21h6s5ql1R/nr+ZkEGLRkJ4e6dNdICNHtD8FstXP/57nDEh2AqmYT72xz7AS9u72kW8p/RaOR8kbvaaH88FcHMVpsLEmL4P6LMgkwaLhgVhxXzU/iybVHsdslBq2a+BAfhIDl02PY+8czmZUUQq6Lu3Vo1Soeu3wGNy+ZSFrU0Cr3H19zhOte3OrWerKh4q/XcO70GB766qCnQ3Ey7oQHHNOor/ZXsv5IjXP00mKyctPL27jrzZ38/cJMZw7OFXMTmeoi5zmjxcbBimZyCuqobOrZNWDtwSp2lzQAjkTAAMPwB6TNRivv73CIkJSSZ747yvJ/r/eKpDIpJdUtJnZ0eFKfMjmSn506iakxQczoWOP59bu7ueWVbZyVEcOO35/O41fM4uWNhVz45AbOevR7vtpX4dKYNGoVvzk7nY9+tpifnjyB06ZEMmGQlfzfHaqm2oNtqQdDdnIo5Y1GXvjBO2w/xt1Uy2qzd/NN/utnB1h3qJodRfVoNSpe/ck8DlY0s+FoLQA/nt/TWmKo5FW38Oz6fD7eVeasQ5qTHMKZGdEEGrSE+OmICTKwYGIYq3+xhMomIyaLnQe+OsjHu4bfTbK8I+9FCMHvzp3KJdkJI/5dRsLe0ka2FtRx7cJkFk4MZ0ZCcI9rvs2tJDMuiBBfHfk1Lfzq3V2cNiWKulYzXx+oBBzrFp07d4cqm5ESJkZ0NzwbLgatmnvOmQI4RsCf7Cnn5Y0FbC/qvQzhkcuyODMjekTdJ9zFvedO5arnNnPF3ET0HnYu8P53y8Vo1CpuXTqRe9/f6zy2/kgNMUEGnr0mm4zYIJqMFv57dTZ3v72LtkFstfbHe9tL+N0He3vcZ2tBfY+aKpWAjNggNGrhHA2MhJAuCW+qDv8WT9FisnL181sQwHWLUjgvK5Ymo4W1e6o4O9PRb2rNwSpufGkbaVEBfHbHYrYW1GO3S577ocB5n4tmxfO3C6dhsUnWH67mx89tIcRXy98uyGRWUgjh/nqklByuaiE9OoBDlS2YrDYyYoOGvA6jUglWZMWyIisWu13SbLLS0Obo7rnuYDVatYoVWXFevb7TlVA/HdcuTOaPH+/jbxdO92gs4054gG6N7m48KYXTp0aTFuVPsK8jwzPQoOWkSeF8eNuiYRtntZtt3PfRXmf2bX8IAfNTwtiYV8ue0r4b1g2FzLhAkrzI9GvdwWrsMySPXDaDx74+THyID0smR/DgVwdpM9tYlBpOhL+eJWkRfJtbxZ6SRn7030388ow0/nnxdNTCIZyTowOobjbx8qYC3s4p4baljqTCG1/aRnmjEZ1GxdLJEXy5rxI/ndqZoxMf4sPPT0vjomG2cFapBEE+WoJ8tCSF+bFyRu8dQb2dS7IT+HhXGTkFdc7FdU8wLoWnvs3MlJhA/rB8ap87PwatetiiU1Tbxo0v5TgdDPvivvOmcv6MOPz0GnQaFde+sIV1h6oZ6TLMvJRQthTUcaOvd6TKSylJi/Ln/p8tRqtWcd0LWwFYOjmCOcmh/N/bu1h13lSuXZTCUz+exTPr8ogONvDlXSej1woOV7ZQUNNGaqQ///rmMJVNRuxSUtVs4ok1R6loNDmnlWarnS/3OaZkXRMDS+rb+XxvBWdnRlNS387Hu8oI9tUxMcKPj3eV85fzp+HTSy3eicgfV2Zwyyvb+OKuJR6LYVwKz91nTCbYV+sc4biSTXm13PLKNurb+t/l8NdrOCMjupvx+p9WTGP5v7/vs1hyIAwaFekxgWzuaLETO0q2G0NFCEdXz4RQX7YV1jEtLpC0qAC2Fdazs7iBm5dM5PQMxza5XqPm9g4js8gA+GJvBTe/4vCYO2taNHk1rXy8q4z4kGPZ2e9uH3hUCfBNbiVT//Blr+cCDBpWrcgYya85ZkgJ9ycpzI8fDtewaJJn8pDG5a5WcrjfqIjOmtwqrnpuM/VtFmdXiq6ZyQsmhHHG1ChWZMXyzf8tIe640obEMF82/XYZt5wy9AS5mCADscE+3ZrOjTTPaDSYnRTKJ7efxA2LU0gI8eXj2xfzm7PTe7wXT649wlXPbXZaywYaNBi0apZOdrhXltQPPTWgv5Hkm1uLx4Tpl6t46JIZvL61yGPPH5cjntEiOsjAn1ZOY0ZCMImhvjz69SGumJeEWghWH6jkhsUp2Oyy38VIX52GwS5V/vTkCaw9WE2wr5arFyTx8OpDznMTIvyICNAP6j5SSoQQzn8PFONQMFpsXPHfTWz6Lo+613cQ6qfjxpMnkBEbxCtd/HUsNjvPrc/n4tnx+Os1vLa5iJL6dlbOiOPiWfEcqHC0HD4nM4b/fp/PgT4Ka4N9tXx2x0noNSoeWn2Ir/dXEh1koLbF3MMtMibIwONXzGJvaSOFtW2UNrSPyheSN+Jv0DA3JZTqZiMRAe4fGQtP5HVkZ2fLnJwctz93rFBS34aPVk1+TSvVzSZ2ljTw0oZC2rsYmCWH+fLpHSfh12GtWt1s4qaXc5y7YaemRzIrMZifndrTf/lwZTMTO6roH1p9kFc2FaES0GqykZUQRF51K5/dedKAdiGDZeUTP7Du9ScIXnwlAOnRAbx/66Juayof7Sxl/ZEablg8gSAfLfe+v4dvcqsA+P3yKZisdpakRZARG0RBTSv//T6PVzcf+8bWqASnTI7gjmWTmB4fDDhSJ1pMVjYcreWsjCg+3l3OXW/udI58dGoVD1wynZMnRaBRC9QqMSa2xV2FlJJvc6tYNiVqVO4vhNgmpezVhnP8vMtjiM4pUpi/Y8RydmYMPz8tjfWHa3j0m0PsLW3igUuynKIDEBGgZ+HEMKfwfJtb5diePnlCN5uMvaWNLP/3eiaE+9FktFLT0j3xrXOL/9GvD3Hb0tQRT9cOVTazq8v0L9xfx7IpkZz92HfcsWwSEQF61h+uISJAz1s5JcxNCeOiWXFcOT+R+jYz24sa2JxXR2SgnnP/tZ5Ls+P58/nTuHPZJAIMWmKCDMQEGXh1cxE/HKklr6aVf140nezkUDRqFTUtZm57bTsPX5rFBTPjeWNLMRvzHDlaZpu9W42WRiW4JDuBO5alEhM09ir8h4oQgsy4IGw2O2oX5EANBUV4xggGrZrTpkahVgm+PlBJdlJPH6HjnfICDdoe3jydbXXyavqvyn99SzE6tYp7zpkyojY5b3WpjNapVfxs6SRWfexoQPeLt3Y5Db0unh3vqFX7IpdzMqM5NT2KpZMj+WhXGdPjg52Zym/lOEpBXv3JfH5zdrrz3vvLm1h3qJq86lYe/Oogb9y0AHAkG95/YSZJYY4dygtnxTmF53isdsnrW4r4+kAln9y+2GUjPm8mMtBAbYvJ+SXnLsbl4vJYZml6JH+9ILPXYr+YIAO+OjUvXT+XX5ye1mubm1bT4BMi/7exkFl/Xs3mPj6og+G7w8cq7a+Yl8iGozXdzncmA7+7vYTGdgtVzSZe2eRoTieEYOWMOFLC/bh87jHr2e1FDXyxr5x9ZY0U1rZit0tuW5pKdIdQbC2oZ9VH+7B2eCVfNifRafh2wcw4lqVH9hpraqQ/1y5M5o5TU8dMUqArCPbVccjNPbmUEc8JxFULkrluUQpZCcGcnObY/dlX1kh+TSv+eg2xwT7ohjikbjPbuPLZzVySncDtp6YS7q8fkvfQqz+Zz09fzuE7lWBJWgRNRgtWu2TNwapuu0xSgq3jwP2f57KjqIEfz09i/oQw1CrByxsLeOCSLL4+UMl720v5+Zu7SAj1YWZCCMX1bbxz80LOmhbNixsKsNklL24oIDs5hOXTu7dxttolLabe0xWOVLVQ3tBOekwgrWYbN/diMHYiolYJfDRq5+aCO1CE5wQiIzawx7To9S1FvLLJsQg7NSaQd29ZiFolhtT+pHMK8vqWIk6ZHMHjV8wadJO9iAA9D106gyeLU5ydWu/7aB/+Og0pEX7kV7fSfJwQ2CV8vreCz/dWcPWCJH66ZCIPrT6EAB64OIuJEf488OVBiuvaqWg0YrFJ3tha1KM7a8xxeUz1rWZ+8lIO2wrrmT8hlPOyYpESVu+vZN2hanQaFQmhviydHMGPjmv/7M4PpSeID/WhvtVMqJumXIrwnEC8uKGArPjgbtnYpV3yXQ5VNvOb93aPqOfS2oPV/OLNnVy/OIX5E7pnfVttdtYfqSEpzI8XfsjnN2eno1OrSAn3cy6EBxi0bLpnGesOVbO1I9Fxd0nvZSIBeg3XL0ohOtDA89fMIdxfT6CPI8v7gS8dFg+dPsr3vr+XxFDHQrhGJUiN9CfjOOMrjVqwr6yRcH8dfzl/mrN/2pXzEmkz2zBo1X1Osf766QFC/HRcMDNuTFrLDoQQAh837ugpwnMCcfmcBH7x1q5uwpOdHOp0NLTaJR/uHH61OzgSIrcW1PHd4Wrev3URfjoN//giFx+dmt0lDRyqbCEiQE91swkfnRqTxc7NSyby/eFqyhraiQ32ob7NzN1v73JW6nclxFfLFfMSMVvt1LVaqG01kxzux9L0SO55bw9f7C3nukUpCNEzIbCoztEu6JLsBP5y/rQeIhJg0PLqT+YT4qvtZsovhOi2QwiOyvSuJnEnpUVwzfNbeODLg8xKDGb59FiWZ8UQ6YEcmNHCoFX1+L1HCyWP5wSjrtVMaJcyDCklG/Nq+fW7u2k12Ubc8mVqTAD7O4psdRoVeo2qVwHpRKdWoVJBxZqXSTjtGi7LTmDFjFhMFjvF9W08ufYoR6pa8NM5du3OmBrFBzvLmBoTyB3LJmGXEq1aRWWTkce+Ocxrm4uICtRT2dS3/01alD/nTY9Fo1YR5KMlIkBPSrgfqZG9m3wV1rZy15s7CfPTMTUmkEAfLZ/sLuelG+YSaHBkTkspOf+JH9jVZXSmEnBqehRPXjnLue5lt0veyinGYrNz6ZwEKhtNxIf4uOXD7ApcKTz95fEowjNOkFJy5bObnT5Dw2VOcsiwWiQ3rH/VmUAIjv5m4f56/n5hJkLAnORQDFo1qz7a5zSsjw400NBuZm6Kwx97sBYlOo2KZ6/O5urntwCO6n9/vYaIAD2P/2iW09ituK6Nj3eX8XZOCfm9pBdMjw/i2auziezYLXv060M8+vXhHtedPc3hx2O02qhsNJJT6Hh/Qny11LdZOH1qFI9cNmPQ62KexG6XCIFL1rOUBMJxyN7SRv7xRS43nTyBdrONYF8dm0awLQ6OD/DRqsF35egPk9WOXqsiKz6YdouNL/dV8M2BKi6bk+AUnooOl8bvDg3N/N5stRPko2HBBIfVyKRIf/52QSZ2STdr0ze3FvP4miN93md3SSMrn/iBX5+VTl2rmaI+Or9+vrd3N8TOQuHV+yu54/UdPHnlrBHlRLkDlUq4xaVSEZ4TjJL6Nn797m5+OOIQme8P1wzwisEzOSpgwH7wQyGvupWsP33V7djHu0e2BtVJoI+Oy+YksLeskQnh/mQnh/LJ7jIKah32Gne/vYu/XZDJ3rJG1vbT1aO80chdb+4ccTy7Sxr4xxe53LbUkZLgzbhj927ECYRCiAQhxBohxAEhxD4hxJ2uCExheDz7fb5TdFxN53rHaOKKL9sHLp5Ocpgv8yaEsvGeZdy61JGP88eP9zu/zS/tsIF96srZzE0ZfUOs+jYLgQYt//3uWE+uu97YwbpD1UPq7Xai4IoRjxX4PynldiFEALBNCLFaSrnfBfdWGARmq53/fp/Hj+cnsv6I60Y4x1MwBj4gapVgxYxYhBDOeqvOotE3bppPSkfpRFexeen6udz99i4+2T249jbDIS0qgAtmxrH83+upbjaRGuXPZ3sr+Gp/JXYpuWVJKnee1jPT/ERlxCMeKWW5lHJ7x383AweAsekLOUbRaVTsK2ukvMHYraWNK5kQ7keVl3dSALDZZZ9Tp4kR/r3u2Bi0ah68JIvR3HiKCzaQHO7HmRnRfLirjH9+cRCz1U6b2UagQcvjaw6zen/l6AXgZbi0VksIkQzMBDb3cu4mIUSOECKnutp1/cIVHDx55WzSYwK7baW7kvBBevt4mkWpYZw+DJuHkVjdDobOHvA/P30S6uPWUML99fzhvAxK6ntfvD4RcZnwCCH8gXeBu6SUPVyapJTPSCmzpZTZERERrnqswnFsumcZJ42CnaW3943qZHp88LDzUH6/fCrnZcVi0Lq+drqm2YTdLokP8eWyOcfaDEUHGhw1ZZkxXLcoxeXP9VZc8g4LIbQ4ROdVKeV7rrinwvCoajZy0IU7TwBRgfpe81y8kYgR7BgtnRzJv380k6/uWsJCF7d/vmpBslMQF3f5YrjnnHTuWDYJ/xE0bxyLuGJXSwDPAQeklA+PPCSFkfB2TgnBg2yzrFOrBlWt3lkDNRawu2BbLDHMlxeum8PsXjyPhsNJk8K5bemxSvclaRFcPieBJWkRrMiKJdxfj9bNRlyexhW/7SLgKuBUIcTOjn/OccF9FYbBz09P45WfzCOrly6dnahVghsWp7ByRiz6QUwr2szD63rhCYyWkTVg7ESvUXPD4pFPfS6YGce9507hybVHnUb8Bq3j3g9cPP2ErnjvjxGP76SU62HQ/uQKbiAywMDfLpjGzuIGnlp71NmRQa9Rcfa0aK5akMSjXx92JheG++uZlxLK53vLOb5w3V+v6dYA0ds57MJdvZF2Xj1pUjh3LEvl8W+Pcmp6JNPjjlXLT4oK6OeVJz7ja3w3jsiIDeJIVUu3NjDLpkTy6OUzqWoy8f3hGnRqFf56DRfPjueJK2dx08k9ja/Sovyxub+cb9j8cKQGs9XuknuNZKSn16h45LIZpIT789ClWZw7PabHond549Bb9JwojK8VrXFCaUM7724r4YUuPcfjgn24uKN9b2Z8EO/fupApMQ7jsM5s3l+dOZk2s5WXNhY6XzeGNAeAmhYzX+yrYEVW7IjNuzr9goaD2WbHT6dhe1E917+4ld+fO7VH++Sn1h7FR6fmnrOnDPs5YxVFeMYgpQ3tFNa2YrNLSurbKaxtY+HEMFbvrySnsJ5Dlc3Y7JIlaRGsnBFLUpgfGpUgJcKRpxIf4tute0Tnh1OlEvxxRQYrZ8SxJb+OR74+hFalIsCg6df6wtu478O9rPpoH1fMTeTuMycP6x5SSl7bMvyGd1JCXZuZe97dQ0ObhcK67jk6tS0msuKDeeybw4rwKIwNCmtb+WxPOeUNRoJ9deg0gmfX5/PdoWpSI/3533VziQvxIT7EB61axekPr+NwVQsXzIzjkctm9HtvIQSzk0KYnRTCyWnh3P7aDiID9GNKeDqrwh9fc4SM2EDOzozhSFUzVU0mJI5Ossd3LrXZJV/uq0CjEpyREY0QgvdvXcQfP97HWzmDa5HclcgAPX46NQc7TNT/s+4o6dEBpEX5U1LfzvM/FJAeHYDvOOnXfjyK8IxBFk4MZ+HE7kmCUkqMFnu3JnmdnJcVS0KoD2dlxAzpORmxQbx360JOe3gdmXGB7CltYnpcEBVNxjFRPgFw55s7ySmsd5rAdzIrMZhJkQG0WWzEBBn4en8leTWtxAYZWDI5Ar1GjZ9ew98vnI7RYuejXUOrmg/107Gv7Fgerclq59ZXt3PtwiRignw4KyOK+z7axzULkl31q44pFOE5QXB45vb+7dlbm5vBEuyr4w/nZfDUWsfoYXdpI/NSQseM8JitjtbIx7O9qIHtHc0Pu1LWaOT3H+zlHxc5trrVKsFDl2ZR0WhkS8Hg13yK69p6Lap9cUNht5+X9tFq50RH2dVSGJDzpseQGRfk/AbfV9ZE5Bip3RoOb+WU8I8vDmLvGCFp1SouyY4f4FXdaTXbMFvtGDQq5iT3TESMDTKgUQmyezk3HlCER2FAhBD846LpvHLDPO44NZX06ACvN7MaKU+vO8otr26j2ehYL1owjBIKo8VOWnQAWwvqmZt8zIbj5iUTmRjpT3K4X49Or+MFZaqlMCiEECyeFM7iSeHcYbMz9Q9fEuSjobF97Cw6D5Uv91Wy9uDXLEoNH1YNmOySjLC9qJ6ZHdnkd5+RxumPfEfIIEtbTkQU4VEYMhq1ithgA2H+erYVDt34fSxhstr5NrdqWK99aUMhCaGO3TOrXbKjuIGoQD1qlWBKTAA1LSPr+DGWUYRHYVjctjSVlzcWDnzhOKaiyUh9mwmtWjgbD0YE6BFC8M+Ls6jqMLMfjyhrPArD4uLZ8eg0KjJiR1bPdKJjskpCfI+Zsy3qSIPw12u6NRUcbyjCozAshBDEBPuQW9HM7MTxuTMzGGKCDN1SD1bOUFyBQREehRFw2pRIBI5+Wwo9CdCrCfI5toCcnRTibCY43lHWeBSGzcoZcTS1W3j2+7yBLx5nxATp0ahV3fqQBYwzl8H+UEY8CkOmoc3srGhPjwmksG782jv0RkyQnjazneLj3pej1a1u6dI5FlCER2HIPL8+n4z7vqSsoZ0ZCcHdkuMUICHEj8Z2S4/jRXVtPLn2KNuLTuwUhMGgCI/CkJk/MYzEUF9igx3V749fOdPTIXkVsh8Xowe+PMjbOcVujMY7USadCkNm4cRwTu1S3BgZYECtEt2qv8cqEf56wvx1NBst1LWaabcM3c2wzdy373N6dAB/WjltJCGeECgjHoVhMX9CGHtLG50/P3jJ9G47ON5KXy23BI6tb1+9mtyKZkobjLRb7Pho1SSE+pCdFMLECL8Bu40mhvr02YPMV6fmzmWTxl1Hid5QRjwKw+LktO5NGS+YGc+W/HpeH4FrnzuYnRRCSX0bOrWaUD8dQoBGLcgpqKe8sWcmcbvFRnFdu3OheGpMIP4GNVvye67TzE4MZm9ZE6Y+PJ9nJARjtrnGD3qsowiPgstoMvZcUPUGEkN9iAnyoaiuja0FxwTjeDvSwbC/3GENMi8llM09PJlFn6IDDt/rFVmxQ37miYgy5lNwGadN8R5Tq9RIP+alhBIf4kNRXTub8+t6HdEMl5zCeiZFdi95sA9gjb9iRuy47aN1PIrwKLiEt3OK2Zpfz33nTWHBBNe2/x0M4f46h1d0YgihflqOVLWyOb+uW3sfV2KzS9RdFnwEDOjK2LXrx3hHmWopuITs5FCeWneU17YUkRjqy13LJvHoN4dH5VkCSArzJSJAj106qsBL69vdbjPRdRF5dlIIOQNYhPSW2zNeUUY8Ci4hJdyPb36xhMuyEyiqayOvppXHLp+BYRAtkvtCJSAu2MC0uEDmJIeQnRTChAg/tBoVBbWO9ZpthfWUjtKoZiA6RzyzE4MHFJ1Ag4arFyS5I6wxgUtGPEKIs4DHADXwrJTyflfcV2FsIYTg/osyCfHT8fS6o7SYrLx47Vx+/+FeDug1xAYbUCFQq0CnUaPTqNCqBWqVCrUKBAKLzU6b2UZju4WqZhOlDUZKG7zTt6bdbCMqQE9Vy8DG90IIfvfBXs6YGt2nKf94YsTCI4RQA08ApwMlwFYhxEdSyv0jvbfC2EMIwc9Pn0R0oJ5n1+eTU1jHqhUZnPuelTIvFZDh0myy0mwanPXr4knhbCuop8VkVYQH10y15gJHpJR5Ukoz8Aaw0gX3VRij6DVqrl2UwqzEYAAmRwegGue7ObtLGrj/oswR9WM/kXCF8MQBXYtPSjqOKYxz4kJ8efCrQ7y3vWTcW0IU17Xz9LqjYyK72x244q+ht6+yHgkNQoibgJsAwsLCWLVqlQsereDN5Ne00rCzlL9t11FzeAfacb6r88V6mPmOjivmJY77sgkxUn8QIcQCYJWU8syOn+8BkFL+va/XZGdny5ycnBE9V8H7Ka5r46R/rgGgYf2rBC++0sMReQc3nTyB354zxdNhjDpCiG1SyuzezrlCdrcCk4QQKUIIHXA58JEL7qswxgnx0w180Thk/eEaT4fgcUY81ZJSWoUQPwO+xLGd/ryUct+II1MY8/jp1GhUAusJYJfhSkL8lHUel6z4SSk/Az5zxb0UThyMFrsiOschBNy5LM3TYXic8b3CpTCqlDUqXszHszg1nLkpilWsIjwKo4anShm8mXmK6ACK8CiMIkeqWjwdgleREu7HzUsmejoMr8DrhceurBGMWb7cV+HpELyKrPggNOM8f6cT5V1QGDXya1o9HYJXkREb5OkQvAavFx7VQO7aCl7LwonuNwTzVnx1ai6dk+DpMLwGrxceZao1dgn313s6BK9h2ZQopU6rC14vPOO8qHlMo3RUOIYn7GC9mTEgPIryjFX2dOm7Nd5JCPXxdAgjxmTtu1HhUPF64VEYu6RFBng6BK+hfIyboEkpXWrkpgiPwqhx95mTPR2C1/DalqIx3eJ5a0E9ob6uK/odE8KjLDCPTcL9dfgpNp8A7Cxu4KGvDno6jGGzvaieIF/XLY6PCeFRZGdsIoTgV2elezoMr+HJtUd5au1RRuqB5W7MVjttg/SWHixjQngUxi5XL0jivHHatvcv50/jnrPTCe4yUvjHF7l8sLPU+bPdLvl4Vxl//mQ/Fi/dBfw2t4pZSSEuvaciPAqjihCCv14wrVd/3BONhFAffnF6GitnxHL9ohR+PD+Jny6ZyNe/WEJymK/zuj99vJ+Cjqzupzp8mG9eMhFzP33XB4PZaucfX+SO6B698d3hapdX1I8JB24leXlsE2jQMjk6gBO1civcX8/5M2K56/Q0/PU9P1Lh/noWTwqnoLYIgPo2Cze/so3P7zyJn548wWX1W7//YC/Zya4dmTS2Wzh1ciS+OtdKxZgY8QghlAXmMc7clNATMhn0l2dOZuM9p/K75VN7FZ1OLpoV3+18bkUzR6tbnKLz3Pp8moxDN8M3WmwU1bYBcNncBC7JHllZRk5BHfd9uJf9ZU2Ao95u2ZTIEd2zN8aE8ICywDzWCfXTc82CZE+H4VLC/HRcOciOETMTQ3jnlgXEBR9LJNzX8eEGKG9oZ9WHg3MMllLydk4xVz23mUX3f8sfPtoLwKzEkY12CmpauP7Frewra+L1LUWYrXYiA/SjksQ7ZoRHmW6Nfe49d8oJVTjaZLTwxd7BTyDTowP56GeLuH5RCmqVIMzvWC3b75ZP5aLZ8YO6z1PrjvLLd3bz/eEaTk2P5Nmre23kMCRMVht//fQATUYrKpXg5U2FGK02dJrRkYgxscYD4NiBlEoJxRhGq1bxj4umO1vejEVOmhROdKCBI9Ut3HZKKqdNjRrS68P89fzhvKncsSyV4OMS8halhvf72haTlb9+up/cimYApsUF8vcLM4e0RlRY20pSmF+P429uLaay2dED3maTJIf5UlDTyvT44EHfeyiMGeFRqQQWmx2tWhGesUx8iA8/Py2NI9UtfHugklaz6+p/Rou0KH/uWDaJ+BBfsuKDXPLld7zo9Eaz0UKrycbag1WcPzOONblVbC9swGq3E2DQ8MGti4YkOlJK7vtoHy9eN7fb8Tazlf9tKKCq2USQj5bGdjNWu8SgHb3kzzEjPAD2MZZ4pdATIQR3njYJgPLGdj7eVcZDXx3CNMKt5NHi3MwYHrwkC59RzMBuM1tpbLdw8yvbaTNZSQz1xU+v4ct9FRi0ak5Oi+DS7ATOy4pl3oRQrnthKxfPih/ybtjR6laWTIrgYEUz+8sa+Wp/JSuyYvk2t4qj1Y7t/akxgeRWNJEWFUBa1OjV2o0p4VEp06wTipggH246eSIrZ8Rx9XNbOFjZ7OmQuhEZoOcfF08fFdGx2yVvbyvm398eoaS+Hb1G5RTfw128qlfOiOWvF2SiUgm2F9Xz2e5y3rl54ZBj+nR3OeuPVPPutlLC/HWE+OrYX97E53srmN2xKK0WDhsau4QLZsa57pfthTElPMos68QkKtDAQ5dO5+rnthAZaCDQoEECZQ3tlA6iIlqrEsxMCsFotlHdYiI+xIedRQ1YRpiCcd95Gf1ukQ+XQ5XN3PH6DnIrmtFrVMSH+LAkLYKrFyTzyOpDnJERxRNrjvDbc6awbIpjDWlTXi0vbyrk8R/NHPJU70hVC796Z5dzWlvdbKSqYz0HoLrF8d+zkkLYWlCPELBixuhmm48p4RFC0GKy4K9XnNxONDJig0gI82NXcUO34xEBehJCfNCoVNS3mSmoacVil2hUEBfiQ6ivHp1Gxeb8OudryhuNRAToiQkysLukuyeQWkCQj5a6tv5zZv5xUSbnTo9x2e/Xyaa8Wl74IZ8zMqI5NT2SGxanENbFqfHpq2ZT1WwkIzaIydHHpjrzJ4Qxf5hmYq9vKeq2lma1w4QIX/KqW/HTqSmqayPMT+fM3VkwIYyYoNH1DxpzwqMs85yYCCG4ZclEbn5lG+DI9n3o0iyOVLXwwY5Sthc5hEWjEkQHGahuNlFY205hbe+9u6qbTdS3mkmN9ONIlWP9IiXcj+pmE3VtFjJiAymoae11cfuy7AQum5Po8t/xSFULP39zJ5/dcVK/feUjAwxEBhhc8syaFhMf7izrdmxSpL9zOme128mKD8JktTt3y84f5WkWjKE8nk70o5RXoOB5zsyIcja8a2q3kBUfxA2LU/hvlzwVq11S0WgclLeN1S5pt9iZlRhMfIgPIb5aWjqqrPeVNREb7IOul/n7NQuTXfMLHceDXx7kTyun9Ss6nRyubOb213fw3aHqYT1LSskDX+Zy/hM/UNNi6nbOX68mPsQxojFZJbtKGp3rpzqNirOmRQ/rmUNhRJ9iIcQDQohcIcRuIcT7QohgF8XVJ1q1aszZCrSbbewoqvd0GF6PEII/rZyGWiUw2+zs6Jh2RQcZOG3K0PJlOimtb2d7UQMlHf/uyuGqFpLD/Zwfwk5GI2WjrKGdKTGBnD6IvJ/tRfWsfOIHpsYEcnJaxLCe9+9vj/DEmqOU9NLNNa+mldggA9kdFeezEoPZX+6YZp0+JYpAw+gvZYx0+LAamCalnA4cAu4ZeUj9I4TAYhtbwuOjUzNpFLcmTyQmRwdwXceI48UfCpxWEatWTCXEhUZUnRyqbEFAt+r5nELXf0nEBvs40wgGYmZCMLvvO4NbThl819EjVS0crW7hl2/v4oEvc3l49aE+r21st1LeaHSWIbV1mW66Y5oFIxQeKeVXUspOh6BNwOByvkeIZgzWT/jrNbSbbUqTu0Hw89PTuHh2PBuO1nDtC1tobLMQH+LLfedljMrziuvbyU4OISXcj6gAPZ/vKcdu91xekRBi0Dk6LSYrRouNL/aWc8Yj3/H2thKeWHO039fMTAymuL4dKSWTIv2dazvBvlqWDHOENVRcuWByPfB5XyeFEDcJIXKEEDnV1cObt3YyVpv8adWCsobeF0MVjuGn1/DgJVm8csM89pU1ccWzm2gyWjgvK5ZrFiSNyjO3FtSTX9NKZbOJ4vp2VKqRfTTqW838/oO91LWaXRRh79z+2naOVDWTU1g/qHUvrVpQ2eRIUWhst3TzADo3M2bUarOOZ8CnCCG+FkLs7eWflV2uuRewAq/2dR8p5TNSymwpZXZEhHtU1dvQqFUsSg3nQHnjmDb+dhfzJoRx9YJk9pU1cdur21GrBH9cOY3HLp/BOZmjtwCaEt6zlmmwGC02/vbZARb941te3lRIu2X0SkKK69oI9NGQU1DP2oOD+zKflRji7BZxtLqVwro257nRThrsyoDb6VLK0/o7L4S4BlgOLJNjbdXXQ0yOCuRf3x7mzmWTlKLXfvh6fyVv5xQD8P3hGl7bXMQV8xJZOSOO5dNjOVixzpnq70oM2uF965fUt3HTS9ucC7WLUsO62WC4mge/OsjhylbUYnDxpkb6k1vR1Ou5+BAfZrvY3rQ/RrqrdRbwa2CFlLJtoOsVHKhUgtuWpmK0eGd9krcQ4qft5nXzuw/28Oz3edjsErVK8N6ti7jxpBSXtwauaRn69KimxcSlT290ig7AxAh/V4bVjd0lDWwvrOdodQv3nZcx4E5cenQARbWtNLb3btp+wcw4t34JjnRC9zgQAKwWQuwUQjztgpjGBV/uq+Cnr2xTplz9MDsplHW/PIVXbpjHTxanoFGr+MunB/jfhgLAkYF877lTmeziHcPiuqF/h+4va6KssXt5x6a8WleF1I3NebVc+p+NRAcZ8NNryK1o6rHTmxrp32201dBuwa+f8o+VM9w3zYKR72qlSikTpJQzOv652VWBnehUNBrZlFfL5vzR+eM8URBCsHhSOL9bPpW1d59Ccpgvz63Px9hl7eS2U1M5KyManYu8i2uHMeKJDNT3OBbiwgZ4nRytbuG213Y4R8t1rWYue2ZTt2viQ3xobLM4kyUBKpuMfaZ0ZMYFkRo5eqOz3lDSgD3EVQuSOPjns1g4sX/zJ4VjxAb7cGZGNKUN7fz2/T3O40vSInj6qtm8cN0clzQQNNvsQ074PF6sZsQHDSkPZ7A8svqQMxO51WQlvUs919yUUOalhNJutjmtNjqR0pEN3hvuyt3piiI8HkKvUSsLy8NgYoQ/GpXgve2l7C3tXgC6KDWcNb88hSvnJY7YKvfWV7dT3Wwa+EIctqEPfHmsS6i/Xo3RakfTy5Z8VZORf31zmL9/doCXNhYMOa6uRa/7y5ud2+FzkkPYkl/H5vw6alvNtJptTIw4tjuX2iVfpysqAedlub4YdiAU4VEYU1w6J4EN95zKdYuSueq5zdz22vZu067IAAN/vSCTF66bS4Bh+DXQ5Y1Gnl7XfyIeOITk6ue2sLOjvGN6XBBTYgLJrWimsO7YjpuUkse+Psw5/1rPw6sP8e72Ev63oZD2ETowlje2MyHcj60FPUdo4R1V70KAtY9mgYsnRbisIHUoKMKjMOaIDDBw33kZvHzDPDbn1XH/5z2b2C1Ji+CD2xY5P3zD4bn1+fzste29ioOUkg93lnLmo9+xOb+OUF8tiaG+7C5tZGtBPQatCmvHgm9uRRM/e30Hj3ztmCZ11kjVt5mHVPT80a4yio5b+G632MnrIxu+1WRFoxJkxQdRUNv7gvkFMz3T5XVM2WL0RWfPrbGa0awwPKbFBfHAxdP73LaeGOHPn1dmcMur24f9jE92l6PTqLj/wunY7BKJpKHNwl1v7GRLwTEPoJhgn27tatKiAshOCuHGl3JYvb/SedxHp2Z/WSNtFjtxwT6D/pu12SWP9FN/1Ru+eg3zJ4Sxs4/1Kh+tmjOmjn4lem+cEMKjUgnMVjs6RXjGHUvT+282d3ZmDBfOiuO97aX9Xtcf720v5fM9FbRbbAT5aFEJRzfQruwrayIx1Ic2s42aFjNVTSb+8tkBNh49tmsZ5KNlUqS/swi1tKGd0ob2PpMMpZRsPFpLq9nK2oNVQ6rzm5UYzNb8un770Z2REdXvFvtockIID4Bi06PQFy3G3pPmhkJn6UNjHztD02IDkUBRnaMWL8xf1010/PUaYoMNPSrf+6q4313SwD3v7XEmJCaF+vZ6XW/MTgph2yAq7D2xm9XJCSM8nW2OlemWQleMFht7jtv9cjWRAXr2lnUvRQj21ZIS7keIr5byRiMGrYoD5d13lVSCXi1eGtst3P95Lk9dOZuj1S2s+ngfdW2Dyy2KDNAPKgEyzE/HSQP08RpNTphxghBCER2FHhi0ah6+dAaBI9jh6oqvTs0ZU6O4aFY8mXFBAD2mSpEBenYWNZBf4yjCvOec9F57cEtg/eGabsdsdsktr2xjwYQwEsN8WTwpnNuWpqIdZLV8m9mGzyD6YZ2XFTvk9jiu5IQZ8Sgo9MWCiWFs/u1pbCus59M95by+pWhY95mZGMx/rprdbft5T0kjH+0q42h1CxJYPj2WtCh/gny0pEb6kxYVgEGrJjsplI92lfHuthIMWjUatWB/WSM/e307b24N5/SMaJLDfHl5YyEl9e3ccFIK4HDcvDQ7gaLaNh5fc2TAGCdHB3j9NAsU4VEYJ/jo1CyeFM7iSeHcfUYarSYbBq2KyiYTX+2vYE9pIzUtJtrMNmKCDDS1W6lqNhLso0OvVZGdFMovz5zco59VZnwQmfFB3HvulH6fHxvsw81LJnLtwmROeWANdW0WzNbO7fZmNh6txQ7o1CpsdklxXXu3LhODtdfYU9rIlJiAHtO6rqSE+5EVHzSo+40WivAojDvC/PWEdezARwYayHTjh9CgVXPu9FhSwv1IiwqgvLGd3763hztPS+NHcxNoM9uw2mUPT6D5E8J4bn3+gPc3W+3O9JK+OH+GeyvRe0MRHgUFN/P75VOd/y2lZPn0WNQd65N9dc6KCtSj6ujyORC9Gbx35XwPJQ125YRZXFZQGIsIIZyi0x/5Na0Dik5iqC9ZCUG99grrZGZiMElhw3dYdBWK8CgoeDlSSl7s8CDqi8y4IFqMVgzq/ne03Glv2h/KVEtBwcv50yf72dGlJ5hOo2J6fBDGjq4lCaG+7C9rJNRPR5ul72TJKdEBnJvp/kr03lBGPAoKXoyjGNXRglijguykENKjA8gpqGdvWRPBvloOVTZjk456sT2l3RMZfTv8o1Mj/UkO9+PNrcVu/x16QxnxKCh4Md8frmFSpD8Wm53KJhM5hfXMSAh2ni/t6BgxNyWULfl13V6bEu7nSJwUjsaFKgFPXjnLneH3iSI8CgpeSpPRwqqP95HXpZOGENBi7F4vlpUQ1EN0/HRqWk1WIvz17Ciux2KT3HGq93Q1UaZaCgpeyk0v5XQTHXBMtY50ORYRoO9xDcCUmECqmk1sKajDYpPcfPIElmd5fhu9E0V4FBS8kIY2c7cFZXDk8hw4rhh1QrgfzcdV389MDO5WBZ8VHzTovu3uYlwJT0Obmcb20W0pq6DgCt7OKcHUpb1wuL8OlRC0HJejU1jbfbQT4a/v5tvjp1Nz/0XT8dF516rKuBKeYF8dG/NqKRiCoZKCgrtpM1t5d3uJ82etWuCjU1N+XN+u7KQQKpochvQR/nqiA3Vo1YKGLiZlvzxzMlNiAt0T+BAYV8IDsCw9qk/zJQUFb6C2xcyRqhan3cbMxBCK67qXQWjVgpJ6h+9OuL+OlAg/Qv0M3ZoKnpYeyVULkt0W91AYd8KjVasIGoVGawoKrkKnUfGnldOw2h1Trbzqlh7XWGySuBAfMmID0GlUbMmv69bzPchHw6qVGYMqx/AE3jXxU1BQICrQQF2rmcomR0eK4+1SO9lX1uTsKArdrTNWnZdBfMjg7VLdzbgb8SgoeDtf7C1n9f4KogL07Czu29Srq+ikRx/z4Dk3M5qVM7xn67w3XCI8Qoi7hRBSCKH041VQGAEmq40/fLiPXSWNVDabsPbeh68Hqo7EwIzYQB64OAvVIK1SPcWIoxNCJACnA8Pzk1RQUHBitUn8h+gPHeyrJa+6hQC9hscun4Gvh1rWDAVXyOIjwK/o1c5aQUFhKOg1Ki6YEcddp01CN8ieTUmhvqhVgsevmEVqZMDAL/ACRiSNQogVQKmUctdANSBCiJuAmwASExNH8lgFhRMWjVrF7cscWcbnZsZw4ZMbaDb1bXWRnRRCQW0rT181m5MmRbgrzBEzoKQKIb4WQuzt5Z+VwL3AHwbzICnlM1LKbClldkTE2HmDFBQ8xaSoAP64MqPP85lxQQgBN540YUyJDgxixCOlPK2340KITCAF6BztxAPbhRBzpZQVLo1SQWGccuGseApr23jsm8POY2dMjeKmJRP4YEcpRouNm06e4MEIh8ewp1pSyj2As3G1EKIAyJZS1vT5IgUFhSFzx7JJfLSrjDnJIVw1P5nM+CAsNjt3v7WLd25e6DVWF0PB+5e/FRTGOWqVYM3dpzh/3pRXy/M/5PP0j2cTHqD3XGAjwGXCI6VMdtW9FBQUemd3SQMFta3cuDiFdC8s/hws3p1lpKCg4KS62YRWLbDbYU5KXx24xgbKVEtBYQxgs0vWHqyixWTlukUpng5nxCjCo6AwBnhjaxGpEf7MmzC2RzqdKMKjoODl/HCkhqz4YKbFua/H+2ijrPEoKHgxFY1GVEKcUKIDivAoKHg9CyaeGNOrrijCo6DgxUQHGTwdwqigCI+CgoLbUYRHQUHB7SjCo6Cg4HYU4VFQUHA7ivAoKCi4HUV4FBQU3I4iPAoKCm5HER4FBQW3owiPgoKC2xFSur8rjRCiGih0wa3CAW+yWvWmeLwpFlDiGYgTMZ4kKWWvLvQeER5XIYTIkVJmezqOTrwpHm+KBZR4BmK8xaNMtRQUFNyOIjwKCgpuZ6wLzzOeDuA4vCkeb4oFlHgGYlzFM6bXeBQUFMYmY33Eo6CgMAZRhEdBQcHtnBDCI4S4XQhxUAixTwjxTy+I524hhBRChHs4jgeEELlCiN1CiPeFEMEeiuOsjv8/R4QQv/FEDF1iSRBCrBFCHOj4e7nTk/F0xKQWQuwQQnziBbEECyHe6fi7OSCEWDAazxnzwiOEWAqsBKZLKTOABz0cTwJwOlDkyTg6WA1Mk1JOBw4B97g7ACGEGngCOBuYCvxICDHV3XF0wQr8n5RyCjAfuM3D8QDcCRzwcAydPAZ8IaVMB7IYpbjGvPAAtwD3SylNAFLKKg/H8wjwK8Djq/ZSyq+klNaOHzcB8R4IYy5wREqZJ6U0A2/g+KLwCFLKcinl9o7/bsbxwYrzVDxCiHjgXOBZT8XQJZZA4GTgOQAppVlK2TAazzoRhCcNOEkIsVkIsU4IMcdTgQghVgClUspdnoqhH64HPvfAc+OA4i4/l+DBD3pXhBDJwExgswfDeBTHF5XdgzF0MgGoBl7omPo9K4TwG40HjYmGfkKIr4HoXk7di+N3CMExbJ4DvCWEmCBHKU9ggFh+C5wxGs8dTjxSyg87rrkXxxTjVXfG1oHo5ZjHR4NCCH/gXeAuKWWTh2JYDlRJKbcJIU7xRAzHoQFmAbdLKTcLIR4DfgP8fjQe5PVIKU/r65wQ4hbgvQ6h2SKEsOMocKt2ZyxCiEwgBdglhADHtGa7EGKulLJiNGLpL54ucV0DLAeWjZYYD0AJkNDl53igzANxOBFCaHGIzqtSyvc8GMoiYIUQ4hzAAAQKIV6RUv7YQ/GUACVSys4R4Ds4hMflnAhTrQ+AUwGEEGmADg9U+Uop90gpI6WUyVLKZBz/E2eNpugMhBDiLODXwAopZZuHwtgKTBJCpAghdMDlwEceigXh+FZ4DjggpXzYU3EASCnvkVLGd/y9XA5860HRoeNvtVgIMbnj0DJg/2g8a0yMeAbgeeB5IcRewAxc46Fvdm/kcUAPrO4YhW2SUt7szgCklFYhxM+ALwE18LyUcp87YziORcBVwB4hxM6OY7+VUn7muZC8ituBVzu+JPKA60bjIUrJhIKCgts5EaZaCgoKYwxFeBQUFNyOIjwKCgpuRxEeBQUFt6MIj4KCQjeEEM8LIao6dooHc/2lQoj9HUW3rw3qNcquloKCQleEECcDLcBLUsppA1w7CXgLOFVKWS+EiBxMvaQy4lFQUOiGlPI7oK7rMSHERCHEF0KIbUKI74UQ6R2nbgSekFLWd7x2UEXaivAoKCgMhmdw1HDNBu4Gnuw4ngakCSF+EEJs6siWH5ATIXNZQUFhFOkoqF0IvN2RAQ+OjHhwaMgk4BQcdXjfCyGmDWSnoQiPgoLCQKiABinljF7OleAoxbEA+UKIgziEaOtAN1RQUFDokw7bkHwhxCXgKLQVQmR1nP4AWNpxPBzH1CtvoHsqwqOgoNANIcTrwEZgshCiRAhxA3AlcIMQYhewj2Mukl8CtUKI/cAa4JdSytoBn6FspysoKLgbZcSjoKDgdhThUVBQcDuK8CgoKLgdRXgUFBTcjiI8CgoKbkcRHgUFBbejCI+CgoLb+X9Sms4eZa9XOAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Again, again!\n", "* Let's experiment with a few additional projections, creating plots like the one above with crosshairs for the origin\n", "* This time, use some EPSG codes\n", " * Note that some documentation on the web for Python geospatial packages still uses the outdated `init` syntax when specifying EPSG - this is not necessary, can just pass a string like `'EPSG:XXXX'` to the `to_crs()` method\n", " * For more details: https://pyproj4.github.io/pyproj/dev/gotchas.html#init-auth-auth-code-should-be-replaced-with-auth-auth-code\n", "* Try the following:\n", " * EPSG:3031 - South Polar Stereographic (see if you can find Antarctica, might need to zoom in)\n", " * The EPSG code for the UTM zone on WGS84 ellipsoid that contains Seattle\n", " * see https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system\n", " * Note: If you search for \"UTM 10N\" in the EPSG registry, you may get several returns: https://epsg.io/?q=UTM+10N. These are all valid, but they use different ellipsoids/datums. You want the code for the WGS84 ellipsoid definition.\n", " * US National Atlas Equal area (EPSG:2163)\n", " * One or more additional EPSG codes of your choosing\n", "* Since we have to do this several times, maybe it would be good to define a function that accepts a geodataframe and an EPSG code as arguments, then does the reprojection and plotting (no need to return anything at this point). Then we could use a simple for loop to call the function for each EPSG code! Nice and clean, and better than copying/pasting.\n", "* Note: you may see some strange issues with \"lines\" across the map, or an apparently empty map (try zooming in on 0,0). You didn't do anything wrong, see next section..." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### OK, something isn't right with some of these maps\n", "* Note some polygons (countries) cross the antimeridian (-180°/+180° lon) or one of the poles (+90° or -90° lat, like, say Antarctica). Or polygons could extend beyond the valid extent for the target projection. These polygons won't render correctly.\n", " * If using a regional projection for local or regional analysis (e.g., UTM or state plane coordinate system), you probably don't care about polygons from the other side of the planet anyway. \n", " * The solution is to isolate or clip polygons of interest before reprojecting." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Isolate North American polygons\n", "* Start with a quick inspection of the `world` GeoDataFrame\n", "* You should be able to use the standard Pandas \"selection by label\" approach (`.loc`) to isolate records for countries in North America\n", " * This can be done using a conditional statement, which will return a boolean array for selection\n", " * Store the output in a new GeoDataFrame\n", "* Regenerate the same plots (with your handy function!) using this new GeoDataFrame" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAD4CAYAAADSIzzWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABWkUlEQVR4nO3dd3ib1fXA8e/Vtrz3Xont7O0MkhBCEsImbAh7NS200AFltPyAbjooZZRSaNnQAmVvSEggIXtPJ05ix/Hee0iW7u8PKY4dL9mWLNm+n+fJY/vVeI9l5/jVHecIKSWKoijK4NN4OwBFUZSRSiVgRVEUL1EJWFEUxUtUAlYURfESlYAVRVG8RDeYJ4uIiJApKSmDeUpFURSv27ZtW7mUMvLU44OagFNSUti6detgnlJRFMXrhBDHujquhiAURVG8RCVgRVEUL1EJWFEUxUtUAlYURfESlYAVRVG8RCVgRVEUL1EJWFEUxUtUAlYURfGSQd2IoSjKyCOlZFNOJWuzy2i02Gi22miy2Giy2miy2mm22tBpBDqtBoNWoNdq0Gs16LQCg/Nzx7/Ot0UGGhkbG8joyAD02qF3PakSsKL0UV2zleOVTVQ0tFBe30J1oxWrzY7VJmm1SWx2O612yZiYQIw6LZUNFiobWiivt1DZYMHSasds0GIyaDHrtad8rutw3M/gOBZi1hPmb/CpJGO3Sw6W1LHhSAW78qux2SV6rQatRqDXCnQax+ffHS4nu7Teo7HotYK0qEDGxQQyLjaIsbGBjI0JIjLQ6NHzDpRKwIpyiiaLjfyqRgJNekL99Rh1WqSU/OmLg3y4s5CC6iavxRbspycy0Mi42CCmJAQzNTGEzJSwQTv/sYoGvjlUxoYjFWzKqaSywTJo5+6J1SY5UFTLgaJa2FHQdjwiwMi42EDOHBPF1bMSMRt8K+X5VjSK4gVWm52S2mayS+v5aFchX+wtpsFiA8DfoOW8SbEIAW9tzfdypFDTZKWmycrh0nrWHy7njDGRLiVgKSVSgnR+DqDVCIQQbfextNrZklvJN4fKCDLpmJ4cypSEEPyNJ9PET97cyY68and/W13SagQmnQa9TtM2FGHUaTDoHJ87PjqGJU4MYeg0wnkF7rj6Tg4zs3hcNONiAzt8r75CJWBlxPhqfwl7Cmo4WFxLVaOVJouN8voWSmqbsXfTGrHBYuPtbd5PvKFmPXEhfiSHm5mVEsZpoyPIiA6gtqmVbceqOFJaz5Gyekpqm6lqtFLdaKG6yUpVg4W6lla6av04PjaIa+ckYdRp+TqrhG8PlVPf0trhPhoBY2OCyIgOIMzfyMS4YEL89BTXtnCwuLbb180937OBsydEY2m102i10djSSqNz7LjZaiM8wEB6VABpUQGkRQWSFhWATiPYlV/N9mNVHCiuY1ZqGOPjgno9V5PFRlFNE6V1LQQYdUQEGAkP8PyQjxjMppyZmZlSVUNTvOW3H+/n5Q25WG2+34jW36Dl7AkxzBkVTkKoH9OTQzHptR3us7eghgufXtdlch0MoWY91U1Wr52/K0LQIZ4l46J55trpSCQHiurILW+gsKaJoupmimqaKHR+rGq0dvl8oWbHkM9PlmRw3qTYAcQltkkpM089rq6AlWFnb0ENX2eV0tJqo8Vqx8+g5ZZ5qTx4wXh+eGYa72zP569fHaLROczgixosNnYX1JAeHcjpGRFtyTenvIG12WXklDdQUtuMv0HX6ap1sHSXtLypffIdGxNIdJCRy59dz4Gi2n794W222okOMpFf1YjdLtFo3DuM4dIVsBDip8BtOIaQ9gA3A2bgTSAFyAWulFJW9fQ86gpY8aStuZU8+81RCqub2F9U2+G2ELOee5aO4dyJMYQHGDlW0cDza4+yLruc3IpGL0XckVGnYXpSKHNGhbNobBQT44NoabWz8WgFaw6WseZgqc/EOlyZDVoyU8KYMyqM2anhTE4IdsswRHdXwL0mYCFEPLAOGC+lbBJCvAV8CowHKqWUjwoh7gdCpZT39fRcKgErnvLsN0d49LMsl+4bFWhkbGwQY6IDSI8KJMhPD0i0GsfEjkGrwaATGLRatBpBfUsr1Y0WduVX8+aWfMrrW9wau0bA7QtHc+ei9A5Xun/49ADfZpfRbLW79XzKScF+ekLNeqKDTKxYMIoFGZEeGfcd6BCEDvATQlhxXPkWAg8AC523vwysAXpMwIriCRX1LfxrbY7L9y+ta6G0roxvD5W1HfvNsgmMjgrg1pe2dtgA4G/UMjYmiNyKBvYV1vbwrP0zKtKfx66YwrSk0LZjllY7n+8txi4hzGygsKbZ7ecdyYJMOmKCTUQHmZgzKpw7Fo722goJV4cgfgz8DmgCvpRSXiuEqJZShrS7T5WUMrSLx64AVgAkJSXNOHasy84cijIgh0vr+N0nB1h9sKz3O3dBqxE8ctEEGi2t/HfzcXLKG9wcIQSadJw7MYakMDNxIX7EBvsxLSmk0+TaqSobLPzf+3v5ZE+R22MayRaOieTv10zvsMzOUwYyBBEKvANcBVQDbwP/A552JQG3p4YglK6U1Dbzwc4CogJNRAUZSQgxkxDq168Jj5zyBnLLG7Da7Ly7vYDP9xW7/FiTXsO5E2P55XljeWPzcf761aE+nx8cM/Gp4f7MSA7lvMmxBJl0+Bt1JIaaXfrPLqWkqKaZ/YW17C+qZX9hLV/uL/bokq+RZsm4aP5x3fRB21k4kCGIJUCOlLLM+UTvAnOBEiFErJSySAgRC5S6NWJlSNuTX0Nlo4Xxsb1vBzXptOwvrOXZ7KNtO6sCjTrGxQYxIT6ICXHBnJER2eF5Vh0oobbZSoBRT1pUAKkR/gCkRviTGuHPuuxyl5NvoEnHXYvSmJoYSnZpPY+vzObL/SX9/M4dM/FHyxv42dIMzhwT1eN9m602DpfWk1VcxwFnst1fVEtNk++tMBguJsUH8+TyqT6xrduVBJwHzBFCmHEMQSwGtgINwI3Ao86PH3gqSGXosNslj3y0j13Hq5FAXLAfF0+L56zx0Wi7uaINNut54LxxRK3L4d3t+Y6F9xYbm3Mr2ZxbCUBMkImXbpnJ2BjHovrP9hbzv3YbJKYlhXD7GaNZOiEGgHlp4fzj2un8+cuDHC3rejhBCLh6ZiK3zk/lkQ/387tPXZvEc9VvPt7P9KRQ4kL82o7tK6zh20PlHCiqJau4liNlDdjUpe2gWjIu2me2JPcahZRykxDif8B2oBXYATwHBABvCSFuxZGkr/BkoMrQcKC4lonxwUQHmWi22kiN8Cclwtxt8j0hOsjEL84bxy/OGwc4rgy35FbyzcEyNuVUUlTTzC0vbuGznywg2E/PA+eOJbe8ga3HHCsfKxssHdb1CiE4d1Is506Kpdlqo6LBQnldCzVNVvyNWgJNjuI2EQFGbHbJ36+ZzrHKBrYdq+JvK7P7fQUaZNJx2uhwTk+P5NLp8Z3+o7+2MY//bsnzqc0LI02r3XdWlaidcEqf2O2S4tpmzAYtIWZDh9tW7i/h7rd3tSUvnUYwPi6IOxaO5pyJ/d9FdEKrzY6EDm8dc8sbCPU38MnuIj7fV4xWOCbUZqWGcfO8VJfeZl73r01szqlkYnwQmSlhJIaZeWdbPjuPV/cpvhULRnHfOWN7/WNT1WBhU04F649UsCOvmvJ6R1W1obBDbzi4eV4KD184YVDP2e9JOHdSCXho2VtQw/Nrj7LpaCVajUCjgfI6C01WG2+umMPsUeGdHmO1OQq6GLQaJsYH9zrD7y5SSlpa7TQ46wUIAQmhZpceuzqrlJtf2tKv80YEGDlvUgxLxkUzPy2i3zulyutb2JpbxdbcSvIqG8mvaqKgukmNBXuARsDdS8dw+xmj3b6zrTtqK7LiEiklaw6V8c9vjrDxaGWX9zFoNSSH+3d5m16rYe7oiE7HPbGN84QfvrGdNVml+Bl0mA1aYoNNXDUzkYgAY7d/APYX1vLy+lwOltRxqKSu3+cO89ej12r4cn8xG49WcO85Y11+bENLK49+lsVne4sor/eNso7DWaBJx9zR4SSGmmm22thbWMPkhBCvxqQSsNKmoLqJh97fy6qszgtaQs16xscFERVo4odnphETbKK4phkhHDvLulvIXtds5fGvsnl90zFig0388vzxnDU+uk9x2eySLbmVfLmvhPoWK4EmPc1WGz89K4NwfwNXZiYigA1HKsivaiSvspFNOZX87K1dHYqznJERyf9dMJ60qAAsNju78qtpstoIMOqwS9nljjO9VhBiNqDTCIprmzuN3WaX1hPsp+fsCTGc7ZwAdJW/UcfDF45namIIf1t1iOOV3qszPNxdNyeJB84dNyhrfvtCDUEoAGw6WsH3X9tGdbsCK3HBJs4cG8V5k2KZnRqGzjmeWlbXwoPv7+Gr/SXYpWM755joQDJiAhgTHcjZE2OICjQBjl1dP/7vDj7b61gSNjrSn0/uOh2T3lHkvKcdSFc/t4GGFhuF1U1UdFH4e0piCB/8cF6HYza7pKbJSmldMy+sy+lUw/eZa6d3WdVKSkl1o5WC6ibsUhJqNhDqb8DfoG2LsdlqI6e8gZzyBo6W1RNiNrB0QnTb9zoQVpud1VmlvLnlOHmVjR26YZj0ndvy2KWk0WJrG3I5VFJHSa17t0gPN6FmPVdkJvKDM0YT5m/o/QFupMaAlV41W20cKKpt2zTgZ+j89r2ivoWrn9vYY4sZg07DVZmJrFgwisQwM602O/e+s5t3tzs6FUxPCqG6yUpOeQMBRh3v3TGXtKjATs+z6LE1HC1rQCNOFBLveHt8iB/f3b+owzG7XSKhbSLs9U3H+OV7e9tuF8KxDvTiqfFttXC7Ut/SypHSeqqbrNQ1W6lrdtTUDfLTEWTSMzUphCCTvtvXYLDZ7ZI9BTV8tb+EL/cXc6jEsy2AhrI/XjaJq2YmDeo51Riw0iuTXtuhJsGpqhosXPuvTb3297K02nl14zHe2JzH+Ngggvx0BBh1GHUaWlrtbG/XUaHJYuu2LOR/vzcHk0FLgEHHkse/6bSe99yJJ9/yr84q5b0dBXx3uJyIACOPXDSB00aHMz+t43i0lLA7v4bd+TX84bMDBBh1mA06gv30hAcY8NNrOVxaT05FQ49LxYJMOlYsGMUPz0zziU4LGo1gSmIIUxJDuOfsMezIq+KSZ9Z7Oyyf5ImaHv2lroAVl7W02sguqWd/US1ldS2Y9FpMeg1+ei0mvaNy2N6CGtZml7M7v7rD1lmDTkOwn77tX5BJ1zZ2eq4Lha7/vvowa7PLKK+3EBHgWL973zljSQwzs6+whmVPf0druxPqtYKv715IYpiZ5c9tZMPRCk+8JHxy13wmxAV75LkHotHSyiMf7uP9nYVYWn1n3as3GXUaXrhpJqeNCh+01Q8nqCEIxaPWZZdz+2vbqHMWB48LNjF7VDizU8OYPSqclHCzR68US2qbWZ1VSl5lI1WNVtKiArh1fipwcrvvwWLHioes4joOlzra97T2sAstyKQj1N9AqNmAEHC8spGKBgujIvyZnBDCeZNiWTIuyieugLtTUd/Cvf/b3eXE6kgU7m/g5VtmMTF+cP9oqgSsdFBQ3cRfvzxEdaOlrdFjTZOVRotj99rkhGBGRwbgZ9Bi1Gkw6hwfZ6aEEWzuPPbZaGmlsLoZg1aDyaBxy8RUf1U2WKhtsqJ3Nm00GxxDIKey2yXlDS1UNVjRakAjHA0d/Y06Qvz0bZOO7bXa7F0e92V1zVYu/vt3HOlmS/ZIMDMllGlJoW3LFK/MTBzUP5wqASudfLqniJ/8dycWm+tvUU16DZdOT+CuRenEBA9eki2qaWJvQS2znH8A7HZJRYMFiWxL9nkVjfz2k/2syirtVF8hNtjE2JhAlk6IYfmsridgWlptHK9sJNjP0GUBoaoGCyFmPUIImq2O+5qNjqGU9qslfNGRsnqWPf2d19oX+YLzJ8Xy16umdDvx6klqEk7pJDbYhE4r6EtrtGarnTc25bEjr5pnrp1Ocpi53+NpL6/P5c0tx2my2ogOMvKL88Z1WhgvpeSZNUd4+uvDNFkdO9wiA4xUNlhotUvmpYXz+m1zaLXZuemlzd0W3imqaSY22NRhDXJLq41X1h/j2+wycisaKKhqYmJ8MG99/zTAkbQ2Ha1k67FKth2r4lhFI9fMTuLXF03g76sP89TXh9ueS6cRRAeZuHpmItfNSSZ0kJc59WZ0ZAB/u2oqt70yMi6AhACtEAjh6K48OjKAyQnBXkm+PVEJeIQ6XFrPzS9t6VNjynB/A1dkJpCZHMqeglp+8Oo2CmuauHhqPL9eNgEhBK02OzYpO/yit7Ta2r7eebyap7/OptFiY1piCGdkRPLCdzmE+RtIiwrodE4hBKkR/tid79SkdHS0AEdB7aevmQ5Ak9XWbfLVCLh4ajy/v3RS2864o2X13Pji5k6bH26el4JJr2Vddjk3vLCpUw3eNzblkV/VxB8umUR+VRPv7XAsrWu1Swqqm3jsq0M8s+YIdy5O446FaS6/toNhyfho7j4rg8f6Wed4KIkIMPL08mldbpf3JWoIYgSy2uxc+sx69hTUuHT/WalhXDUzkaNl9Xy6p7hTt4gLp8QRaNKxr6CGrOI6gv303LkojatmJvHV/hIe/nAvY2OCeOjC8YT7G5j/x9U0WR2JX6cRnDMxhl8vm9hpcfwv39tDRb2FiEADBVVNnbpdaAQsHBPFNbOSWDQ2kkv/saFDAZ3UCH9+ddEEpieHdhgDllJy/b83s+5weafvNcCo4y9XTOb+d/d02JRyqmlJIbx3xzzWZpdR2WAhIzqQ/YW15Fc1Mis1nDB/A2NiOq9t9jYpJU+uOszjK4dvEg4x66lutDq6nFw4nutPS/F2SGoMWDnp6a+z+cuXvf8HDDDq+OuVU5gzOpwbX9jMjnbrd10RZNJR23xyzDEjOoBP7zqdRz/L4l/rOvZw62qHWlZxLf9em8MHOwt7HKcOMunY9fBSvjlUxk0vOorqjIrw5z8r5hAd1Hmc+st9xax4dVufvpdTTU4I5t3b55JdWs+u49V8ub+Er50rDYSAzORQzpkYyyXT4gd911VPpJTc8/Zu3tme3/udh6AFGZE8eP44Gi02vj5QQmWjhd9ePMnbYakErDiU1jWz9PFve7y6A0gM8+PFm2YyKiKA77+2ja8G0CGivUcuHE9Vo5UnVmV3OD41MYT37pjb5URWaV0zr23M4/WNx7rckjw5IZgPfzQfu93OP745il4rWDQmirTorq9AP9tTxO2vbx/Q92E2aJGStiv5nu53/WnJfO/0UUQE9NwZZDD8Y80R/vi5ewvP+6L4ED8evnB8W4F+b1OTcAoAUYEmNj6wmO8Ol/PpnmK+2l/c4Sr1hPlpEaRFBXKopA5Lq51gP71bSiP+8fODXSatncerySquY1xsUJcx/+ysDL6/YBT3vrObT3Y7mlP6G7ScNT6aK2cmYrXZ+cW7e3jb2SXj959msXxWIvedM7ZT3eLpyT22LnSJq2PnjRYb//zmKOV1Fn69bALZpfUcKq5jfFzQoK9FtdslzVYbGdGOFk6WVnu/m5j6mvZFl8CxzHLFq9tYNjWOP142edDKovaVK005xwBvtjs0CngIeMV5PAXIBa6UUlb19Fy+fgW87VgVT67K5lBJHRPigpmWFMKt81N99ofnDs1WGze+sJltx6qYmhjC3LQI5o0OZ2pSSIeJNCklG45W8M3BMrYeq2JPfk2flq+54mdnZXDX4vQe7yOlpKy+heKaZjKiA9t+Nvf9bzdvbj3e6f5xwSbe/+E8ok4ZinhvRz71za08vzaHvMpG930T3dBqRIelcX56LU8tn8aSPlaGc7ctuZX88bOsts4iQ9lfrpjCE11UlfvHtdNd2m3pSW4ZghBCaIECYDbwQ6BSSvmoEOJ+IFRKeV9Pj/elBFxa18wXe4v5OqsUo05LdZOly/q3M5JDmTMqjB151fgbdUQHGX1iTMmdTqwN7WqzwgnueNveG61GcPaEaK6fk8KcUWF9Wld72T/Ws62bJDIlIZj/rjitQ3GhZquNq57byK4+dr1wJ42AuaMjmJEcysyUMKYlhQxaucSPdhWyLrsco17DmJhASmtb+GhXIUfLh+5mjWevm86CjEh+98kBXt+UBzhe45vmpvLQheO9Gpu7EvBS4GEp5TwhxEFgYbuuyGuklGN6erw3E7DdLvlyfwl7CqrZdqyKzTmV/W7zHeZvIC0ygKRwM1UNFsrqW0iPCmRqUgjTEkMYExPoEx1XAT7fW8zO49XcMi+l01VgXx2vbKTZasNqkxj1GvwNOiSO0o3l9S2sP1zBuzvyuy3k3hcZ0QFcMSORZdPiXNpVd87fviWruPvC6udNiuHp5dM7rFmubLDw+sZj5JQ3kFfZyJGyeqp6GRv3JK1GMC8tgt8sm9BtwXt3aLS0ctofvh423TbiQ/z4w6WTOnQk2XW8Gj+DluRws0+s/XVXAn4B2C6lfFoIUS2lDGl3W5WUssfBNW8l4OOVjfz8f7vckhhcFWjSEWLWE+JnYHxsEDHBJrJL68gtb2RifBBnZEQxLy280/hkf0gp2XqsinXZ5ew8Xs2Rsnr+eNlkogKN3PXfnRwoqiUiwMiTV09lrrM62JZcR6PLi6bEAY6qZELQ63DL+sPlvL0tn+zSOo6WNbSNheo0ose6Cv2l1QjOmxTLU8undTj+8vpcdh6v5orMBE4bFc6/1+Xw9OrD3U4ufv+MUdx7ds/92qSUFNY0s7eghvWHyymubaa60UpFg4WK+pYuk3O4v4EfnDEaieRvK7P7tK66O356LW99/zQmJXhmjLiivoUZv13Z5W2hZr1X/wgNlE7jqJds0ms4a3w0dy1Od7k1lScNOAELIQxAITBBSlniagIWQqwAVgAkJSXNOHbsWD+/hf677eWtrDzgnll8d4sP8ePMsZGEmQ2Mi3VMzCSGdf0LI6Vkx/FqtuRUEhVkJC7Yj0Ol9by6IbdT/VeNoNMVvhDwk8UZSCRPrsrmujnJ/HRJBnsKanjg3T0UVDdhNmhZNDaKq2cmMXd056pRdc1WvvfKVo//MdM5yyuG+OkZGxvIz892tPrJq2jkbysP8a5zAwTAqEh//nLFFDKiA/nrl4d44buOS9yig4xcPDWe0ZEBZMQEMjUxpMdz2+yS0b/4FHBU0EoMM5MS7s+MZEcBniarjSCTnogAIwadpsPjKhpaeGrVYV7dOLDf81GR/nxy5+ld1mQeqFabnRte2Mz6IycrxGUmh3LD3BQi/A1c869Nbj/nYBECzpkQw4oFo3osrTrY3JGAlwE/lFIudX7t80MQlQ0W/vnNEf69LscjV2fuMi0ppMMa25kpodw8L5Wl46PbCr98ua+YRz/LcusYXW9XrbHBJmalhjE9KZTpSaGMjXUMrTRbbfzli4OOpVjAN4fK2J3v2qaOE6ICjSSHmwkxGyita2F/YU2nrsArFoxqa1N/wneHy3n668Odykua9BqevyGT09MjeWdbPg+8u6fLScKYIBMbf7GY+pZWvj1UxrkTYzqNNTe0tDLh4S+6jDsy0MiD549j2dT4Hr+/v351iCdPWWrXF1qN4PeXTPRo4fDjlY3sL6plamJI23rpf609ym8/OeCxc3qKv0HLJdPjuWVeKqMiO++o9DZ3LENbDvyn3dcfAjcCjzo/fjCgCN3g7a3H2Z5XhaVV0txqY01WKQ1ueEs42LbkVrElt4qIACMZ0QFoNYK12Z13bQ1Ub3+Uimqa+WBnIR/sLAQcb40zYgIZFxNIdJCJygYL42KDeOf2ueSUN3DZM+vbylGeEGjSERFgJNzfQGyIH7NTw5iZEkpUoJHSOgsF1Y2cNioCIWBPQQ1ZRbXkVzdRUNVEbBfFfualRTAvLYLDpfWE+Rtottr4cl8x+4tq2+ryXjAlloc/3NftKo3jlY3c9vJWDpbUccm0eH53yUTMhpP/FWqbu38LXlbXwgvf5faYgJutNiytdsbGBHKwpK7Hwu6nSg43c+NpKVw4Ja7LgkDulBhm7vBuq7immWe/OerRc7rb2JhArp2TzCXT4nucRPZVLl0BCyHMwHFglJSyxnksHHgLSALygCuklD2+L/XkFfChkjrOe2KtT1/pdufUK+ChZlSkPy/eNJMmq43KBoujn5rZQKi/vsMESKOllXve3sWne4o7PD7IpOOX54/r09Xe2uwy3txyHJPesRZ4QXpk29v1ntrMmw1a/PTaDhs6HrtiCpfNSGj7+pEP9/HS+twuH68R8MTV07jQOXbeEykltU2trD1cxovf5Xa7SuPU5184JoqrZyZy5tgoj0/mSil5f2cB7+8oZN3h8k5V5HxNdJCRjOhA0qMCOXdSDJnJoT5dhe6EAV0BSykbgfBTjlUAi90T3sBlRAfy3f2L+GJfMS+syyG3wvNrOxVYMi6anyxJ73bWXkpJXmUjyeH++Om1nD0hhm3Hqjo0kKxtbuW+d/awOaeK6ckhlNS2MC4mkEXjorqdwV6XXc7Hzg0Z/9uWT2ZyKE8sn8ZbW46zsYfuF41dtEA6Pf1k26IDRbW8siG328fPS4vggsk9ryndeLSChz/YR2F1E7fMT+WnZ2VwweQ4th2r5Bfv7uVgSferNewSvs4q5eusUqICjVw6PYGZKaFMig8e8CqWrny0u4ifvrnL7c87UGH+Bm6em0JkoBGdVkNKuJn06ECC/XynD587DMutyM1WG0+syuYfa454/FzuMJSvgAOMOtKiAsiIDiA6yERdcyu1ziaWtU1WcisaKKlt4drZSTx84QTWHynngXf3UFTT3OtzB5l0nD85jrSoAHKd3YgbLK3otRpKaps51u6P7PSkEOJDzXy0q7DP38Nvlk3g+tNSyKtoZPnzGymo7rk9fG8bRi7++3dtRYEiAgxsffCstttyyxtY8tdv+vVObWxMIC/cNJO4EL8+P7YrDS2tLHpsjc91U758RgKPXDRhSA4pdGdEbUU26bXcd85YYoNNPPTBPm+H0zvfftfXo/qWVnYer+5Qhawrr2/KY83Bsl6TW3u1za38Z3OeS/c9Wt7QodlnX/zfB/soq2vhf9vyKXThD8PxXnbORQYa0WsFCaHmThsAksPNTIwP7vX16kpWcR2X/WM9r9wyi/Ru6lz0xfNrj/pc8j1/cix/vGxyj8sFh5NheQXc3v7CWl74LocPe6mo5U3TEkPY4cUdWYpr/PRabpybwooFo3qscGazSzSCLscmH//qUKdCRH0VYtZzw5xkgvwcS+EuntbziozuVDZYuOWlLf36Y+AJp6dH8O8bZ3ZY2jdcjJgrYJtdsj2vipUHSqhusHLP2WP4yxVTuHxGAje8sFl1iFV6NT8tgtK65ra11dFBRi6aEsf3zxjtUkWz7q7eXliX06fka9RpsEvZaXledaOVJ53dOM7IiOx3Ag7zN/jElWZcsInbTh/FNbOThmXy7cmwSMB2u+S7I+V8sruIlQdKKK8/OcN92uhwJBJLq50F6ZE+uiFjCI9BDDM6jeB3l0wkKczM0fIGogKNBJoGPvGzv7CWX3+836X7TkkM4Z/XzSAq0Mj2vCq+98rWLnenCQHXzu7/OuH6llaXi/K7mxAwJjqQFQtGceGUOJ/Zuj/YhnwC/mBnAU+szO52g8JP3tw5uAH1xxBYRjNSPHzheHIrGqlpsnbqTzcQ64+4vo47IcSvreFpZkoY794xj5te3Nxh0lGnETx+1dQB1bsNMOp4/oZMvv/qVpqtnn1nGOynJzM5lNNGhzM/PYL0qECfuPr2tiGfgE9Pj+TrrNIhXcVJ8Q1XZiZw7ewk5j66GiHg18smkhphJi3KtQmv8voW1h+pwG6X2OyOzUAV9RbK61sorO59cu+ET/YUEfb+Xv7vgvEYdBpSI/x59/a5PPpZFu/uKECrETx73XQWjR14KcszMiJ55ZbZ3PLSFo90TD5tVDi/XjaB0ZEB/W7eOpwNm0m4l77L4ZGPXHuL52uG8jK04SLAqOO7+xdRUd/Cose+aTtu0Gq4IjOBW+f3vsX1jte3ddpkMhDjYoP48eJ0lo6PbkteeRWNVDS0uL3OwS/e28Mbm1xbceKqzORQXrl1VoddhiPVsJ+Eu3FuCmEBRjYdrWDbsSqkhNgQEzqNhm8PlXHBlFgumhJHVaOFhz7YR10XXSCUkSnQpOOZa6cT7Kfnu1MadVpsdl7flMfrm/I4PT2CKzMTOW9SbKe3z8crG1md1XV3iaXjo8mrbOyxXGZXDhTV8oPXtpERHcCTy6cxNiaIpHAzSeHur+4V44FNHhdNjVPJtxfD5tURQnDRlLi28ort1TZbCXJOpOw8Xo3Bxwb8B/FNiOIUYNQR7KcnLsTEHy6dTFqU4+q2sJt1ymaDlrXZ5azNLmdSfDDRQaYOlcoSw8ysvmchn+8tIsRsINTfQJhzO3ZEgBGjTsOag2U89XV2n9crHyqp57aXt7LmnoVtxZncbbIHSl+afKAOr68bEgk4t7yB6CATTVYboWZ9n/d+B7WbxZ4cH8z4uCCPFLdRfJ9Rp+E3yyZy5czETrdtPFrBM6fsntQIuHvpGC6dHs/l/9hAQXUT5zzxLXY7/ObiCR3qV8QEm7hpXmq35z5zbBQLx0Sy/kgFj315sMtEbNJrupwQy69q4tO9xV1eYLjDGRmRzEoJY3Oue8qMhvsbOHeSbzTE9GVDIgGvP1LBZ3uLqG9ppbHFxpUzE5kUH0xmcqhLA/s2u+QvXx6kpKaZw2X1fS6dqAwfV2Ymdpl8pZSE+xv48qcL+GxvMf/3/l7mpYVzz9IxbeOta36+kIPFdezIq6LVLrloSt/X3wrh6Hrxxb7iLhOwXcKt81MprG7i833FHd4dvbbxmMcSsBCCx66cwtXP9b4Vuzf+Bi2/u2SSW5bvDXdDIgFfMzuJa2YnIaXk2+xyPt9bRHyIX4/J9++rD/PW1uNEBDi2hQ5mNwzFN0UFGhkT0/WKBiFE2/beS6fFMzrCv617iJSS/CpHUooP8XNLN+OHL5zA2Jgg/vrVwQ7r1i2tdv69Lof7zhnLfeeM5d/rcvhgZwG1za2M76JjtDslhpl543uzufKfG/q9RXlGciiPXznVI+PUw9GwWQXR3rGKBpY+/i0tQ2TX29TEEJ/ZDjocZUQH8NLNs/pVxMZml/z6o328vOEYBp2GP102ucedZ+X1LZgNWpcnnyytdlYdKOHNrcf59lBZhy4mV8xI4LeXTEQjBFtyKokJNg1KsfEjZfVc/dxGyur6loQXZETywo2ZHhunHsqG/SqIE3LKG7jm+Y1DJvkCaiOcB01JCOalm2cR2kPthp40WW0cKqlnQUYkD10wvm2yDuBwaT2/+mgfv1k2kZQIf97fUcDP/7cLu4RxsYHMSAolPTqQuBATKw+Ucri0np8sTm+7sgYw6DScOymWcyfFUlTTxOd7i9l1vJpd+TW8vS2f/Kom3vje7A6P8bTRkQE8e90MLvvH+j497lBx3ZCozetLhlUCllJy1392uFTq0Keo31mPiA/x45VbZw+ohmyAUcd/Vszp8rZNORXszKtue/72dRv2FtSyt6C202Ou+dcmLpoSx68umtDpj0JssB83t5vEq2m0srugmpZWe6/NUt1tRnIop6dH9Gmyuri2maNl9W6p1DZSDKv3CkU1zWSX9m2tpTJ8/enyyR4t4H3t7GTW3ndmWyJ1dXjgw12FnPX4txzqoTA7QLBZz+npkYOefE+4c1E6fdm8lhjmx2gf7Mfmy1xKwEKIECHE/4QQWUKIA0KI04QQYUKIr4QQ2c6PXm9BGhfix3t3zMPfA51kTxUf4sdTy6cRHeTZvl1K/1w/J5l5g/C2PcR88io2NaLrriBdKa9v4Wdv7eSJldm84Jxo8zWzUsN46eZZLv8Ru3x6otpu3EeuDkE8AXwupbzc2Z7eDPwCWCWlfFQIcT9wP3Cfh+J02bjYIELMBhosA1tK05NLp8UzOSGYX3+8v9NExQWTHTvuTHotT67KZqsLfcAU99JrBXcvzRj08wb76YkLNrlU1B06DlNEBBh67bTsDQsyIll19xmU1rYgkUgJu/Kr+dVH+zuVdr10uu/F7+t6TcBCiCBgAXATgJTSAlicbeoXOu/2MrAGLyXgo2X1rDpQSlWjhcXjonj0skn84dMs9hd1HoMbqHGxQfz+0kks/POaLmeJF6RHtlWoOj09gs05lXy0u5DP9xZ3WG7Unl4rmJYUQlltC/kDXIOpOH4G7a9MB9PZE2N48bvcPj9Op+n9zWhpbTM6rabHYvCeEBFg7FAHeWJ8MJPjQ/jBa9va1gzPTg3r0GFZcY0rV8CjgDLgRSHEFGAb8GMgWkpZBCClLBJCRHX1YCHECmAFQFJS/2uX9iTM30B+VSPv7ShAp9Xws7MymHlHGL/6aB97CmqYkhBCbXNrv/qFtTclIZinr5lOVnEdxbUdr3KiAo3MHhXeVkYQHGtLZ48KZ/aocH510UQ25VRQVtdCuL8Ro17DxiMVrD5YylZn7QpwzJ5XN1ooqvGtVjFDybSkEK+de+n4/iXg8voWWlpt3TYhLa9v4ernNpKZEsqfLp8ywCgHblJCMB/dOZ+9BTUE+emJd1OfupHGlQSsA6YDd0opNwkhnsAx3OASKeVzwHPgWAfcryh7EWI28KtlE3nkoglty2BMei1/uHRy+zioabLy7aGuC6b0RCPgR2emcefidPRaDfsKT15ZLxkXxU+WZDAhLqjHJThajWDu6I5jkjNTwrhzcTqVDRbWZpfxzvYCvj1URpi/npRwc1tn55RwM6H+Biyt9g7nVrrmrUkru13y73U5/Xpsq11yuLSeCXFdb/L4zcf7OVrewNHyBq7MTCQzJWwgobpFmL+BBRmR3g5jSHNlEi4fyJdSbnJ+/T8cCblECBEL4PxY6pkQXddTAhRCkFdxsmawsQ+tT/yNOhaNi26r2j81MYTfXDyRNfcs5F83zmRifPCA1j+G+TvG/16+eSa/u2QijRYbNU1W4kP8mJEcSkF1EzvyqtlXWMssH/iP5+u8lYCfXn14QB1XDhR1vSpi/eFyPth58t3bPW/v8kjtXmXw9ZqFpJTFwHEhxBjnocXAfuBD4EbnsRuBDzwSoRtNjA9mfloEH/xwHj8/eww/OjMNgFkpYWREB3D7wtHotZ0TaV1zK7//5AAndg3GBJu4fk4yKX2Y9XaFEIJrZyfz8Z3ziQ32o6bJyrZjVR16gm3OrWRyQjBBfsNqCbdbPbkqm1te2sLvPz1AbXPnVj6eUFHfwrPfHOn9jj34/acH+NEb2znQbu7ieGUjD36wt8P9cisaeeTDIdDtW+mVS1uRhRBTgX8BBuAocDOO5P0WkATkAVdIKXssuOCNrsjdsdslGo1g27EqpieFIITgkQ/38dL63E73TQk38/YP5hIZOHhLzlpabby1NZ8PdxawJbfzSopwfwMBRh3HemmRPtL9+fLJXJHZufiOJ+zIq+LWl7dS2dD1ZKurooOMvHzLLN7Zls/L64912837qeXTuNBDxXkU9+puK/KwrAXRX4seW8PRso6tjS6eGsf9545DIskqqmNyQjDhLnTGdaeWVhuWVjutNkl9SytFNc3c8MImEkLNHC6tH9RYhpozMiJ5+ZZZg3a+nPIGLnxq3aAMEQSZdKz82RlEeaCYuuJe3SXgYbUTbiDK61vamh7qNI7i7h/fOZ8HLxjP06uzmf/H1dz80hau+/dmbPbBLd5g1GkJNOkJ9TeQGGZmVmoYF0yO43BpPTNTvL7/xaetO1w+4PKKfZEa4c/tC0cPyrlqm1t56AM1FDGUqQQMfHe4nLMf/7YtsT562WSeXD6NifHBrDlYxmsb87DZJelRATy1fJpPdHO94bRktBrBgaK6QV8XOpTY7JIX1uWw7VgVL32Xw99XHya7ly3AA3Xr/FQiAgbnZ/L5vmI+21M0KOdS3G9Ez+S02uy8tD6Xx7481NZt4+Z5qVwwObbtPksnRHNxdhzTkkJZPisJQx9WT3jS5IQQ/nVDJne8vp2kMPOAxx2Hs3+vy+mwPOzPXxwkPSqAi6bEccPcFLfXizDptaRG+He78cbdPt5TxLmTYnu/o+JzRuwY8MHiOn7y5s62Gee7z8rg1tNTh1wTwV3Hq7n+35sYGxvEvoIaGiw2b4c0pISY9fzi3HFddsnoLyklFzy1btDWbL9+2+xBqXuh9J8aA8ax8qG4ppn1R8q54YVNbcl3ZkooP1qUNuSSL8CUxBAWj4tmc04lOq2GWSlh6H1giGSoqG60cu87u/nrV4docNPE2Rf7igd1w8yD7+/t1wYjxftGzBXwtmOV3PWfnRRUN2E2aJmRHEpNk5Xr5yRzybT4IV3F/9WNx/i/90+uFZ0UH8SeLmrRKj0z6DTMT4vg5nkpnJ7evx1eB4pqufGFzZT2sZuEO1w6PZ4/XDqp2+3MiveMmI4Ypyqta+aFdbk8v/Yo4f4Gfnme4+2mJ+vEDrYrZiTQbLHx9zWHqW60dti4objO0mrn66xSvs4qZdHYKBakR+Bv1BFg1BERaCQpzEx0D0u+vjtczg9e3Uadl3apvbu9gJLaZv58+ZR+tV9SBt+wvQKua7byt5XZvLrhGH4GLT9enM41s5O8tk11MBwpq+e3H+9n9UH1dtQTRkf6s+ruhR2O2e2Sbw6V8cqGXNYcKmMQ/zv1KD7Ej8yUUG6dn8rkhBBvhzPijagrYEurnfve2U1ssB9PLp/GaaPDh9UVb3dGRwYM6z8w3pbURbnFlQdKWPHqNi9E07OC6iYKdjbxye4i3vrBaUxPUuvFfdGwTMAGnYZnrp3h7TA8btuxSmx2qGxoYeGYKEx6LZfPSGD1wVKarUOoKekQoe2iZu/SCTH8ZEk6f1uZ7YWIetdql3ywo0AlYB81dGeeFL7OKuXKf27g52/vbqvutnhcNG99/7RBrVsxUuzKr6arIbsLJvt2PYaPdxfxzrZ8tVbcB6kEPIRdOCWOQKOOcbEdaxFPTgjhHi+05BnuyupayK/qvK15dKQ/oWbfHeKqaLBw99u7uPnFwd9Gr/RMJeAhbGxMEC/dMpOIwM7bXl3t0Kv0zdvb8jsdE0IwI9n36zTvyq+htmlwynMqrlEJeIibkRxGRICRr7M6FgKfnBDMg+ePI0ZVynKrVzfk0tTFbsOJ8UFeiKbvGq1qp6QvUQl4GHjogvEcLq2ntV3dWKNOy22nj+KbexcSpcaD3aaq0crrm451Or7paI+lsH2CViOwqyEIn6IS8DCg02pYsWB0l7v5BILyetXg051+9+kBXtt4MgnnVzWy4WiFFyPqXXyIH2+umKM6F/sYlYCHOYNOw5TEEG+HMaxI6ai/8LeVhyipbfbpmrwRAQZuPC2Zv1wxmT99fpCXvutf01DFM1xaByyEyAXqABvQKqXMFEKEAW8CKUAucKWUsnPvHMXrbp2fyo/e2OHtMIadv63M5u+rD/vk1u9LpsVz3ZwkpiaGsq+whsv/sYEQs57LB6k9k+KavlwBnymlnNpuO939wCopZTqwij60qlcGz5+/yKLZaueJq6Zy2fQEgkzDcu+N1/hi8r1rcTp/vXIKM5LDsEvJj97YgcVm5/5zxxJgVD9/XzKQn8YyYKHz85eBNcB9A4xHcbPaplbueXsXeq1gRnIoF06JIyrQyBOrslHzMb4vMcyP+WkRhPsb0WoEUkqarDaOVzaRW9HAsYpGmlttxAaZSAo3c8HkOK6bk9z2+I92FZJX2cjYmEDOU0XbfY6rXZFzgCpAAv+UUj4nhKiWUoa0u0+VlLLTfkchxApgBUBSUtKMY8c6zyArnlPZYOF/246zcn8pm3MdM/VnjY9m+axE7nl7t9od5cNCzXo+/NH8DhNnH+wsoKrBwukZkYyK8AccV+FddWqRUnLuE2vJKq5jamIIB4vrePb6GZyR0b9Sm0r/DbQg+zwp5XTgXOCHQogFrp5YSvmclDJTSpkZGal+8IMtzN/AigWjeeHmmW0NPL/aX8KBojo+vWs+84dZJ4VAoxYf6Ro1IIlhfvzz+sxOqxbOnhBDTnkDZz/+LZc/u4G9BbXdtslam11OVrGj/93O49U0WW0cKa2nuKaZ5789SlHN4DUrVbrW53KUQohHgHrge8BCKWWRECIWWCOlHNPTY32pJdFIJKXkv1uO88C7ewBHN43HLp/MqqxSXtt4DF8YkZBSdthW3VdxwX40WVuHbEH6ELOeX543jounxdNstfGfzXnkVjRSWtvCtKQQbj9jNBqNoLrRwmd7i9mdX8Ovl01Af8oSREurnWue38jWY93Pi+u1gq0PnjUiKgV6W7/LUQoh/AGNlLLO+flS4NfAh8CNwKPOjx+4N2TF3YQQXD0zEavNzmsbj7HreDUPfbiPN743h6pGK89+c8TbIQ5YflUT42ODGBMdQGldC1WNQ2frrRDw5NXTmJcWwVtbj/PYlwc7NPZceaAEu11y5+J0QswGls9KYvmszs9jtdm58z/be0y+AGNiAimqaVIJ2ItcmYSLBt5zXpXogDeklJ8LIbYAbwkhbgXygCs8F6biLkIIbjgthWtmJfHnLw+SGGrGbpecOSZyWCRggP1FJ69+Y4JNJIWaOVbRQIOllYgAI7kVjW23p4SbKatr8Ylmpj9enE6wn57zn1zbNnTQ3qyUMG6Zn9rr87S02imsbu71fvsLazn3ibXs/9U5+BlUHWlv6DUBSymPAlO6OF4BLPZEUIrnaTWCVQdKOVJWz9dZpfz9muneDskjimuaKa5pRiPALqG+pZFQs57UCH8aLTayiusI9tMzMyWIbceqvLYy5PT0CC6YHMtl/9hATTcFc/54+WT8XVhGti67nINdJPBTnfheN+ZUcOaYqD7Fq7iHWhQ4QgkhuHxGAo9+lsXXWaXsLawhOshISe3w3LbcPrFWNVqpyqtu+7qmycqW3CoSQv0INesHffw4NcKfRy6awG0vbek2+QIcKqkj1bnyoScJoX7ctTgNi01itdnRCAg1G6hssPDBzkIKqpt46ILx/HdLHodK6lm5v0QlYC9RCXgEmzf65AqIv608RG2Td5pJ+or8qibyq5qYFB9EZYOFAhfexg9UuL+B566fwYPv7UWr1TAzJZSWVjvZJXU0ndLVZHd+NUvHRwP0OFE5MT6YifHBnY7b7JLy+hZGRQZwy/xUnllzpO3+incMgwU7Sn+NjwvCpHf8Cnx3uIImVaoQgD0FtZTWtZAW2fvV5kDFhpi48YXNtNrtHC6tZ0tuFbvza7rsarzxaCVvbT3Ox7uLOt3WaGnlq/0lnY63V9ds5eJp8fzgjNG0tNpIDjfjp9dy9oQYt30/St+oK+ARTKsRRAWayKts7P3OI4zVJmmx2ZmSGMyu4zUeO8/eglr0WkGFCxtitudVceeiNB79LIv1RyqICzYxe1Q4s1LDeGJVNgathrOcV8hdCTEbmOt812PUaXnn9rkDXvanDIy6Ah7hVO+47h2vbOJQSX3bBhZPGRMdSEtr701UpYTffLyfuxanMyk+iLL6FibFB7HreDX/WpvD82uPsrKXq+BTqeTrXeoKeISLCOjczkg5qcli41hFIxPjg9jrocm5rhZedLc290hZA3e8vp2xMYHYpWTGb1fS6FxCNz8tgmlJIR6JUfEMlYBHOF+s5uVrSutaKK1rYUZyKNt62dzQF2mR/hh0GvYVdk7sB4vrmJEcQnSQicQwx1htbVMrr208hsVm77BOOCHUj5vnpXLz3BQ0GnVFO5SoBDzCldUNz2VnntCf3DYhLpBWG1ic7aLab/2vaLB0u1OvwWIjMzmMB84bB8Anu4t48P09bc9j1Gk4d2IMV2YmMmdUuEq8Q5RKwCOcSsCu62mNblemJQazp6CW1j7u7jDoNPx0SQbfO92x6+0X7+3hjU15gGO78vJZSdx9VgbhAWr8fqhTCXgEszvXhSquKapxfV3wtKQQdh2v7tPOOn+DlmtmJ3Hb6aOIbtfNertz2CPAqOO5G2a0rWRQhj6VgEewsvqWPl+djWR1za2EmfVUdjFskBbpj06rQQjH8r6s4jqXk2+AUccvzx/HRVPiutxqnBEdSKPFxjPXTlebJoYZlYBHsO8Ol3s7hCElyKTrchhibExgl8VzXHXvOWNYPiup29ufXD6t38+t+Da1DngEW32wzNshDCljYwLpatHIQIZxRkf6c+3s5N7vqAxLKgGPYFo1ce6yYD89B4o6Lhcz6gSzU8NoGkApy5Rwf7RqBcOIpRLwCHbmWFUBy1VjYwKpa3Ek2pkpoYyLDUQjNGzKqRxQLeHs0noaLa00qzocI5IaAx7BRkUEeDuEIaPR0sq42EBsdsmWXPdtxsirbOSRD/exdHwMS3qo46AMTyoBj2DdNXNUOnNnjeCIAAPJ4f4szIhkQnwQSWH+pEWpP4YjkcsJWAihBbYCBVLKC4QQYcCbQAqQC1wppXTfpYHicY2WkV3/d7D56bUsyIjApNdyVWYic4dZR2ql7/pyBfxj4AAQ5Pz6fmCVlPJRIcT9zq/vc3N8igcdKOr/0imlb6YkBHPGmCjiQ0wsGhutqtApgIsJWAiRAJwP/A74mfPwMmCh8/OXgTWoBDyk6NTs+6ApqmnmZ2dleDsMxce4Ogj4N+BeoH3R0mgpZRGA82OXU+pCiBVCiK1CiK1lZWrdqS+5fEYCs1LDvB3GiDAlMcTbISg+qNcELIS4ACiVUm7rzwmklM9JKTOllJmRkZH9eQrFQzQawXw1DulR0UFGNAJ+eGaat0NRfJArQxDzgIuEEOcBJiBICPEaUCKEiJVSFgkhYoFSTwaqeEZ8F73HlIGLCDBQXm/hmlnJJIebmaqugJUu9HoFLKV8QEqZIKVMAa4GvpZSXgd8CNzovNuNwAcei1LxmHMnxZAUZvZ2GMPOknGONb3//PYIy6bGeTkaxVcNZCHoo8BZQohs4Czn18oQYzboePTSSd4OY1gx6TVI6di+3L6spKKcqk8bMaSUa3CsdkBKWQEsdn9IymCbmxbBz88ew5+/OOjtUIaFZqsdP4OWXy+bgFGnUY0vlW6prVAKgHqb7GY7jlcjhGDp+Bhvh6L4MJWAFQASQs1qSZobtVhtnJEeqXq1KT1SCVhpc+NpKd4OYdjIKq7j071F3g5D8XEqASttlk6IJjpIbZF1l/1dtJtXlPZUAlba6LUa7l46xtthDBulda438VRGJpWAlQ6umJHAYlWo3S3qW1S1OaVnKgErHQgh+MOlk/DTa70dypC3YsFob4eg+DiVgJVOooJMZESrAuH9ZdJr+P4ZozgjQ9U+UXqmOmIoXbrv3LF8uLOQzbmVHC1r8HY4Q8aFU+L47bKJBJv13g5FGQJUAla6NHd0BHNHR1DXbOWFdbm8uD6H6kart8PyabNSwvjz5ZMxqeEbxUUqASs9CjTp+fGSdMbEBPKbj/dTUN3k7ZB8jp9ey8u3zFIbWZQ+U2PAikvOmRjD8zdkYtKrX5lTXTUzUSVfpV/U/ybFZePjgrgqM9HbYfiUC6fEcf+5Y70dhjJEqSEIpU/mp0eyt6CWJmsr1U1W6ppbiQ8xkVVc7+3QBt2KBaN44NyxqtqZ0m/qCljpk9NGh7OnsIb9RXUUVjdT19xKVnE96VEBTEkM9nZ4g+bciTHcf45KvsrAqCtgpU8CjDpOT4tgVZajA1VMkIlRkf5sOFqBlBATbCIp1I+9BTU0Wu2dHh8VaCQ1wh8ACRworKGuxTaY38KA+Ru0/GrZBFXpTBkwlYCVPrsiM7EtAU+MD+K56zOpt7Ry79u7+XxfMcU1zfgbtMxMCUUjBNL5OAHYpWRTTmXbc02MC+JQSR0Wm+x8Ih+1bFo8UYGq04UycL0mYCGECfgWMDrv/z8p5cNCiDDgTSAFyAWulFJWeS5UxVcsHhdFdJCRktoW9hXWotEIgkx67j1nDJ/vKwagwWJjS27vvw57C2sZGxNITnk9La1DIwlnRKldgop7uDIG3AIsklJOAaYC5wgh5gD3A6uklOnAKufXygig12q40rkaori2mVabY6ghLsQPs6HvmxCyiuuYEDd0xo+1WjV1orhHr1fAUkoJnJji1jv/SWAZsNB5/GUcveLuc3uEik+6amYiT68+jJRwvKqJ1Ah/THoti8ZG8fHuvhci33m8mqhAI6V1LR6ItrNREf48uXwaoyL9qai3UFDdRHK4GaNOy28/3s+7OwqAk+3l2ztYrOr8Ku7h0p9yIYRWCLETKAW+klJuAqKllEUAzo9d1jAUQqwQQmwVQmwtKytzU9iKtyWEmlk0xvEj/+tXh9qO39DPrhp2Sdvk3AnTkkLITA5F148LzthgExdPjWNGcigAIafUZqhosDAxPhizQUdimJk5o8KJDfYjzN/Any6fzMIxkdx3zlg2PLCYny7J6PDYrS4MrSiKK1yahJNS2oCpQogQ4D0hxERXTyClfA54DiAzM3NoDPIpLnnkoglUN1n5aFchC9IjuCLTsSNs7uhw1h+p6PPzZZfWkR4VQHZpPeNjg9iRVw1AelQAeZUNLo0R6zSCx66cwgWT49A6VymU17cQ7m/g9U15PPj+XgAMOg0ltc1dto3XaTW8dPOstq/vOHM0X+4vZp+zw0VWcR2ltc1EqZbzygD16dpCSlmNY6jhHKBECBEL4PxY6u7gFN+WGGbmlVtmkRYVwP99sJfjlY0ALBzTvzKMlQ1WDpfVMz0phEbLyWLm2aX1TE0Mdek5/nDpJJZNjW9LvgARAUaEEFw3J5nPfnw6790xl7X3nklEgGvtl/RaDY9cNKHDsf4MsyjKqXpNwEKISOeVL0IIP2AJkAV8CNzovNuNwAceilHxYf5GHc9cO52WVju/+mgfANfMTiYh1K9fzyclbM+rJreiscPxrOI69Nru190G++n50+WTuaKXrdLjYoOYlhSKSa/tkKR7k5kcSnzIye/ppfW52OzqDZ0yMK5cAccCq4UQu4EtOMaAPwYeBc4SQmQDZzm/VkaglHB/pISvs0pZnVVKgFHHU8un9Zgw+6qmycrkhJAub5ucEMyqu89oW5nhCVJCXfPJcpx5lY0dvlaU/nBlFcRuYFoXxyuAxZ4IShk6csob+N+244BjIm3D0QrOHBvFtKRQXrllNo+vPMTmdhsvBiK3vIEQs75DXeIAo45/Xj/D5eGE/qpstFDb3LHHW15lIyFmg0fPqwxvakGjMiBNFhvPf5vT9vWL3+WQXVIHOOpG3HBastvOVdFgIS2y4yaIcybGEBvcv+GOvogIMDIqsuMqjTUH1aoeZWBUAlYGZHxcEH+9agoRAY4rQatN8sfPD2J3jo+enhZJbLD7VgsU1nQsCB8X4vnke8K1szv+MVlzsPO8c1WDpdMxRemOSsDKgF0wOY737pjHxVPjAFh5oIQnVmUDEGzW8+8bZxId5J4hgsLq5g6TYYPpisyEDjv9csodvfIaWlpZ/NgaLv77d3y6t4j9hWqjhuIalYAVt0gMM/P4VVO595wxALyzPb/ttvFxQTx73Qy3nSvM30C4v+OKu7Zp8CbCgkx6Lp+R0Pa1UedIxmaDln9en8m7t8/ltFHhHChSCVhxjUrAitsIIbhjYRrLZyWRX9XUti4YIL/Kfb3k9hTU0GixMSsljKJB7lF309yUtrZMwX6O3XVCCNKiAtBoBOH+RjJTXFuzrCgqAStul+nc/vvhrsK2Y3NHhzMxPsht52iy2ticWznoBdFHRQbw6KWTAcdW6VMFm/Ukh/t3Oq4oXVEJWHE7g7N4w4vf5dDS6ii2Hh5g5L075rF8VpJbz3XW+Gi3Pp8rFo2LYvmspE6Tcv/ZnIejdpWiuEYlYMXtQsx6NALK6y0dakLotRp+ef64thUT7uCNbsRBJj1/uHQSkxJOltC02SW///QA2aUjrzee0n8qAStud3p6JK/eOhuzQcu23CpqmjpunPjzFVP6tA24O356rddWRJxKAAvHRPHtIbU2WHGdSsCKR8xLi+DVW2fzr3VHueftXR1uO3NMFH+8bPKAzxHmb/CZvmwajeBHZ6YN6qoMZehTCVjxmBnJofzxssl8tb+E1adsWrh8RgI3zU0Z0POfWI3gKzKiA7h2jvt2/inDn2/9BivDzrKp8UyKD+abLrbt3r00Y0AbNPz60f6ov6SUHCqp4/O9RezIq+JAUS1WW8euz0KILusLK0p3VFdkxeN+vDidmV1MlgWa9Dx0wQR++Mb2fj1vkEnf+50GqMli4+nV2fxn83FarDYaLLa221LCzTxw3jjOnhDj8TiU4UldASset2R8dNumhVOdNymGMdGB/XreyEDPVkAD+N4rW/n76iPcuSiNfb8+h6tnnix5mVvRyB2vb+fZb47wu0/2s+lo37uAKCPbiE7AT67Kbisao3iHEKLfa3kPFte5OZqOnv/2KIXVTbx7x1xunpcKwM/PHsOz103np0syiA/xw2aXPPpZFs+vzeGmF7ewJdc9pTeVkUEM5sLxzMxMuXXr1kE7n6vsdsmqrFKvLOpXYG9BDRc8ta5fj/3qpwtI7+cVdHtWmx2bXWLSnxxXLqltJthP3+FYe+X1LfxnUx4rs0opqm6itK6FAKOO12+bzZTEkAHHpAwfQohtUsrMU4+P6CvgEzQaQWF1E+X1zW21bJXBMzE+mLSogN7v2IX3nO3j+0JKyWd7ivj+q1sZ/9DnTHjocyY8/AW/+mh/h/tFB5m6Tb7gqBF85+J0PvjhPO5clAZAfUsrN7ywmY93F6rSlEqvXOkJlyiEWC2EOCCE2CeE+LHzeJgQ4ishRLbz45CuQHLj3BRCzUbMBi1//iKL1lNmuBXPKa5p7lC4py/6U3nsR//Zwe2vb+eLfSU0WhwTa5ZWOwNZUnzB5DgSwxybQmqarPzojR0semyN6hun9MiVK+BW4G4p5ThgDvBDIcR44H5glZQyHVjl/HpI02oE8aFmFo2NcstOLcU1u/KraWnt3x+8rblVlNe39OkxK/eXdDrmp9fygzNG9ysGgFB/A9/+/Ey++MmCtsnBqkYr6b/8lJte3EyluhpWutBrApZSFkkptzs/rwMOAPHAMuBl591eBi72UIyDbkZyGM9+c5TDal//oOhrAm2vrqWV331ywOX7N1ttXSb7q2clkhhm7ncc4JhQLKxpoqLd92OXsDmnki/3FQ/ouZXhqU/rgIUQKTgadG4CoqWUReBI0kKIqG4eswJYAZCU5N5KWJ5it0v++e0RXlqfwzc/P7PHcUBl4JZNjefxr7L7nYjf21HAXYvTSY3ovQzksYquhzpOGxXer3OfKjnMzIYHFhPmb6CsrgWbXRITbEKv1SCl5NaXt1JR38LMlDCyiuuobLBw6/xUFo+LUg0+RyCXJ+GEEAHAO8BPpJQuD7xJKZ+TUmZKKTMjIyP7E+Og02gECaF+RAYaaWhp7f0ByoAEGHX88vyxDKS071f7XbvC7O5KNLeiof8nb2dUZADRQY6EGxfiR2KYGb3W8d9MCMEz106nuLaZf63LIb+qkf1Ftdz99i4e+mAfu45XuyUGZehwKQELIfQ4ku/rUsp3nYdLhBCxzttjgc4dCoew750+indvn0e4h9udKw6XTEvgtVtn97tU5XPfHqWmsftCOK02O69syOXxlYe6vH1q4uDMIZv0WuaNjgCg/fTch7sKeeDdPV2OTyvDV6/rgIWj5cDLQKWU8iftjv8ZqJBSPiqEuB8Ik1Le29Nz+eo6YMV3HCmr59wn1mLpx6Sc2aBl6fho7jt3LLHBflQ3WthbUMvqg6V8tKuQ0rrOQxxh/gZC/PR8+uPTBzzUdLC4jvoWK2NjgvA3dhzd+9vKQ4SaDYyNCSSnvIGnvz5Mfrt2ShrhuELWCNj0iyWE+RvYdbya0roWUiP8+71MT/EN3a0DdmUMeB5wPbBHCLHTeewXwKPAW0KIW4E84Ao3xaqMYKMjA3ju+hk89fVhth2r6tNjGy023t9Z6OicHOrHR7sKae1lGVhymJkfLBztlnH+Rz7cx4ajFRh0Gh6+cHyHjhkGnYbVB0vbOimnRwfQZLXx0IXjqW60ctmMBIw6DZtzKglzNhz9zcf72XqsCqNOw9YHlxA4CLUvlMGldsIpPut4ZSNPrsrm7W35vd/ZRbNSwzgx1GzUafjuSAXf/HwhCaEDWwEBUNds5fGvstFrBTNTwljSy87KH72xnSeuntbtkseS2mY0QqDXCjVBN8QN5ApYUbwiMczM7y+dhEmv5dWNxwb8fDqNY+NGXbNjYnVWahg2u2zrYTdQgSY9D1043uX7P3n1tB4LyqvSlsOf2oqs+DS9VsNvLp7IM9dOJy54YAlpUnxwW/IF2hpoDkZZy674SjcPxXtUAlaGhPMmxbLq7oU8cuF45qX1b83ujuM1zEo5WZdYSkcDUaObroAVpa/Ub54yZPgZtNw0L5XXb5vDU8undVljOCHUjyntuhWfanNuJQHOFQo2KfnZWRmIgSxAVpQBUGPAypB04ZQ4loyL5ot9xTy9+jAlNc3ctTidW+anotUIdh2v5q7/7mjb+TYrNYwdeY5VFfXOzTV6jSAjKoCNRys4XtlIenQgBVVNvLM9n/gQP7QawW2np7plgk5RuqJWQShDns0usUvZtuPshNLaZs5/ah1ldS1EBRq7XAecmRzK1h6Wu0UHGXn9tjlqHa4yIKoesDJsaTWiU/IFiAoy8fiVUzHrNVQ1dq5GNqOX5AtQUtvC9f/exDE3bVVWlPZUAlaGtfnpEdyxKA2rrfM7PXsP7/5Meg2zUsOYnRqG1WZHo8aJFQ9QY8DKsPeDBaPZk1/DF/tO1lnIiA7ocfXD5IQQNuec7O9W02Qlsdt7K0r/qASsDHs6rYanlk/n1Y3HOFhcy468asrrLBwqqWdWahh2u2wbikiNMBMVaGJru+aaiWF+jI8N8lb4yjCmErAyIhh0Gm6d7+hsXNVo4Vcf7mPd4XI251TiZ3DUgUiLCuBwaT055R1rBk+KD1abJhSPUAlYGXFCzQb+dvU0qhstvLE5D51G0GixseFIBYe7uH+AUf03UTxDTcIpI1aI2cAdC9NYsWA0JbXNbGo35tue6uemeIpKwIoC/N8F45nczQ66E+UhFcXdVAJWFMBs0PH8DZkYulhPPD99aLTSUoYelYAVxSk6yMS954zpdFyvJuAUD1EJWFHauXV+KlfPTCQm2NTWJHRG8uD0i1NGnl4TsBDiBSFEqRBib7tjYUKIr4QQ2c6P6jdUGRaEECSGmamoayHET8/MlFC+9PFGmRuOVPA/N3YNUQaPK1fALwHnnHLsfmCVlDIdWOX8WlGGBX+DFqtdUtVoZUtuFa9vymMwi1b11fNrj/LV/mJvh6H0Q68JWEr5LXDq+pxlODol4/x4sXvDUhTvMRsc636jg4yAo43R65vyvBlStxotrYT46Vk2Nd7boSj90N8V5tFSyiIAKWWRECKquzsKIVYAKwCSkpL6eTpFGTxXzkzEardjl/B/7ztG3n7z8X6mJ4UwPq7jUrXKBgvVjRZGRXqnXKXZoOOvV031yrmVgfP4JJyU8jkpZaaUMjMyUi3nUYaGa2cnc/2cZN64bTb+Bi1pUQHc+Z8dWG32tvtkFddy04ubOeeJtSz7+3d8vrfIixErQ1F/E3CJECIWwPmx1H0hKYrvmJsWwfJZSZTVtXC0rIG739rF6oOl/PXLg5zzt7VUN1p58PxxFFQ18qM3drDhSIW3Q1aGkP4OQXwI3Ag86vz4gdsiUhQfExNswmzQIoEPdxXy4a5CAHQawS/PH8fZE2JICffnhhc2849vjnDa6P41DVVGnl4TsBDiP8BCIEIIkQ88jCPxviWEuBXIA67wZJCK4k23nT6K6UkhmI06PthZyD/WHAHgmWuns3RCDODoORcdZCS7pA4ppWr0qbik1wQspVzezU2L3RyLovis6cmOdvZjzwmiqsHCqqxS3tme35aAjToNdukoXSklqPyruELV2VOUPnr0ssk8+P4eIgNMbVe7Qgh+dlYGV2UmqtrBistUAlaUfvjtxZM6HVs+Sy2zVPpG1YJQFEXxEpWAFUVRvEQlYEVRFC9RCVhRFMVLVAJWFEXxEpWAFUVRvEQlYEVRFC9RCVhRFMVLVAJWFEXxEjGYrVaEEGXAsUE7Ye8igHJvB9GOiqd3vhaTiqd3vhaTN+JJllJ2Kog+qAnY1wghtkopM70dxwkqnt75Wkwqnt75Wky+FI8aglAURfESlYAVRVG8ZKQn4Oe8HcApVDy987WYVDy987WYfCaeET0GrCiK4k0j/QpYURTFa1QCVhRF8ZIRkYCFEFcIIfYJIexCiMxTbpsshNjgvH2PEMLkPD7D+fVhIcSTwo1dFnuKx3l7khCiXghxT7tjHounp5iEEGcJIbY5z71NCLFoMGLq5Wf2gPOcB4UQZw9GPF3EN1UIsVEIsVMIsVUIMau3+DxNCHGn85z7hBB/8nY8znPfI4SQQogIb8YjhPizECJLCLFbCPGeECLEm/G0kVIO+3/AOGAMsAbIbHdcB+wGpji/Dge0zs83A6cBAvgMONfT8bS7/R3gbeCedsc8Fk8vr9E0IM75+USgYDBi6iGe8cAuwAikAkcG42fWRXxfnnh+4DxgTW/xefh3/ExgJWB0fh3lzXic504EvsCx+SrCy6/PUkDn/PyPwB+9/fpIKUfGFbCU8oCU8mAXNy0FdkspdznvVyGltAkhYoEgKeUG6fgpvQJcPAjxIIS4GDgK7Gt3zKPx9BSTlHKHlLLQ+eU+wCSEMHrxNVoG/FdK2SKlzAEOA7MG4zU6NUQgyPl5MHDiNeoyPg/GccLtwKNSyhYAKWWpl+MBeBy4F8drdYJX4pFSfimlbHV+uRFI8GY8J4yIBNyDDEAKIb4QQmwXQtzrPB4P5Le7X77zmEcJIfyB+4BfnXKTV+LpwmXADud/cm/FFA8c7+K8gx3PT4A/CyGOA38BHuglPk/LAE4XQmwSQnwjhJjpzXiEEBfheLe065SbvPX6tHcLjndIXo9n2HRFFkKsBGK6uOmXUsoPunmYDpgPzAQagVVCiG1AbRf37dN6vX7G8yvgcSll/SnDl12NZfZ5/WA/Yzrx2Ak43rotdVdM/Yynu/O65TXqcKIe4gMWAz+VUr4jhLgS+DewxBNxuBiPDggF5uD4fX5LCDHKi/H8gpO/Kx0e5o14Tvw+CSF+CbQCr3s6HlcMmwQspVzSj4flA99IKcsBhBCfAtOB1zj5FgXn54WdH+72eGYDlzsnUEIAuxCiGceY8IDiGUBMCCESgPeAG6SUR5yH8wca0wB+ZoldnHfA8Zyqp/iEEK8AP3Z++Tbwr17iG7Be4rkdeNc5/LJZCGHHUXRm0OMRQkzCMZ66y3khkQBsd05UeuX1ccZ1I3ABsNj5OuHJeFwyWIPNvvCPzhM6ocB2wIzjj9FK4HznbVtwXE2cmNA5z9PxnHLbI3SchPN4PN28RiE4Jiku6+K+g/4aARPoOGlylJOTcIPyGjnPdQBY6Px8MbCtt/g8/Lv9A+DXzs8zcLytFt6K55TYcjk5Ceet1+ccYD8Qecpxr74+g/ZD8OY/4BIcf+lagBLgi3a3XYdjcmkv8Kd2xzOdx44AT+PcNejpeNrd59QE7LF4eooJeBBoAHa2+xfl6Zh6+Zn90nnOg7Rb6eDp1+iU+OYD25z/eTcBM3qLz8O/4wYc79z24rioWOTNeE6JrS0Be/H1OYzjj9KJ3+FnfeH1UVuRFUVRvGSkr4JQFEXxGpWAFUVRvEQlYEVRFC9RCVhRFMVLVAJWFEXxEpWAFUVRvEQlYEVRFC/5f83KZURfU9mOAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### That looks better!\n", "* Note the location of the origin, apparent size and distortion of polygons (e.g., Mexico, Alaska and Greenland) on each plot 🤔" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Part 2: ICESat may be dead, but the points live on...\n", "* Let's continue to play with the CONUS GLAS dataset to explore projections using GeoPandas" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Load the existing csv into a Pandas DataFrame\n", "* Define the relative path to the csv as in previous labs\n", "* Use the amazing Pandas `read_csv()` function to load as a Pandas DataFrame\n", "* Run a quick `head()` on your DataFrame to make sure everything looks right" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
decyearordinallatlonglas_zdem_zdem_z_stdlulc
02003.139571731266.94334544.157897-105.3565621398.511400.520.3331
12003.139571731266.94334644.150175-105.3581161387.111384.640.4331
22003.139571731266.94334744.148632-105.3584271392.831383.490.2831
32003.139571731266.94334744.147087-105.3587381384.241382.850.8431
42003.139571731266.94334744.145542-105.3590481369.211380.241.7331
\n", "
" ], "text/plain": [ " decyear ordinal lat lon glas_z dem_z \\\n", "0 2003.139571 731266.943345 44.157897 -105.356562 1398.51 1400.52 \n", "1 2003.139571 731266.943346 44.150175 -105.358116 1387.11 1384.64 \n", "2 2003.139571 731266.943347 44.148632 -105.358427 1392.83 1383.49 \n", "3 2003.139571 731266.943347 44.147087 -105.358738 1384.24 1382.85 \n", "4 2003.139571 731266.943347 44.145542 -105.359048 1369.21 1380.24 \n", "\n", " dem_z_std lulc \n", "0 0.33 31 \n", "1 0.43 31 \n", "2 0.28 31 \n", "3 0.84 31 \n", "4 1.73 31 " ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Make sure you update with your relative path to the csv!\n", "glas_fn = '../01_Shell_Github/data/GLAH14_tllz_conus_lulcfilt_demfilt.csv'\n", "glas_df = pd.read_csv(glas_fn)\n", "glas_df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Convert the Pandas `DataFrame` to a GeoPandas `GeoDataFrame`\n", "* See documentation here: https://geopandas.readthedocs.io/en/latest/gallery/create_geopandas_from_pandas.html\n", "* Careful about lon and lat order!\n", "* Store in a variable named `glas_gdf` (needed for sample code later)\n", "* Run a quick `head()` to make sure everything looks good\n", "* You should have a new `geometry` column cointaining shapely Point objects" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
decyearordinallatlonglas_zdem_zdem_z_stdlulcgeometry
02003.139571731266.94334544.157897-105.3565621398.511400.520.3331POINT (-105.35656 44.15790)
12003.139571731266.94334644.150175-105.3581161387.111384.640.4331POINT (-105.35812 44.15017)
22003.139571731266.94334744.148632-105.3584271392.831383.490.2831POINT (-105.35843 44.14863)
32003.139571731266.94334744.147087-105.3587381384.241382.850.8431POINT (-105.35874 44.14709)
42003.139571731266.94334744.145542-105.3590481369.211380.241.7331POINT (-105.35905 44.14554)
\n", "
" ], "text/plain": [ " decyear ordinal lat lon glas_z dem_z \\\n", "0 2003.139571 731266.943345 44.157897 -105.356562 1398.51 1400.52 \n", "1 2003.139571 731266.943346 44.150175 -105.358116 1387.11 1384.64 \n", "2 2003.139571 731266.943347 44.148632 -105.358427 1392.83 1383.49 \n", "3 2003.139571 731266.943347 44.147087 -105.358738 1384.24 1382.85 \n", "4 2003.139571 731266.943347 44.145542 -105.359048 1369.21 1380.24 \n", "\n", " dem_z_std lulc geometry \n", "0 0.33 31 POINT (-105.35656 44.15790) \n", "1 0.43 31 POINT (-105.35812 44.15017) \n", "2 0.28 31 POINT (-105.35843 44.14863) \n", "3 0.84 31 POINT (-105.35874 44.14709) \n", "4 1.73 31 POINT (-105.35905 44.14554) " ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### A note on `Point` geometry objects\n", "* The coordiantes in the special `geometry` column of a `GeoDataFrame` are actually `Point` objects from the Shapely library\n", " * https://shapely.readthedocs.io/en/latest/manual.html\n", " * https://shapely.readthedocs.io/en/latest/manual.html#points\n", "* We will revisit geometry objects, and explore `Polygon` objects in more detail during the Vector2 lab" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Set the GeoDataFrame CRS\n", "* https://geopandas.org/en/latest/docs/user_guide/projections.html#setting-a-projection\n", "* Note that you can also define this during the initial GeoDataFrame creation, passing the appropriate EPSG code as an argument for the `crs` keyword (`gpd.GeoDataFrame(pandas_df, crs='EPSG:XXXX', geometry=...)`" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Run a quick check to make sure CRS is set correctly!\n", "* Inspect the `crs` for your GeoDataFrame" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content" ] }, "outputs": [ { "data": { "text/plain": [ "\n", "Name: WGS 84\n", "Axis Info [ellipsoidal]:\n", "- Lat[north]: Geodetic latitude (degree)\n", "- Lon[east]: Geodetic longitude (degree)\n", "Area of Use:\n", "- name: World.\n", "- bounds: (-180.0, -90.0, 180.0, 90.0)\n", "Datum: World Geodetic System 1984 ensemble\n", "- Ellipsoid: WGS 84\n", "- Prime Meridian: Greenwich" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Get bounding box (extent) and center (lon, lat) of GLAS points\n", "* See GeoPandas API reference. In this case, you want the `total_bounds` attribute: https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoSeries.total_bounds.html\n", " * Try to avoid copying/pasting and hardcoding values - store the output from `total_bounds` as a new variable, then use the array indices to get the corresponding min/max values\n", " * Note that `bounds` will return the bounds of each record in the GeoDataFrame (in this case, just the point coordinates), while `total_bounds` returns the union for all records\n", "* Center can be calculated from the min/max extent values in each dimension" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Alternative approach using convex hull\n", "#print(glas_gdf.unary_union.convex_hull.centroid)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot the points using the convenience `plot` method of the GeoDataFrame\n", "* Note that unlike the Pandas scatterplot function, you no longer need to specify the DataFrame columns containing the x and y values - GeoPandas will assume you want to use x and y values in Geometry objects\n", "* Color points by 'glas_z' values\n", " * Note: GeoPandas syntax for this is slightly different than Pandas\n", "* Set point size appropriately\n", "* Add a colorbar\n", " * https://geopandas.org/en/latest/docs/user_guide/mapping.html#creating-a-legend\n", " * Note: if desired, you can pass a dictionary of colorbar properties (e.g., `{'label':'Elevation (m)'}`) to `legend_kwds`\n", " * Even better, specify the vertical datum of the elevation values, in this case height above the WGS84 ellipsoid\n", "* Don't specify a `figsize` for this plot (though fine to do this elsewhere), just use the default figure size." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVgAAAD4CAYAAACpB/4aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAADc5klEQVR4nOydd3QVVdfGf2fmlvRCEkgg9N6RqgLSEZWOBV+wgYqKVEFBRbGCClJERcVGb6KioKj03nvvNZDec9vM+f6YSwq5gQAJgl+etWZl7ukzmdlzzj57P1tIKSlCEYpQhCIUPJR/ewBFKEIRivBfRZGALUIRilCEQkKRgC1CEYpQhEJCkYAtQhGKUIRCQpGALUIRilCEQoLpVnYWGhoqy5Urdyu7LEIRinCD2L59e6yUMuxG69/foY6Mi03NZ18nl0kpO9xoX7crbqmALVeuHNu2bbuVXRahCEW4QQghTt9M/djYFDZteSdfZS3qU6E309ftilsqYItQhCL8f4JESte/PYh/FUUCtghFKELhQIKU2r89in8VRQK2CEUoQqFAItGLZrBFKEIRilAY0NF12789iH8VRQK2CEUoQuFASqReNIMtQhGKUITCQZGKoAhFKEIRCgNFVgT/KU8ul8vFjBlzuHAhimee6YfJFMiePfvyXX9us4EsqPsE31Ttw9/PfMihGX/wZ5fh2BNSOPDlPJY27Mn2V8Zm9WdzoDmcJB45yqYWD7G55QPEr9vA4el/sPOjmdwuVJBRZ2LZtuZQofeTvGcf8atWsb1tCza1bJmvOulJ6fw1ZTmJF5MKd3BF+BcgQXfm7/iP4j81g/3jj794+unn6d27JzNnzgXgrrvuQdNSAHjk4SfYsGEz5y8cISoqmid7DWLI0Gd5sGMbAPSkeEDgY9Y4tfE4CdsOYFJgz6R5xC75izSXlfMrd9MA0F0ac+7uj3eQN6U5it3ljSI0jr/3CVFaGWwxidQe+Agmb+u/dDey0Puet0lOTKPzk80Z9WXfG24n+dQFlj/8OsVql6fF92/nyLu0YjO7R3xKoG88SWklsJrtHtvQdZ2fhs2meKVwWrzUlpXfrGbJJ39ybOMxXprVL1f5AXXfJvp0AgDzEiff8NiLcOshZdEM9j81g23ZsjnDhg1m6NCBHvMX/byYi5cuUdy7FuM+/JpNG3fw+siPAVg6dgZe1mQwJ5NggwzdTLLLgk1XKdf1PrTSZTmcFMiRpAAANrz7HcGmZNJiEzEpTsyqAy+zncihA7nvq1epPOwZUNVbdu1XQ2TFMCSSPZuP3lQ7p+b9jdR04nYdz5Wn+nsDOuk2fywmJ06X50fLkWpnx4ItbJm9wRhbrVIoAjKS0j2Wv3Q6ASEEAFFHL3F084mbuoYi3EJIHVy2/B3/UfynBKy/vz8fffQedevWpmzZ0u5Ugar68+mnUwDjRQ3QSvNcv170eqIb3/843ij100JKeENpX4ld11EEJDstRGeYCKtXhWafvoIEbLqZX+s8TPLSf/A3Z1DaLxGXNRir2Ymmg3+lSuxcdojZI35m8+yN/8p9uBJf//U6L7zVgw9+eOmm2qkx+HFUxYV3sHeuvKTNW7GYNAxZKPAyGwbmi9q9wsw6fUg5Gw2AV4A3Q1a8Tr+FgwA4uOogQsCp7acy2zp/4Dyrp61Gc2l0GtQKXUok8GHHSYx5aBLpeQjjItyGkK78Hf9R/KcEbHacOHGAqKjjgKEHHT58JH/+uYjY2NPUeTCMV7tPIjixFHfVrwVAugMEOgIdh/Qj3Qk2TaBLQ4sSVC4cs9CxKBp2TUWiYnNZsJgkWpV7OBsfisPlzfZnXqFm+1rU61Kfaq2q/1uXnwNWLwvPvtaZKnXK3HAbzrQMtgybjF/lcpRsf0+u/HIvPo13iWCsagomxUaqZqgI0i8mgIQTP68EjGVjUGQxAsIDAbB4W3K19fM7v/DTqEWc3nmGJ97phgqoQGx0GukaeAfkFvBFuP0gkAjdla/jv4r/jIBNTEzklVdGsn37Dp55ph9nzpxl1KgsoolevR7D2xxIo8qPs/7Pwxw9d4o/ft+Umd9txyJWn49g2ekSaFLBpSuku8zY9axbVLNYPA3CYrFaAXQkGs66Laj4eHtKPtQcNbQ4AfXrULxSCXp98RQhZe9c/ooT+8/hcDgyf2dcjOPSut3EHDhPmuqfq7yqqtT+YixpjiAynL74KsYMNsQaT3HfJOJmzwTg59cX8Gbl4Vw6ehGAbm91pW7nujz8fo/MtrqP7sbDHz5M2buMD0JwRECmmgDIcV6E2xhSgu7K35FPCCFUIcROIcTv7t/FhBB/CyGOuv8GZys7UghxTAhxWAhxf7b0BkKIve68yaIQH6j/zCZXhQq1SEpK4osvvsbhcNC4cSOmTZuemf/bb3/gL8pjs9vxsQQRpJmxhSdm5gtFQVUs+JgkqnChIvFWXZT2imNOrZ74BlswCx1NgtUiiE/zQhVmOn/4It6BvpS4u1aO8fwxdwO//7COCYuHYrHcWbd5wtBZLJq6CgmsS/8GgICKkZTo2p69c9Zi9so96wTwiQhDCB2koMLXn2O32/H30lEVHU0XxO4/jKoI/EP9sPgYbQgheParPqQnZ2S2U7J6SUpWL5n5u+dbnZn60iwAXlv0fCFddREKHvK6hGc+MQg4CAS4f48AlkspxwohRrh/vyaEqAH0BGoCJYF/hBBVpEGO8CXwPLAJWAp0AP4o6IHCf2gGW7Fihcy/P/00mz59nsiRn5yczKW0A6Q5oonUixOqFOfTb17PzBdC8Oqxz+n5zXP03/EpvmaNYLMTTfUBxUp8nEaqQ6DrCnY7BHvZ8TW7uHQxgdZVXmT2V8ty9Pdu32/ZseYwE4bNLrBrlFJy6Xx8oZt/rVi4DU893Pv2E/Q79DWNBnTKs27LNXNpvXE+pWpWJXH3AUyqDVVxYjWns61Xf7bNWIuPt5ngUsUy68x8ZQ5DK4/gnWYf8stHS1n543r+/nYNp/acAyCyegkkhrJnSt+ZBXuxRSg8SInQ7Pk68gMhRCTwEDAtW3IX4Ef3+Y9A12zpc6WUdinlSeAY0FgIEQEESCk3SuNFmp6tToHjzppaXQVbt65B13UUJe9vRkxMLMmu02wXF1k2+y+at66fq0zZNnfxY/Nh6NKEHZ0jSTreqqD+PZWw7z1MmtOCS5dIXJgUjfhzsURfSOD8qegc7dRrWpl9m0/Qa8gDBXaNS2av5+3nv+GNz56me59WBdbulfj09yE81+wDGrercV31Uk5dYOvjA5CKmdarZ3H87fcxqTa8zCYU4SJdhmCxKIRVzKk68fb3ASApNoUFY5dlCvcqjcoy+q+hxJ5NdJv8SJo/mvt/VoTbFfJ69KuhQojsZNFfSym/vqLMROBVILuOqoSUMgpAShklhCjuTi+FMUO9jHPuNKf7/Mr0QsFtJ2CllEyb9gPt2rXieqMfXClcw8NLcPHiJfcvwbBhg9i9ey9t2rSkefe8X9S06EQyNAtCakRYrHibnDw06x0W1H4UTQeXrpKhWSnmlcaW17/m8a5tePG1Hjna+PKvEdc19vygbOVwylQqQbkqEQXednZUrlOGVclfXXc9RVEQgAkb52fNx5bsIDYlhEoRSWRk+GBV0jELJyWqlsxRr8foLvQY3YXoU7GM6TKFmDMJhJQP5smxxj21+JqRGGqc6s2qFsAVFuHWQIKeb7rCWCllw7wyhRAdgWgp5XYhRMt8tOdJryqvkl4ouO1UBNOm/cDLL42gRrW7mTz5C9LSbtwkJ0u4gpfVh06dHuS1Qe9wZHs6u3bs91jn6UdG4nS5kBJMCiAUUp2Gs0Cat5nliQlsTklGERomISnuiMK8eRlnDkbd8Djzi9qNK/Hz7o+p36xaofd1JVJjkpnQ8n1Wf/F3nmV8y4TTZM4EQupWJKBebaJSgzCpXqSm+aFrFqxmb2oHJmD+c47H+sXLhRJ3LgFFAX8/LyrULwvA1AFzcEmJU9cJiQgslOsrQiGgYDe5mgKdhRCngLlAayHETOCSe9mP++/lpeQ5oHS2+pHABXd6pIf0QsFtJ2DjopPxMofhcNoZMuQ1AgPKUrXyfdfdTrNmbXP87tS5PQCHD50gPjaJdm27ZeZJKXmryhA+6zKOE0fP8ln0GRRsaFKiCp2IGsaMsZgm6Rhpp0FoBtXDLuBtthHsJWgcqhGmXbyJq755OJ0uZn32J0f3nc2zzMXzcaz/Z/cNtW9LsRF7IpqoA+dJjk72WEazO3DpKjW/GE9A3VrU7dkUkwJmxYXF5MKhq4DE6cj9Qp3ZfZbZQ2cTWMJY/fUc3SUzr9rd5THmxoJKDcre0PiL8O9A6Fq+jmtBSjlSShkppSyHsXm1QkrZG1gMPOUu9hTwq/t8MdBTCGEVQpQHKgNb3OqEFCHE3W7rgSez1Slw5FvAejCPqCeE2CSE2CWE2CaEaFwQA3rl1ZfwC7DgZQ7FyxSOqlg4deo4LlfOl7JYsUhU1R9V9ad6dWO5n5aWRt++L3LmzBnstpyK8wcfNKw02nSsw8WM7UiR5T0yvtFITA4nqXtOMKxpc1r7lWFFgg2HFDh1Sb0nWgIQUqMUoapCuOpPmt2CSxdIBDoKFvcmW2Fiy7r91Ah+mIXT/8mVt3fzMT4dMYfJo+bnWf/BKoMZ0GUc349ffN19h1Yozpt7xhJWpxzDao1i+2+7cpXZ+d53LO8xgrjdhsdYwtZ9+BXzovwH73ExORBfq4af1YYmc1shbJy9kU1zNtPn44eZHjeJWq2zbIgHf9uHT9a/yvQLY6573EX4FyHdKoL8HDeOsUA7IcRRoJ37N1LK/cB84ADwJ9BfZoVXeBFjo+wYcJxCsiCA69PBXmke8THwjpTyDyHEg+7fLW92QGazGT9fP5ISU8huneZwODCZsoablJRFDnLkyFHmzFnI559PZePGzSxc+AvpaQ4EZiQGkcThw8ZL36nTA/Tq9SiDB7+cWf/UuRSQUNIHKr/UlmK/b6S2vxcR3hkIITh39BJVgTrvDWV7rxewuyyois7hNIVa/k50KQiMKFy9KOCewwmPdqB17q7Ma58+QaMW196YKh4ZckP9ewf5EF6pBKFlQgiJDM6VH978LtIvxOIbWZwjM5ZgO38RAQTXrkxEKbDF64BCs3njctXtNLIj1VtWo1b7WrnyAMrVivSYXoTbGRLhcly72PW2KuUqYJX7PA5ok0e5D4APPKRvAzw/aAWMfM1g8zCPkGQJ20AKUI9x8swxHFoKVaqWx6IGEOhXHB8fn8x8TdMAMwITZhGAIqycPhpDx45G1N8SJUoAKkJkCeRx4yYBEBJSmlmz5tGoUXMAzp07x86MBE45Uxm6dzxBmDHpfoR5OXFJMw7dTEiQ0Y5/uQjS010U80kC6WTmOcHf0b6UG/ZiZj92u5Npk3/m6KEzBXU7MtGoWU32Jyygfad72LH2cA5zLZNJ5dF+bSlfrWSe9benTmdj3Lc89FjTGx5DzdbV+XDbW5S7K/dSPfL+Jtz33Zt4hQQiHXakVJBScGDYKMwZCfhYnWgSAipmqcZO/b2DP5+bhEmFWu1ruf+3RfgvQEhZYCqCOxX5VRFMxDCP0LOlDQY+EUKcBcYBIz1VFEI871YhbIuJiclnd0Y3icmx9HqiG5998W6O3E/rv8DEil14vvg9DCzZlPr+DfCau4kRI4Zx5Mhu9u7dTJmy4egySw1wpYrhMl5+ZAIJmouTjgy8/LxZ/91qkl0qO+P8cLmcRDSpQr2XumeWj3GGkmzzJtXuzZDy3tzlr7L/6yWZ+VvX72PsG98x4d2r22ueOXERXdc95v26cDml/Fvy4jPvesz/aOB0Xrz/I7ZfJwWhEAJrHk4CBY2qfbtTe8xQGs8ZT1Cb1rg0gc2pol4x+U745FUiz/7CX6NnMDhyCMPKDmPmwBk33O+Cycs4c/T8TY7egMPuICPtv0tEcktQ+CqC2xrXFLDZzSOuyHoRGCKlLA0MAb71VF9K+bWUsqGUsmFYWFi+BlW+vOEi2bXbQ6xbv56nn+rPvDlZeuiADIm/WaV+UElq+PvyYsnSBAuDuapixQpYrVZKly4DeAE5BcrlmXB09CkABn/YA0134sB4kZr0boavqmESAqd/CC2/yfnd6PLrB6R5hWOuXJ3Itg2RQNU+HTPzLd4KaeZL+Ieb87y+5pHP0aHOQNqU90y+0v+Z9xEo/Lpwucf8zk83p023hjfFLVDYkJpGWOPaBFYsQ/nHuxCVHER8uh9pql+OcooETVc5vOWUoQIRsGvxrnz3c2L3WZ4qN4IVMzfxvwqv8v3ri3nhrg+JOR/P6XxadpzYc45xz/2YK71ryBB6lHiF+IuJ+R5PEbKhaAabLx3sZfOIBzEkVoDbPKIThl4WYAE51Qc3hVMnziIQfPvNPBx2Q/C9+OIrPPa4sbN80WYiKtFCBb8M/FUX3hZIc2ZRA/r7Fyc9PSNbiyYUtwBOSblEdoSHh3FW247TkYHT6WTWk1/gYxY0ero1FVvXZPfcddTt2SyzfFDFSB5dlzcv6Yb1O0i3pbNu7ZY8y7gcGkj3Xw9o3aEJy//cTNeHPaqWaNy6Jo1b18yz/dsBB0Z+SPyGbTSY9Tk+ZSMN3TEKWlqWTs4el0BMSiBm1cUr68cwrNQgBFC/y10e25RS8kn3KTw4uB21WhimahmpdlIT0kmOS8XqbQHSAHii6igA5pwYQ3DxAI/tXcagpmNRhWDlnC1Ua1KBnduOEREZTJqbCNrslffHsgjXwH9YeOYH1xSwUsqRuJf/bgPfYVLK3kKIg0ALDGVza+DmyEbd0HWdy7tbqemXsKjB6NKBPcOCpmns2rkfDRUdgUuqmE3GNDzA7CIlOp41W7deIVwBXOjSRePGzdmyZW2OnGrVK7Nj9z/YbHbMZjPeQb44Um3sP57AF+O/oE6QTnCZMMrcmz8D90GvPE3FymVp0Spvo4oNl75l66oDNGzhmW1r+oKxHtP/LazoP4kLa/fQ5pthRDTJH0NY2rbNBtNYaioAZsWBSzcT7J2MMzUNs58v8XuPkGo3o6puXgJ33egTWV5x/3yzmnUzNzJqxXDevOcDok/GcWjtMb6LNXTqNZtWYm70eMxWM10HtWXzH3sJiwxmYPOPkIBv4LWZt3SM506XkoObT+DQXZw7GZtple4f5JvPO1WEnJCIPNRg/19wM3awzwHjhRC7gQ8xyBNuGkOHjkDXnei6CxC898EIvK3BdOrclm+nzaFFsx6owkV1fxt26QJpIsOlkOJS+WvoNCZNnJpn29u37+KZZ/rlcEAYNep93npzDHXrGpuKWlo6JiGp3ao6AQFWQksXo0Tt/C/FhRB06tKagAC/q5Zp3KrmVd16bydkxCSClNgTU69abvOAMRz8zHAicGgWbE4rKfsMh44SgcmULx6Nt1Vn1+uGudWu937AJS24dOM73+WDHpRvWpn+P2cRps97YxHnD0Yx8dEvMXtZkBJUS05FrtmaNcNs8kBtKtSO5PfEz1iS+Bln9l1gdJcpXDwZ63HMezceQQE0KdHcf/1VC43ursyUf17l51OfXM+tKkJ2SAkuR/6O/yiu6w2XUq6SUnZ0n6+TUjaQUtaVUjbxoKO9IZQqFYGODaE6UYSJ/fv3kGaL5qeff2L37t00a9YYTZpIdJrp++ubRNsh0WklXbNyeMMp/Py9rnqJ06fP5p9/DG7SuXN+59NPvmfJ72u4u343kqISSUh2UaZNXba9N4fqajLOqDi+bPRKZv2oA+f+3+10PzB3FA+vnUy5+xvlWeb072uI37SHU9MNXblZZOBjsXHhK8PlNildISXVTEqGSsqWvQBYw4KMsn7eJEYl8s8XK2k35P5MczyHzYFJGP/Bjq/cz5B5L2DXId0muXA0f44d00Ys5ODqI4zqMIEX67yNw5Yz/tOmn3fl8JMsFh6An6pyesdZwksFU6x4kefYzUBIPV/HfxW33RRq+PAhaFoKUjcBgpkzF2TmhQaH0bFra8ZGLWJczK+UqVuOFzZ8RJomSHUpaJrGgw/ej1kNxmoKxawEMHZMTjO4smWq0rWrsSkVG521FC0eHopQBCaLCS0tDQWJSTFhVrM8+Vbf3Z7Dz/ZnddMHr3kdNpsDl+u/IYgVRcErKO8ZOUBg9fK4F9skHDyGajX+fwLJkk7DScgIIdXhY8xW3S9U67lj6LHzRzqu+ZoP7vuQ+LPxTHl4SmabP4/9HQEoAqreW5ngiKDMvMt60ZgzcVf94JUpU4wAi8AZm0LC2UTWzMupG+/4UisUASVKBvLzhfHMOT4WVTVeC5fzv/H/+9dwaxwNbmvcdgL2Mj4cMwohVBRhxlctgZcSzNfjlhAaWgyBwGIx9HbFIopjRcMsXTh0ybPPPu1uQeDUnRzYf5gPPxyd2e6ZMye5bD5ao1otzITyUJuO/PbHNOJORFOxUTmid5/EpgmcusCl61hNhoTVhB+6NANZNrmeEHU+huph3age2u2q5f5LCKwQiZASBbjw4xwa/LkYNciKUCH9bBSKEMSk+2HXfPCyZs0ZLztN3NPbiJJQPVsUiJTYdOw6OLJNcGbFT2Jm3ETCSofw17R1DKr7Lv0qvpHnuBo8WAez1YRTB11KgornJAuPKBfG4uQpTFo3kg8emMBfU1cxK3o8M6M+oWSl4nm0WoR8Q9fzd/xHcduxaV3G8OEDmf7DT6SkpBJzIR67TCSDGHr27MbDD3fK4dX1R+gl9u87QlBYEFWnz8WpJWTmTZ/5A198MTHzt8TBgQMHadG8G97eXgiTD6lOwyvs4B+7OLbqIGZvFV8T2DT4NU7D4dDofOwiiTYvAq12UjIMAaG7NBRT7sCGtgw7JsxI7fYI230rIITAzzsDTTeRvHkdQgj05AzSbX5UKHYRXapcygjEZpfgQffcZWQnuozsiGrJ0qc+O6U3weGB3PVQnVx9AQRHGMIyICTv2XWTHg1o0qMBMecSiDkTR417K3ksl5aQxoUjlzi56yyqqqJ63x4BK+9oSPmfFp75wW0rYE+dPM3BQ3vcv4zlJpgJ9qkLSEa/N4RBrzwDwK4De8hwxZIcdYG0jCstCOCllwbn+B0dHQ9AenoGXmYv1q8zaCjbjuxC7S4Nee/ZbwlMiYOyYTiiDerIcycvkmENISklg04/v83nNfqTaodOE56hRmeDZe3Dd75k7uzf+XPlD/R4shU+vv+/YkeVLHmWxMRilChuqF5KD3yBkxO+BmFCEVAmMBo/Xyc2u8AWG49XaBbp9q9NnkIAD635Got/1q59jzfzJvdu9FBdZidMyjM/PTGdj+8fR+32tejxXnfCPLj3XkapahFMPvQBvkH/v/5nhQuJcDmvXew/jNtWReDnn900RkFRLAghyHDFkeGKZ+nSFZm5ze67C5Pii1n15Ysp3+HtlTtmVBYEnTrdz5dffcLvS2cjEKhul1qLt4XSDcpT9/667EwTrNt1DuneAhncdTK9Nn3GM/uncWblPqRLAyRm76wZ17Sv5nLu7AXWrNzMG2OfpVbD8nl6a93pOPntXDY/9hLObCZxKUne+HqlcOFcMLs++J4SXbrQ6I+fuEy3aVINGkgpBWknTmbW2/b5HMyKhoqLeU1fvrKrG4bL4SL+XDxxZ+LyVT4g1A/Vw4qkCDcIyf97FcFtK2BDQ0Np2+4+ypQtyVNPPYyuu9BlFkNWlapZ/uxDhr6ExGC833dgFxm2FADCwkIoUaI4gwf3p0rlKoDCggVGbKdnnnmccaNnEqCE87/O3ZFScuLQeZxOF/3HPsI/iV9QrUF5ACSSgJAsgV/3mTYIBSxCo2Lr2pnpqlkg0XigYwse6TiY/n3fZew73xTmbfrXcO77ubgunOfYhCz/kpITZ2BSdezSzLm/NgOgeFkp1rkH4c/1o8bSdcQnBpBh80MmxmfWi/1hISWDkgj0sVPaPyFXXzeKgOIBjDv2Mc9+3xcpJbOGzGbRW4sKrP0iXAvy/72AvW1VBAB//mmY/KSmpjJj+k+AmYYN67B5y3ZOnTmRWa5+/dqYFV+sqh9J9iyu0sTEZGw240UePz638f7R3VGUEaU4/Xs0P475jckfLOCpIQ8y6P3HAfh+reENJKXMwWClWiy0nfQCzgwHipr1jfr8q/e4cP4igYH+dH24DSeOnaV1+7sL7obcQtgTU1k/eBLluzanfNfcfLxhD7Yjbu1mKvR/MiutWiXCFm2nVEyisfWPoS8tPyjLRFr1NUNGBkLJevR8/Jw4NQUpdbxL3jwr2d5unTE7E3G5FGr9uQoAXdPZunArPoE+dH+3+9UbKELBQPKfthDID25rAQvw448zqVq1CprMAAT79x/AZFKo36BeZpmwsDBeH/kKE8d9l6Ouy5klFBctWsKmjdsYM/ZNVNVYBlarVZ5z+y9RtVJZ6t1XhZp/VqBRi9wuqN/XfA6APgeyZmtV76+Xq1z7Ds0zz18Y0JMXBvS8kUu+LZBxKZ7YnUewhgR4FLDVXu8P9PdY18tt3+oJ1b78kuSdewhpmxVT7L6VBj+tdGmg3vyiSrGloJhBVXXs8XFYi4WgqApvb3oLxXTbLtr+cxBFnly3r4oAYMyYj+nT50WaNm2DYWOpkZwah8OZSvPm9+QoW96vHBX06kCWDq1X74czzz98fwKTJ33DuXMGAUgrv+ew73URpAVw6kg0IztMpLfjII1b5nQFzc7ClRiTeMPXous6/Z54h4/f++7ahW8DBFUtwwOLP6LJB/0KtN0v+87mizfXoXmwERYm1SPX7fWi2m9/Y9O9SUw1s+HBZ9jSztgoCy4VTGCJIseBW4oCUhEIIbyEEFuEELuFEPuFEO+400cLIc67if93uTlTLtcZKYQ4JoQ4LIS4P1t6AyHEXnfeZFEQD10euK0F7M6de/LM69Txfzl+P9inGVLqVDI3oVateqxbu5wff8wK3Dd/4bf8+dc8ypY1iJs19/80xGJsVoV6aZQKPsXSR4ax86s/0BzG7qfJZCLD4sVFGyQm3Hh8sPQ0G0t+Wc2vC1Zcu/AtQFxMIt9N+YWkhLzdX/3LhmMqYHpD7yBvfIN9C0SQ5gXVZMKnVDG8LYJiATZUPX9hoYtQwJASXK78HdeGHWgtpawL1AM6CCEu698mSCnruY+lAEKIGhihZWoCHYAvhBCXZ19fYrj2V3YfHQrqkq/EbS1g58+fiY+PN6VLG0JRFd6YFF8U4YvUFXbu2JtZVqg6B9jEeU5w5OBZ2rV+lCaN27N16042b9rJE/8byIu9x1LSvwV9e76JC41UaSNRT+fVOjH0rR7FhpNhpDgC2TLhFy7tzNLxZrRtwvxLNoY/8dk1x3z0yEm6PvQcO7fnDKro5+/Dxn2z+W3F5wV0d24O7736Ne+P/IbPPpp9S/t9af7LvLb69Ry668KA7VwCigBF6HiXCc9Md9jsOB15+75rNgeJ+4/lIDMvwg1CArrM33Gtpgxcng2Y3cfVKnYB5kop7VLKkxjhYRq7AyMGSCk3SuOfPB3oehNXeVXc1gIWICUlmlOnDgKgyQxcehq6xOAp2HckW7lUHM4UNN0JUsepOdm5cw/N7n2InTv3sXvXAZKSjA2wNSt34KtYSREphN9VgUbdN1L3se0IYabjly9z33tPEN6wMgD7f95EZekiokwoNetfO+7Wlk27Wb1yMyuXb8iVV7psOMVCb48larXahoVE7fpVbqodKSUyfzOQWwrfe5ohhEHMFtbRUBGkX4xhW/uH2dqmB7aYeI/19nd+gLNDX2B3p4du5XD/u8i/iiD0MjG/+8hFHuWOC7gLI3Ls31LKze6sl4UQe4QQ3wkhLhs7lwKyRwA9504r5T6/Mr1QcNsLWM9IQyga1WpkCbzIyFJElCiLqpipWKEKwu2cIBFsn3eamqZ7mDXnI+rdVY3Zcz7CLAS6olOsZCDTv3qAGRM7IGQxAssWp/ojzTJnWNumLefYr1uZt/wtRn/53DVH9njvzixbOYMBQ54upGsvGLww9BH2Ri2ky6Mtb6qd6E/f5NT/WuFKyJ+taX6QFp/KOzVeZf7gG49s4H93c9JsFvzbP0RYj0eMxMxwCoLEY55D+ghhkBSqzgw+aDeW/uGDOLK7QJg4/x/iusy0Yi8T87uPr3O1JqUmpayHEWq7sRCiFsZyvyKG2iAKGO8u7kkHJa+SXii4IwWsj1cIDmcaTmfOmZPFy0RAoB/b9yzhrdHDMAkfVGHl161LOCmP8Fn/BSxd8xWndkXh0qGyOZIps1/jhX1f0PHPd3j2UO4NqJToBJDw24Bc/2+PUBSFxk3qYjbf/iTNvn4377WkBgSjBgYjTAVnkCKlNPgirvLY67pOxpHDeS7lQ9u2oNGyRZQdOiQzzScslMAePbE2a0f4PfU81hNlSgNO9oR35cJeY0N00v1TPJYtwjVQgCqCHM1KmYjBQ91BSnnJLXh14BvgMhHzOaB0tmqRGHEDz7nPr0wvFNz2Zlqe4HRo2B0xOfhUo6KiuHguDg0XZUu04MSFlYz76EvKlCnJpdMZaLrOW7OMGejxvcYKQSgKQgj6P/82v/z0NyvXz6JOvWo5+nKlGxskGfEpNzTWpUuWc+jQMYa+UrC78bcLQp8bBs8NK9A2/UL8GX3w46uWuTDuQ5JXryDowU6U7D/EYxnV60rqSqg5qNfVO39sOD4B3mzqMhlVwP8jOonCQQFREQohwgCnlDJRCOENtAU+EkJESCkvxwbqBuxzny8GZgshPgVKYmxmbZFSakKIFPcG2WbgSeDamys3iDtCwKpqTtdXiY7T6cRqtWam9e42kuKWyrikgzRnIiePnyMuaT8/LfiT5595AxBUb2SoFMYvmApI6lU3SLYtijflI8tRKrJErr4H7JpA1JZDRDa9sSi/jz/2Ei6Xi/btW1CrdrVrVyhCvuBdpRrJ61bjXSl/kSbyg1XfruanNw1Pr5LVIkiJS+WdbW9jMt8Rr8ntBynBVWB2sBHAj25LAAWYL6X8XQgxQwhRD2O+fAroZ3Qt9wsh5gMHABfQX0p52TbwReAHwBv4w30UCu7IJ0fFh7RUWw4B271nO8a/ORtdaiQ7zgOCJ3q9xNKft2BVfdFwYrVeNjmSIMDhNGanq5ftID3NRnCx3BtQqtlEQqITx6ZjVLi7Ekt/W02zFg2uGrEgO1548Ql27txH9RqVb/ayb0ukxCQTcyKGCk0q5rtO7Ef9cB3dSegnSzAFew6EOa1OP1wOSUi1CB755Z1c+SFdHyak68Meat44fN2hYXxDfBm5cgQp8Wm8UG4EtVtXZ/DMZwu0r/83uM7lf16QUu4BcgVrk1I+cZU6HwAfeEjfBtzYjOk6cUcKWLsezVdffUfJUiV56qnHAJj9+gpKUpIM0nCZ7axatpVFPy3BqgSDgGbNDTb+oeUG8T//e1CdGq/NfAuARf9MxOl0eQzhYk+1MeuF7/EL9Sfoyeq8N+oLqlYrx5pt+TNv+uiTNwvoqm8vxO8+SvSGPfzz93lObDrO8BWvEVGtZGa+ruuc/2c74c1rY/bOuVR3HdgEQNofPxL4P8/qBZdDBxTiDuVWj43vPgXNqTF88cACtadt1KMhjXo0zPytqAK/Yr74BV+d/7cIniFlgWkI7ljcgZtcCiB5c9Rb9HvulUzTqwxpOAGo0kSoXzj9hz2Ol5cPGVoCSY4LLFpqqFls6TomRWA3qUx43IjfVa1meWrX8zzDtPp58fD4//HIp71oel99/Px8eKhLy0K/yoLG/A9+5+NHpxYYS/+hqQs5/M3P1G9blYaPNCKkbGiO/H1f/MyG4Z+zsu9Huer6PfYKatlqnDbdzYIXpuHMyG2XWvLuqoBO03d658qLORVL9MmYArmOq8E30IdJ+97l2c9yOrXous6ysYvZ/eu2Qh/DHY9C2OS6k5DvGaxb97ENOH85LpcQYgDwMoaOY4mU8tVCGWUOZH0SZ82eSmCgEZL5gGuNQXItvPj6kw8B2HdwFXdXfQKJ5Oj+U1SuWY4Eh0RHkuwEccazLeSVaPhoFmHL8Yv/FOC13Drs+GMfZw9EYU+zYwq6uRmZ1HV8tHgiKwiKrf6Qu96ahMU7p8dX+N01OTr7b0q3bZirvt+DT2Ju/Sjf1BiGJiHpQidCK+bUf3f+Ie+Ns/c3j4IrCHhuBc4duIDL4SK0VBBrvviHkHKh1O2S+/qK4IYk++v6/xLXoyIYBBwEAgCEEK0wvCXqSCntQohCi68xbdrnPPtsbmKR7RuP0axZLD6+Vly6DU3Y0PU4nuzzFE/2eQpNy9r5V83u0CS+0RywF6ei1Y49OITFE/9m9YxNjFo6iKASAYV1Cf863lo6iIwUO743KVwBHIlJ2A4fRAogxIH9yD68a9bLUaZ4w2r02JAzwq+u66ROeAQlpAzfTTXGoQJSXN8MxmS+dZytUkr2rzxEqeoRfNJ5MhnJGXx54VP6zhtAQBGvwbXx/5tMK38qAiFEJPAQMC1b8ovAWCkNklYpZbSnugWBZ555Ek1LQdNS6NCuGz6WkvhaSvP91z/RucUAzpy6RKBXOYr55A4Hcjr5L04lLqNClbIAtJz/BiWsGaRKBx8fHMuFQxeJPhVLRoqtsIZfaIi+GM/FC57DUV8JnwBvQkoFFUi/8QtmE+SfSnBAMl41ahPY9eqmT/adK4jpV5WEwZWQ57ah7VlMi1fcnlIC5vQufDtTR2wcCes3XbcL7L4Vh5jw2FQ+fGACnV97kC4jHkQ1qVS4pzKhFYpidl0VEqQu8nX8V5FfHexE4FVyTvirAM2FEJuFEKuFEHnHdC4AtG37EI0aNadq1YooikLndg9hkhbqVq/BvFlLDdMtzcm3X//AsmWLOX7cMIcTQmTSEwLUaVqXd85/y4RLPwLw/Be9+OrkWCLyCHD39hsT+O6beYV5aTeMtg370aJu31vuN6/b0gAdp0shetsxdFvuMD3ZkTL7Q6TTjKpqqJ1H49P3O+o+ci9VH6gHiqDLpKc81nO5XKx+fx5Oe97cAfnFqfGfcezN90jddyBf5V8sMYgXSwzixC6DkyL+fCJtnruPh4YapEzTRvxE54ABTHxxemaduPMJLPlsuUemsPwi4VIyj5UaxugeX9xwG7cV9Hwe/1FcU0UghOgIREsptwshWl5RNxi4G2gEzBdCVJBXvO1un+LnAcqUKXPDAz1/PoqkpCTGTRjFp5PeBiA5KRWLxcxXX85GQUFH8ufvq5n782TAIOr+7LOveeSRrlSqZNjAxl1Mwmw1ERBsmOQoioJPgGePposXY5g84XuEIujz3GM3PPbCQpdHWuBwuG65LjKi3wDSdm1BXIzHanaiel9d7RDw3BjSFo7FUr85Pq2eyUzv8fnVTZ+m1nwZBdjz40oGHJ161bLXHHPPh7GWKI5Ppfybkwlg/9/7sfpa8AvxzZH329TVAKyYtZXBXxqk42O6fc6l4zHYUu30GHn10O6LJvzJT+/+gaLAjLisuGIXT8WSlmxjz5r/iHvuf3h2mh/kZwbbFOgshDgFzAVaCyFmYricLXKz3GzB+A6FXllZSvn1Zf/isDDPNo/5waIFC2nb5DGOHTZ8yJ1OF00q96Z9kxexZdhBkfTq3ZVJU9+mbKmmRITdxe+//clboz5g/DjDgsBuc9K18nD6NH0vX30mJyWjWp20btfkhsddmHhvwst89PngW96v4uWNV0RJNE3F5bw2naGlSiOCX/8Jnw6Dr68jYWwwF4Stun/dWpQd/BKqd27vLk+w+FvQgcGLXqbJQ7VRNZ2Jvb4mIcqIQDxoai+EKugzpmtmnfbP3UexkoHc3b2+xzbPHY7ijfs+4rvBszOFKxJ++3wlq+ZuAaBa4/JIjGfVcRXWrzsCRSqCawtYKeVIKWWklLIcBr/iCillb+AXoDWAEKIKYAHypxC8AWxYs4vV/2zj/beNr72qKtRtWJW6Daqwa/d+nJqD+bP+ZM2KrVyMPkF0/Ame6fMC/V54htffMHakzRaVezrUoekDdTz2sXLlGoKCIlm8+HcALl2KIS0tjeo182bR+q8GNbwWij/dj2J3lafilMJbyr58aCrV+nWi78bcpl6FjUnHPmHqpUn4+PiQHJ1M/KVkdi3bz7GtRrDG1j2b8GvCZLr2b5NZp3StUoz4dQClqoZ7bPPrF2dxdv8FVs3YbEyPJehSMv2Nn/lq4FzAUGn5qgp+JoWFHxaag9EtgjBmsPk5/qMQ16O/c6sIhkkpOwohLMB3GCw2Dnf6VdmkGzZsKLdtuzHbQVX1x6L449BTclgHADRp0IlTp84x4rXB9Ov/KHXqNubkydMYdiIKdnscJg9kJNu372TNmnU80f1xZvT9hnfWTyHFkYrJZMJuN9ihoqNjCQsL8bgMb1S3K6eOn2fFhhnUrnPnusFGffUlruRESg8f+W8P5baEruvMfmcxG3/Zxahf+xNeLvdK7OLxGAY0eI/g8AC+PvS+x3aObj3BZ09/T5NOdWndtzmv3/cRfsG+xEQlo6gKs2MnAPBE+BBcdo1xW96gVOXc7tu3CkKI7VLKG7ZDaxCpyg0D82e14vVa6k31dbviujy5pJSrMFhskFI6gNxW4IUEPz8/UlNzE67ExyaSfsiPECowYGgvTCYTBw5sp3Llupw7dw7Q0TQNk8lEXFw83bv3YtKksTRo0CyzjYzf4sg4Fk+3sFZMP/8bgwe/mJlXvHgurUcmzCaDMUtRbo3Z0Jl95wktXQyfwJtnwcqOuJ8XIgSkdn4Yv6rX79IrpeTcOyMxl4ok/Llrh9227dtC/PiX8W7fi+DHB2WmL+s7nuhdx+m+5H18w4td9zgKA3tXHWb6Gz9zev8FJHBy9zmPAjYh2ng2i13FdKtyowpM3p+lnpq8711MZhPLp2+gVNUsQdprdGfmv/kLWxZtp9trV9fl3vbQ70BfpgLEHXP1e/ZswaIGU7pkTnKPT4bPxIwZb3x5/XXj4bVYLCxalOXKarMZJljFi5dl3bp1OYRruXJleeST3niVKsbgz4eiaUl89JExA5k0diY/fr04zzFt2L6AmNSt1KxV+DwDZw9cYETzj5nc54cCb1u6aTuvtlmmO+yk79+D9KASccZcImXrFuIX/5yv/mzzXsYvNArnpuk50uMPnkGzOUi7mD8HkOuFlBKpXR85+PGdZzh/IIpQKxSzQs17PW+Sefuaufuh2gz+4el8t+0f4od3gBcdX27NXe2ygm2uXbADTUrmf7zsusZ620EWqQjuGAFbtmxpjp3cwr6Dq3Ok79t7HIdwYMfOxAlZnK0NGtzF+++/xYcfvkNgYO5ZxS+/zGXq1CkcP76PH8f9zbLdF/jwhZnEnDVe7qTEVMZ98AOjXik0JrM8obk0Dq87isuRJQxCSxfjrvY1aPpogwLvz6uS8YGweCC7uYzY2T9y5rWBpKxblSvPUjyc4k/1JXL46/nqzxmXTPKFUMy+OWNl9Vg2hs6L3qZ4vSx75owlE0gcUImMZTceaif19TBSR0aQ8nZ1Ul6vhUxPQnNqLHr5WzZ/e/UYaZ0HtWHkgn6AwM/Pire/59XDih83suOPfZzefc5j/vWg6j0VSHeB/A+4kEop8nX8V3FHkb2UKpV782Dgm48xqPd40vR4LjM022w2QkMqERQUwLnzWXaPffs+zbff/kC1atXp5A4JIqVkz/LDqEBzv2R+feQdnt00iRmfLsFPD0T5F75B66ZvYN7IhXQf3YW2L7YGwNvfi+HzsjhlnfHxmIKDC8REq+LEz9DT0zF5+BBdhn+TpthPHsOranWP+aGPXoNnNTsqd0Js+4eMKF+CsyVb/H0oVjWnzk7a0tx/8w7OeG0oKKoOegzStwooChmJaRxcspO445do0rd13jUVhdptazD+6FisvtY8Y4l1HtqWyo3K0rCj5w3U60G3Ie1Y+f16SteIuOm2/nUUqQjubPw8exVCEazaMx2H8yIATqcTu91OQkJijrJffjmRc+eOsXt3VrwsKSXCruFvshBo1hFJxoscE5WINz5Y8aJaufsJ9W3M66+M51ag2n1VqNWuJjVaet44uzDtW/Y/1pNDz+cKW3RNOOLjiV+9NkeaYjZfVbgCeFevSel3PsZS4uZf+mIvvWuE6LZc28TLp8ebBHy6H58ur91wf4qqAwJFCGTieZJer4lfWAC9H9lK13pfoDuu7cXnHeB91UCNr9R9h2n9Z2O3XZ9plSPDkcsxwT/Ej+/Pj+Pdv1+5rrZuN8giM607X8CuX7IXs2Zhydz1mWn+/v5UqFAauz2DCxeiMtPLhDWnTuWO7N9nGHEf23KSqCOX+OHIB3RqFoJdU8goZmw2nDh7Hpuw89Az9xIXk4AqTEz/LkvHKKXkr5+3kHSDkQ6uhhKVSvDSzOcpWb2kx3zF2wsQCEVBdzi5uHQltqhLucpJTUO351yG73mkFyff/ZATY8YV2HgPfvAZq+7tzubHXspXedXqTckftxHx1dprFwYUszXPPMf2xaSMaYce6znGFoD0iwThQrOBUCVCGHrkEiH7CQhOIv2Lu/Osm19cFhGKkrewSE9KZ0z9N/j1zfnY0+wkxaTQt/xI3u4wKc86dzYEUlPydfxXcUepCLLD4XCy7I/VlK8SwbkT0Tzer32O/MmffcKB/QeJiMhSK5jNJhwOg3jblmpnzEMTCSwewKf736PjZ/0Z/cBEOvc22jlzJBpVqlSoEokXgUip8c2Po1m/bDd/LdjMz4v/4nzaSaz4cSEtp164sHF62hyQJsLaPMCOhx/BbEsgTjWB2UzNxX9mljvyygjSDh2m7sI5qH5uTyQpkQhS9+3N1a7UdTLWLcZcoRbmyNy8Dnkh+u91gCDjbG4hX9jQzuxGv3SMlA+aY67XAZ+nvspVxtx3Mc7J9cGkoqVaEBbjo2OP80Nm+OFd6yj2qT6Yn0/1yAmcH3wfMxEp5VXr//PJElJjU9gyfR2bf9uLPcNBRKXihFe8cQec2xqSAlMRCCG8gDWAFUNuLZRSvi2EKAbMA8phRDR4VEqZ4K4zEuiLQTkzUEq5zJ3egKyIBkuBQVd6oBYU7thPx7ffzOPxx/pTuXUxtiVNJ6R4UI78++9vw5ChL2fqKJ96+HVMDj82bl9IteoVsfpa6DSsA91eN3SxERWL89WRD3noxZZsXLIHk1RRUWnZoQEoEqEoWFUvBnb/lL9mbyY+NQ4FFRf2K4dW+JBGcEznxUt4OeJRFfdyzJFzLJaIcKwR4YhsIU+KP9IVVZGUfiF3hNy4Ka+R/O3bJEweel3DaTjnM0yBflT/qPDYKue3eIGZtZ5m9as5iWG8uryOUqIUQgj0S4c81pXn9mDycaB6OwCBqGw4B6hmDXOpi8h0DZkGWvSe6xqTI8PBnxOXkRqXihDimsK5/YhOSJOK4udNdHwqUTE2Og9oRev/Nb4jyYbygwJUEdiB1lLKuhi29x3ccbVGAMullJWB5e7fCCFqYDhG1QQ6AF+4KVfBiET7PEacrsru/ELBdTka3CxuxtHgMoY9N5Yt6/Zw6NJBXDaBFC4S0nK/GKdPn6Vli44MGPg8Q4f2p4Lfg2jCRbVqFVi2NW+/dl3XaeffH5AEhvqx6PQ4urcegi3DwU//fMqHA75nxdxtXBRnSRFJhFhCORj/+01d0/XCHhdP2rETFGvSkB1t2+PSJD5eTiwVqlLl89wzuPzizOONMKlOdEsQkd+tKrgBXwOumCgcp4/i3aB5npt2s2s/jaqApsP/9v6QI0/XdbT9y1Br3p+nkEsaXRdpi8Vn+GYsIUZQUdt4L1QvkE6BlGAZnH7NTUNd15nQYCTWAC/0EsU5tPoIZWuW4P7nW1Dn4btRTJ5tovf/tYcKd1dmVM2RSF0SlW7w2eq6xN8iaP7EPTz6XnesPlfXS6clpOET5HNL+Cdu1tGgfoRFrnk6bzvy7PAfG5XvvoQQPsA6DEa/6UBLKWWUECICWCWlrOqevSKlHOOuswwYjTHLXSmlrOZOf9xdv1Cikt5xM9iNsw6jngnACx8UoaLg+YFMSUnl3LkLHDl8HACXcIAO9SKu7nElhMAhXWRIFwkxhn510YoJLN34OV4+FnYv3IePMFOGMlSWVZj1c8HpMrMj/eB+EpYt9ciUZQ0pRrEmxrOY4fTB4fQloFe/mxKuANYmHXA5Tfh0vrH4U66kRE4Pf4mkv5deV724L94l9pNhOE/mMQPVNcpFniG8eBRk22jSdR3n9vlgS8Zc+4GrziAD3tpJ4AenM4UrgOZdDt0B0qmCJvIltNLikslITCPxdByHNxxFSh3rmdOsfWsGy9/xzLo2/flp/NjnW96sMYKXfx3MU988gy7dqw6gatPKSOClssM5vOFYZr0lny1n3juLM5+BfX/vY0SN11n5zaprjvO2wGUVQX4OCBVCbMt25NrBFUKoQohdQDTwt5RyM1DiclRZ99/LtHilgLPZqp9zp5Vyn1+ZngtCiEghxDAhxK9CiK1CiDVCiC+EEA8JIfIlO+84HaxZmJFSUsZSkdOO8+hofD5hNv2H5AzrUaNGVUoUq8Dqv3cD4MQBAh4Z2DZHuW/f+JnipYPp9EJLwBCwilXBZc9tkC6EIDDED1+7E5fdRVipktRvUTgusucnjMNx9gy+9epjKeHZtx2g9tRPsJ0+T/EOLW+6zxKD34PB+SPC8YTEA0exHdpPcmAxAtvl9kCSUuLa+RNKSHnUsln2vIE9+pBRvgrm0p6N+DO2LaV6BWMTq8XfWcb3zhWTcP49HlGiCr5Dr27Pqmsau9+dRvme7QmuafTj+9IhpNRxbJyEWqHtVetfhn9YENZQfxRFxXkyhXCrhlUFRUicCUme+5aK4cwBrJmzlVXfr6NS7XDO7LvIfb0a8+znvVk/dzM7/9ibyezmcriY/bbh5NLuufsoVjKIgLAAgkoGEVo2f7PCfxsS0PO/gRV7rRmsOypsPSFEEPCzEOJqgQs9fS3lVdJzVhbiewzB+zvwEYZQ98Kgae0AvCGEGCGlXHO1Md9xAjZBJOMtvUlITkVXDPObjz6YlkvACiG45976+PgadpUjRz9PRpqNhm2z/icx5xL47bMVCFVkCliA+fvGsGzuRrr1bcnvP6/i959X8+mXr+Lj682Mk2MByEixoZoKbwFQavAw7GdOYS5+dV/0gOqVCaj+70esTb2YwNrJv1NCV0nZvoHSHsq4jm/GPm8weAfjNzprk82rViO8auVNJ2yucR92VYDbNfky1GptcK6bhql+j2uOb8+H33Fu6TourNhCx/XfZ6YLoWC9d0ie9TRN44/X57Jh/jZ0XdLp/YcZvnUMAL98sJg1P6wh1WmY9t33Vk+PbRzacAybDl3e6sKuvw8CkHwphWfGP0rtdjUAaNqzCU17ZrG2mSwmOg1uiy3FRnCEYUJXpl4Z3tueO8LubQspCsUOVkqZKIRYhSHoLgkhIrKpCC4T/5+DHI9hJHDBnR7pIf1KjJdS7vOQvg9Y5OZiuSb/6h0nYK0+FtLT7FillYuuSyAEMj2nHWHr1l3Zu+cAZ87uxtvbmwN7T/DbgtV8NNl4kdYu38HaFTt55Y1eVKwVQZW7s2ZOtjQ7v89Yw7T3fkUxC5YuX8WaFdsYOLw3NWpnlfP2zx/t3Y3Cp0ZNfGrUvHbB64ArNQ3Fy4rigfjmZrHq1W+JTFtBqWKpCJPTYxnnyb040y0Is6/H/Lxg9gskeHJuflRTZB38Ru/PVxvlH+/Ahb83U6ZzixzpeuxxhF8YwstzuKC/Ri9g9/yNmHXI0BTmvTqfrYu20+/H59k9cx2VqoUTvec0EjD7eH4mHhz2ABtnb+LuxxrT5NHGfPviDNq/3Joa91X1WP4yer7VyWP6xWOGDAnPgyT+dkJB2bgKIcIAp1u4egNtMWaWi4GngLHuv7+6qywGZgshPgVKYmxmbZFSakKIFPcG2WbgScCTu2aedn9CiDJSyjPAsbzKXMYdJ2Dve6wKf367myQ9Bg0nSEH1KwhK1q7ZAAhmz/6JQ+vjWLViKxfjLjLw2TGs2zODF3t9QHqajXK6ifBLZ6lToR4ADpuT5yq9TmqGHR+8SI/L4PPv3uDkiQs5hKv8FwLu3Syc8fHsfrg3/vXrUXXchwXefp1n78f1/SKEdCE1heM97qXM90sxBwRllvFu0xfF6ou5dpu8GyokBFUpy0PrvsuR5tz3GwlfPIuCHd8PD+EdlFsVU6lNbbbNXItitiA1HQEoJji0fB8ZqTaObD2DC4GKxGFzYfXL3XfzJ++h+dPNMp+ZwfNfzF3oOvDWfQZ949cXbo3jy82gAN1gI4Af3ZYACjBfSvm7EGIjBtl/Xwyh+IjRr9wvhJgPHMAIytrfrWIAY3PsBwwzrT/cx5VYBdQHEEIsl1Jmf2h/uZx3Ldxxm1zjPnuTmg8F0qhVdXxNYfibSvDN959k5icmJnI5nGVk8fKsm7cbrxhvIkqEMWbSYAAGvd6LhvfUIAUflkTpLBz3Fw67kz1rj3DWlkKy04UCBAUHEBwSSP1GWe6hF47H0D1kMN+OXHQrL/umoXh54V2h/HUx+l8PytxXm5LjfnUTxwg0p0ra4k+JfakaqUsMQ3qhKNgWDyP1nSbEv1W3UMZxPUhb8Bg+weATIXCNq+exzOK+U/BVdSNsjQSzIjm74TgLBs4wNqkESAQuKTI3o6SUpMwZQ9pvX+K4cJZTPZtx6sn7Sdy2qUDG7edrRnW5iD1daPTLBYPLKoL8bXJdvSkp90gp75JS1pFS1pJSvutOj5NStpFSVnb/jc9W5wMpZUUpZVUp5R/Z0re526gopXw5DxvY7F+GK6nd8v3VuOMELMC8BdN4ZeRzmLCg6U6e7p2lQ/Pz88NqtRAY6E+lqmVQEFgxERwVzIV9cSTHJPPsgG7M/+sTSlYOp5qfCR9d57mIwbzV7Qss0oRJCHR0ur7UKlffiiqweFuweP07k//zBy6Qnph+3fVUHx9qTvuc0i/0vaF+k3+fTvKir69axiskjJI/7sXvf8NRq1VG2zgb6VCx/561AlNQkJoJU0aWcHAe24rLlTfLVfJXQ4l/rS3SfvXYX/mB1LLUF4rDH91uRUvzQphzv2NSSswKmBWweJsBiUVIFEAIUASgS1QpMQvJwX/cvBeaE9vyWWQsn4Xj1GEUISE9meh38w5F7glOW25VS1pCGiahY1Xhny+WX1d7/wbuYFdZmce5p9954o4UsGtWbGP6N4vp8HBj7KRy+nSWjtpkMpGadp7YuBNcuhBPAsno7tjBxzef5M06o9g0x5hJVKtdioq+LrwUjZqBGVi8zVSqGI5JqHgrZiyW3EI0vFwo885/whNvd741F5sN0Sei+aDVR0x9atq1CxcgpJSkzvuUtF++IHXvHuKW/J7LfEzPSCP1t+9wxZznfGwJ1i5RQLGjWm1I1UH8wHIkvFIRlwNMfqk4M0y4XC5SPnuKtEmPk/rGPXn3n5aEnpaIlFePHpG4Yy/rmnfj2LgvPebHD6pEwoAaJH1qbIo5Apvj0h2ooTZUax6G/j4WdIuZjm/1wN+s42UCDYlTM0LZuIRAEwKHFAh3+HFhshD83mKC35iL371t8Wr/KJouMJldSKmTHpfCgv+N5+ifO/K8lr1/7Ob1isPYOGM9KTHJmenLJv9FRoodp4Q1P2zgwCrPpm23A6Q0rAjyc9yGKC6EGCqEeCXb+eXf+Xa9uy2v7FqYO+MP5i/4mdWr1yIUDcWk43Tm/tpXr1MeFZUUHJzkPPd0rEWx0sUIKRtK/Pl4RrWbgBOdSF8bgVbBLzETOXvE2EC4HYnigsKDqNOhNnc/1viW9qvFnkGxOBAmFxemTOHC5Ek4LuTceE3ftoKUBZNJ+WkKlTrfQ8NXHkaWuhtzUDKq2YHQzGATuOo9hyPJG0VA+lvVUEpUNBzTgj3zLgAEDJlGyOTNKF55b47ZTx0jZcMqkJKUQ573HoR0AgJ5fisAPtpyfIqnIhwO0CB164Kc5YVg4O5JlGlRl7/emkfHD3vi0CQWt1pACkH21eIf72ZxVZgiKqCGGZvVJZ59hcgnLlC67wUcq9qzZ85aLmw7xpoPF2aWP77pGAtenYst1RD03v7eeAf5sOSjJYxuOBqXw8VPby1gzdRVCKDl8y1QBCwcdTurqgRSKvk6bkN8A/gDftnOL//O9wznjtvkAhgzYQjfz/qG8+cTEMKM4lI4duwU1a8wVwouFkC/l7vy4xe/4+tvoUaL6rTq2RSAaW/8hE2Hc+le2HXja/tosYGYAKEInNrtF2vL4mPhhR9vzAngZqCGlsG/XQ/UiMr4l2jEgQGvsaf389Rd8COWUMMm07l+DkLRcOz4g+AXxlCrTwcSftlL6i8HcNlN+JdIMGTR7smowZEojnik0wk+YYhSjQgcnPczK4QA4dlD6jIufjAcLS6a6h+NJ/Auz/pdNUAiMzJQLMbHWOgSqVlQfDMQVjtyw1PQ6JFc9e59+X5CK5Vgz08b8TFDhlNi1yV2DUzujSunFMQlO3HanWyfs5EN01bwzJyXCS5t3B/VVyKkBHma+n3aknw2hpqPNuPvMb9g9rJwan8Ue//Yw11dG1Dp3spUalaFd/ePYf6I+aTEpKCaVS4cu4AQ4KtIdv2wCosiUK+iWrktcHsu/68JKWWe9nBCiLxtCq/AbfnpuBYCg/yoUb06JtXMfS3uBQTpaZ6XeP/M3EKwHkCj8JqUiMjSVf/83So0KQlCQyIxCR2pg+pmQ/K+hsvi/ycIIfDt+R5eLZ7Eq2x5cL/UMX9m6QC9W/REUSVq1frEvFCRmH5lCO46HLOfE98KTqSuotutWIQvMj0WAiKxdnkH56HNuE7sRk+/OVaykKdeJrhXP4rd2wSTj2dSbK8en6JrxiZc6vKJSJcJpIJU3Et7q+fXoUT1SGI270e7FIufqhHopxjR3gRYFYlJSIQA6dI5vvEYG75eQeLZePb+tjOzDd2vAZpPIDRcicXHQvuPnqLkXeXZOu0fNk9dRo8xj9D3h+eoeE9Okp1Hxz5K32/7IoRgwOxBuKTRF4CCvO2JYv4rhNtCiBpCiHeFEEcxuAzyhTtyBiulxH4qmKqBTXn00Yc4e+oCwXmw8Xfv05wlU1YQfUUYko4vtGTZ3E1Y7Il4ud1ta/qe5ISrMppT4+ujngPXJUUns2nhdpr3aoJPYP4Cut1JiFq2jlMzfqXeuNfwDs/pMZS0Yj72WaMoXtKPtICmlOr9WGae1z2d8bqnMzH9wlFEIBITjvQUQqccASDhs4dRTmxGSOORU1o9g7XZ01ga90RmpKAE3pyg8Gt2bdMvUeE+TBYJUkWe+g3hlQGays7zI8g4uAJXSAfav5C73vnNh7m48yQSiRAKOJwIzFgVMgXtgDkvcGLzcaq2qEbIjBfZ99sOmj6fReRtbeohnI4QWE0CxazgHxZAjXa1WDdtJZWaVyW8qmeVSZAZHDogwarAI58+ns879C9AFpwd7L8BIURZ4HH34QLKAg2llKfy20a+Z7BuP+CdQojfr0gfJoSQQohb5r+3dMlKzjh3EVDBRZ9nH2P/keVUqODZqSKgZCBSQkqyMcPt1eFNqvp3p1ydCH45+AmjT3yDn2LHT7FxX8kkXA5jQ+zUHs+hP1Z+v455b/3CxoXbC+fi/gWkxKUSc8rY1U/cdZDUo6exX8ptAmSf8yaKGXCBd/RWTvfrlquMTjq6DhKd+KEliXmhIvaTOwkesBBN8TV4WcnA+dvbAAiL11WF6+8vfM63TV/FeZ1E1p6g+ociNYHuUlCStmHy0zAF2an8RE+qNTxP/Yc8mz2VqFcBQ6YJkpySDE3BnKmxMARItVbVeXBER4QQhFUsQavBD5B4MYaxFV5kXI3+HtsVQpCqWolOcjGp3Rg2z9nA7+/8zMR2Y/O8Bl0aAl0I0ASc2XLiJu5I4ULewTpYIcQGDCpDM/CwlLIBkHI9whWuT0UwCDh4xSBKA+24itdDYSAq6hJSSqx+147mej4jmhIPRfLVxjcB2LXF2HVdNPOfzDL1I45SP+I0FquFp8Z2p/3z91Htnkqsnb2J+PMJOdpr+VRTeozqSJPu+bIzLhSkJKTSLXQwLzX2PMu+Xoyo9zZvNH6PpEtJVH2lD00XfUZQ3SyOhZR1C7CfOYCighASoRj6acUvt/dTsckxqN4pKNZ0fIs7QarYvzeCTIaMP4Ri1jGbrFDvf7nqesKplXvJiE3m7PqD1y58DSiKgmY3oTtVNKcVhEQCAWnzCPaKw/eUZz2wyWpGcVuUeFlULEJiTGgM5KWt/+ze90hxmUhOzXsWZ08xKBSjD0Xx9yfG3OVqxhJ23S1kMY60lJs3XSs03NlWBDEYm1olyLIauO6973ypCIQQkcBDwAdAdrLQCcCrZLmn3RI8+9zjxJxP4avPZ7Fj637mzPmFC+cvMWPOxByMSrqu89Hb3wIwcbphg/jz2nFMm/wL73+Wxb5vNTsQiuRsnC9d+hmulHv+3s/3A+fQuHt9Xvj6qcyyQeGBPDSo3a24zDyxY/khHHYXpw9eLJD2wsqFEn8hEW9/by59PJL4tVuxhAVQefqvJM4ZhWv1LOyKDpgQisSrhKTYM6+gVs8idNEz0hFe3pitVixBqaALXLqCNCehZ/hy7om6+NcMQLUqoLtwrVpC/MEdFHt3ZZ7jsmdkkOZUAEnJe6rk61psf49H2zkbn/5/IXxDcuV7l41GMenoqg4KuByglmqDnjIVVB1H9BksxXOvhl7aa/DQTqj0EiYTBCBIdABIilcNxZZuY1yrsZSqWYrzW49z/+ud0RUFdIF+lfeyYquqHF95mBK1SuId4E3SpVRUD+aBlyHdx+V4iIln4vJ1X/4t3An6VU+QUnYRQgQCPYB3hBCVgCAhRGMp5Zb8tpNfHexEDEHqfzlBCNEZOC+l3H01t1E37djzAGXKXJMbId/Yvn0XMSnnmDlzIcv+XEvUhUvMmbGUDg81IyQ0CIC0tDRStVgC/YqhqsZst0rNcnz81eAcba2/VB/p1PAKM/wczx84zfw+UyjpDQ8Nyh/L0q1EkwfrEFExjHr35U/oXAuj147MPI/fspfkNH9EukZlQFs3G4uPju4CYbZjsrqQiZL0OS8jnVbMzXuTkVaSM9//il/JACpPX4iz+msk/7oI/zLnUU0uUqJKozssJO1Jpczss8S/2RypxSNjrh6Bdc/s9Rhm/ZK445coVbvcNa/FsXwcQqqkTGpFwOu5eYKFKhEKCKeCbldQLRqWMk0RJZNASBx/1cTSO+8NN5OPBWe6g07jnuCXUT9hT7HTb8bLbPxhHUnnEkg8l4BFkaQnpDNyz8fMeek7Wg28P8/2+k7vj6ZpqKpKalwKuxfvoH6PvM3wxp2bxOtlBqEIw/LlzKZrusP/q7iTdbBSyiTgO+A7IUQJ4DFgohCitJTSE59RLlxzbi6E6AhESym3Z0vzAd4A3srHIL+WUjaUUjYMCyu4Hc/Pp73LkKHPMXTYc3wy4XVq167GkJfep27lzui6scYqG94ciUZiagwXLmSFM4k9G8+brcez5TeDynDg/s8ZdGQq/dYb3K5THxhPsFUSbJUs6HLj9H2FBS8fC9N2vc3Lkwt+g6PCZ9NQLQqhD7o3jULKZbq/OpJ9SY8JRAZFI21eoCm4Nn6Ha9tHVGi0HdJOYJtYFtfa79DsXjjigwgafwlb02eJTdfxCUglYdZovP/3EcJsQ1OvvknYqG9bFBOoFiVfwhXAVAKsd+mYrHkI7zbT0B3u6Z8CTjfxNaV8obg36kVj6Z/+zQNkvBdM+oIBADgzHPz29ASa9m+PTRcsHDwTR6oNRUiCShXDP8yYewjg3eOf0uKltngHeNNnZn/KN/Ycfkd3aWQkpWd+/Nd+vYLf3vqJH/t8g+bUPNYRQlDpngqYkKhC0nZ4x3zdl38Dd7IO9kpIKS9JKSdLKe8FmuW3Xn5msE2BzkKIBzH4EAOAGUB54PLsNRLY4Z4+F8y6NQ/ouk73BwZQvmIkE74wZl7/6/4KJw7FgQCXS8v0MmrQoDbbthlC1Gw2E3Umlow0Oxmx6ZzYeYb9a47QuFOWzeTbjUaTGJVIh4GtOPD1XxiG0nZcNgcmLwuONDsxR6MoWbfsHUf2AuByukg7fpJdfV/Dq3RJmsydkquMd+lSlG5XE8epjeiO/jhEBdIuJBP87Aj0ha8b5kjp3ije6UhpxuLrwCwy0DOshNc6BmkK4E+xcmcMszdVZfuSONqWSgZpQlszG+9eo/H+8ni+xvzqkdxjvBrUUBeqvwm7yCNQYtRWhBWUQAlo6MnG/1GeTnXHKzMoEcXFTShmHdf+2fDIZ9iT0zi/6RCOdBsCcABCCqR7+V+1VXUQULJWKUxXWeJ/33IorkspaDr41qvB2a3Hqdu7OcdWH0L6+KDrcHzjMaY/N41nfshNsh934hJntpxACkOY/zpiFoPX3KYUhnewFYEQ4jeurnPNlyvnNQWslHIkMNLdaUtgmJQyBwGnEOIUhvlCobNPfDF5JhvX72Tj+p106HwPFy9e5KEuLfns8BzefKcfffv1zJwR/L1mBk6nE7PZTIWgB9E1SZAewqbY7xi/7Q3CymTp6KIOXSDhfAJIqHBvTbeAlYRaJSte+JT2P4xg6ah57P15K0/MHkC5fOoEbxfsWnGId7t9TqCvwtPlwRZleKxlpNhIikkhvELW6iJj2zrQXDgvXcB1+hggED7+iOIVkS4nQaM24TqwGnPVe9BWvo9r9yyQAtVLR/ha8f34EOmv1cPUxDDab/XBEzi//h2zKxlp9myj+kH5lwFoO6o7Tfq09lgmP0jbZcLlCkAVeWz+hNeDw2RSL6tPnATAEWdFuiwoxYx3Kj3BDy//dJwYfK1+JYLptWIM1gAffh8xix2/7swUcgD+oQG8d+gjzFZzri6zw3kxBUUxAjOkxxs8slt/XGsMxkdFYuQd+sczDeOU1u8bnm8IQJJ4Op6ofWeJqJWvFesth14IfLC3CJdDlQgMT64b8vC54+xgDx04BYCUOj26P43L5WLCxA+It59i37YjzE3/iz5vdM6cYZrNxgOvawY5d9naYVi9zERUNLg0ky8l4R3ow/d9pqFK6P3lk1RtVoVlio6KjurnRfEGhjCt1bkBGYlphFWJACDm8AW8An3wDw+6pffgRmAyGw+6y2RlR2wYKTaVMnvO8X6bsfibJK+tezvznpQa+w3OS+exli5H8TenYNu7BZ972uLXNCtyr6lhVwDUzp+hRf2FSDuL8tQBrCHlAPCZksXf+vc7c+jy7V/4Bwddc5zbZ6zNFLArJyxl64y1PP/bcIJKXUlolBvOX57Ep5gNTbVgfm6zxzLWek+Rsf5D0g8n4Sr5PKFBxv/Se9ARkpbMIrDTEwAEjliHbcV0Arq9klnXv6QxhotbDuNj0nHoghaDs+LlefldmyPYFOKPFp+CS4cn5wwmas9pfnx6KgqQkaJlOrqoeUz8hFsrrUnDVEsIuHTw/O0pYOVtS+RyTUgpM0NFCyFSs/++HlyXgJVSrsLgSbwyvdyNdH6dfQMweeqbnDxxikb31uLY8aOsWrmRPn17cnfjBjze9nV2/HKWxwfdj082QuyEuGQuzzW6PdmCze26ga5R5Ycf+LjpO1RpWZ2H3ujMpSMXqd/FML/SpYIUCulmf+oN6A5ApZY1KVm3LD7BftiS0vn2gQ8JLhtKv5WjC/vybxq1mldhUZLBavVxgzcQwo7T7qSCn46vCeJOxmQKWGvFKlgrGh8Va6WaWCtdnfjbu99hj+npSUl80/A1JPBt45GY/Lx4eecEj2Uj7ilN1MbTJJy6xAflX2bArg9Ij08lPT4NzZE/d1ARWBaEjlrxXiwhEaTGnIVPGyEl+I/N0lx59z+MeuIgppLlMtNMocUJeSqLlc1UvCx+PUeh2XPa37rS7ThSM7CqMGjL+/iGeXZwyQt91n+KrukoqsLKz35n7fg/M4WpjypxSoEiNep2ruexfrUOdTny5240KVEwgjWq3lefNf9bkNy5VgRX4IapSe6YGWzHFv2JuhDDS8Mf5fz5GN5o34Lvuv2CPcPMo50HEegbTLKWhE9JrxzCFcAvwIdWbRpToXIkT7/UlU3zpgECPTWRyLplqHBPZeo+VM8wRHPj2S1j2DNrPfe+nJU4ovSAzPMxpydR59F7CHXPZgGWT/yTbXM38uKvQwkocX0v3q3Eq9s/yDyPtgbiTEihe0RwgfYxo+0rOM8nogiBJg0B4ErNWrZfVgkM2jsWPz8/YjefxqIIw0sJmFTvDRya2225hAcWaw9IKdWPP+aexeznwyOPgPyqDSZfO7ozt720pUL1XGkxWw9yccMeQutWZP/keYikWPTUVCIf6UD1YX25sHYPq16aQN0HGhPRsiE+oZ6jIFwNZxavwhpSjBJN67Bm/DIUIRBSIt0z0xCLC0XA2WXbgdyh1Xcv3cvlyYKKsUG3fNwSandskKvs7YCC2sBy29xPB8IxTI+/llJOEkKMxrhRMe6ir0spl7rrjAT6AhowUEq5zJ3egCzC7aXAoCs5YYUQ2ZdMqhAimGzMPtl5Z6+GO0bA+vh64efnw6Qhi1CEP0P7jadxk3qsWrWBBzu35NtJv2KWXvR8qn2uumazie9/ydoIECYVdJ3QGhV5+XfPHJ1+wUE5hOuE9mPI/mC/22AkT894ia96fE617g0JCAog/kwsiecTcKTbC/biCxETDnyAw+bC6wa5FzSni4v7z1GqXrkc6c4LiSAUfE06SY7L4iMnhIBJtUfwxskpbpWoREph+NrrcPl+J56Jx6fatd2SvUL8Ua0WAsoZHz3FnAouiWJxIKXEuW0RSkgZTBU8c3WsHTgRZ7odIXVUBRSh4WcR2GMNZxNLoC+6hCO/b2fNT/tgwA/4hPgzfHuW59Xfr/+AdGm0+6gPUtNzhPFOPnaGve9+jZTQ4Iu36DD2Yf4cscDQBbtfXe+IINIvJBjGaVKiOV3E7D9LeN1yxJ2MIStun8SpCyQGbeLtCr3gZrAu4BUp5Q4hhD+wXQjxtztvgpQyR3hnIUQNoCdQEyNkzD9CiCruqAZfYpiObsIQsB3IHdVgOzmDJGbnlpRAhfwM+o4RsAv++BQpJSV87wYpKBtTgbm7J2ByP8Afj5iJWVhY/scWhr/Z96q7/E2WX90vYscXv7H3h7/oOv9NAssZQQdrtq/NpYNRgMQpwRmTwaT2nyIEvFtzFM/NeYGHx/eiy/uPYPHJYwf7NoSiKB6F69oxC9HsTlqOvrop2A89xnNx71navN6Nu59rw+ftPiQlJZbiUnc/mjquPBZYl+cMb5d5mZc2vsl3936ASwpMiqFj9ArywextpmS1SM8NXAHvkEAe25pFCi5TVTSXD6g6MiUG25xXEMVK4//mWhxn1oNvCSwhWSZUpTvczanf14PdYbiiotJo2miCahssbaF1KqIHh3HxbCq47XMz4lI5s/04ZRpUZFKtl7C6NKSEU79tQgDdfn2L0CqGftRpc5GumVEUgVcxf5o0qcbKkfMQuD3khCD5QiJWIRHAuW2HObP2MNum/kmHT/tQoW09fP0spKU6AEMJKxA06Z1vq6FbiwLUwbpDcl8Oz50ihDhIHuG23egCzJVS2oGTQohjQGP3hnyAlHIjgBBiOtCVKwSslLJ8QYz7jtriS0vLIEAJJ0ApQXJaGna3f3p6egYZrhScup2dO/YwZvgPuepKXWfGI+P4qd9Xeba/dMi3LB38La4MO650u3tjDC4euYhLA2mxYA3zJ/ttExi+4au/XoEQ4o4SrlfDgYUb2L9gfabu+/Omb/JVm3dzlSvTqCKqWSW8RiQ7f95IzJEobFE2kp0qdk3BoZvQpXB7IGW9bG+cnMJlNlUhjFVFkq5ilwKHLtAQvLFnLK9uvnE7ZHO74SDA3GoYwj8Mr8c+xrvnJ9g2T0D7rgva501yEIc3evsZuq//khKtGmLXQC1VMlO4XsaTaz+m1RtduayW06SgZN2yADgzJE4d44Pi3uk/OH9tZt3dE+aTaof4dDPzOo4GDIsBxR01wayAgo6GggvB74O+p0Kr2pRpWp3wuuUxe5mp07k+Xop0u8oK/MP8aJ6NVOZ2gsSwIsjPAYQKIbZlO57Pq10hRDngLoyghQAvCyH2CCG+cy/lwRC+Z7NVO+dOK+U+vzK9UHDHzGABLl6IxoWx/O7UqT2+ft78tngZFy5comSFAFJOmwjwCaJMBSN4XeyJaIIii2GymJC6JO5oFBmhaQDsbHc/Akmxzl0oM8Ag4zjy+zYAHjz6JY2GdEcoCvZ0O5+0GpM5hpQMJ5H1IihVozSbZ29Bl8ZM7LkZL/FfQq8lo9A1HSEE6fHJpEQleizXbtTDtBv1MABBF42NJKdUiXGoBLnDmjukACkQV+wV2DTj46RLga4ZhvVGfKuCITy33jcQ630DM39bmjwKgOvI5wirBorElRKPOSDLXE+1mGk+cQAxO48RXM2z5+HdvVpwevkBKrasyb0vZLlNl25ehfNrj6AjsQiBLqHBi1mOAJEdm3Nk3TFMqiFYAczu0PPGdF64P93Gp0hF8Pfw71FUhcDSoZzfdQpnhoN7nm/Drt92knQ+kbSY1AK4U4WH69jkipVSNrxWISGEH/ATMFhKmSyE+BJ4D+OReQ8YD/TBc9wseZX0QsEdNYNNSU7Dx2oiSA/g2HbjI9Tz0ed5feAnOE/7oaCiSJXeLz3AiQ1HmNzqff5412B8jzlwluf+fou+S98AcL/sgkuLFme27x8Zgn/JYpxafxhdM+65xdvCPU80peb9NTOXtM/PfZnHxvXC6m/MViXckY4HV4NfeDABpQzB41MsAGuANz5hV9/UCQoPxyv0ctQBK8kuExmagqYbx5W6wnfPTKHNm9146KPHCC+ZRc8nVAXFnHtjqqDg9eAMMLvAqaCtn5iZLjWNqMkfkbhkEcXrV8Z8xWokJSqezZ8vRXe4eGLu4BzCFeCxH4ZQrnUdqtxfB0Ux4rd5F8v0Lmf3tD8wqQJNM0hbAPwCvDArOooAVeiYBJiFhiokbcb0JP3sJVJORZGRkMq8Rz/h2G9bQTrp9e1zWHws3PVoE+Jv1+CHUqBLJV9HfiCEMGMI11lSykWQ6WGlSSOe0DfAZT/jc0B227VI4II7PdJDeqHgjhGw61bsoEPL50i2peJLAL5Ww1KgW6fOlPGqjZQCVZrQnMaTG1IujFJ1y1KhWRVOrNzH550+5bsuH2cSacQlmXC64Ehc1u5535XvU+fptsx94jN2zFwDGILz4bGP0vChWkR4Owk0O3mz2hukJaUx5vDHtBvSjuFrXgNg+6JtvFP/LS4eKVRntn8FQ3Z9wsDN1w73PWL7WEIrlcj87ZQCTQqM71Xux635c21o8rihQxx7djJjz07m+Z8G8ezclzNdngsDMsMMEhT/LCsQLTWF5L+XkvCb5zAse+esY+PE3znyR96xtLp9/QIPjOtD83ee4OFf3sr88J5euZuUkxcRUmKXoLmFStnWddxTKkOvYPZXCSzmg49JZ/ukxSiKRAiJYlKRukRRJLu/X0lEjdIMXvMWO+dvZsbTUwvorhQsJAUX9FAYN/Jb4KCU8tNs6RHZinUD9rnPFwM9hRBWIUR5oDKwxa3LTRFC3O1u80muQVYlhAgWQtQRQtS/fOT3HtwxKoJzJ6Mx402g8MdLNfPlyhEAxB4QxLjOE+5dBrvNiKMspSSwZDD9FhtG4rHHL2GxqoTXKZvZ3iFHVZwJNpQrPG/KN69O5ba1Kd88pxnPqlFzMCsQYJYkOOGN6q8z8cIkHsjmC778s79JupjEsvF/8NRXzxTWrbjtMWSFQQ35WuRAhACzMHa99XxGOw6NDGJOq1cBeGbn56jW67dw0JMukfJxR8yNu+PTZWSufNlnLxe++oqIiAe43LrqoxDeKA3h3IrUNYSScxZd76lW+IT6U61T3hFDVr89m+PzV2BSJOV6NKXFe0YU35VDvzL09Qp0/qI/5VrVA6DhSw9y4JetmWtXPU2n9vNtObJoA3EHz2N2aw+s/t54h/qQEZvG5VWub6gf9/RtSUSt/G0C/hsoQDvYpsATwF4hxC532uvA40KIehjy/BTQz+hX7hdCzAcOYFgg9HdbEAC8SJaZ1h/ktiDIhBDiPeBp4DhZqgQJ5EvxfccI2Eefac+MQYtRhUKay0FgiGEbWb91edZ+s4Sq1SM4t9OBKkzs23WU2ndlubKGVizBm0dyGrj33+XZ4D2gZDCNX7yfkIolcqQ/OLkvv/f/hjS3BZZizv3g1Ot8F8vG/0GV5lVv5lL/M8g0NHdHW3339GdXr+CGyEY56SlkvZSSqF+W4V26JMEN63hsQ3fawXEOmZ7oMT9t9z4S1m3Dq0IVfCoaG8b6sib4lDuFMKu4FlbE/OipHHV8Qvyp92SrzN9JZ2NYPXo2jV/uRPhdhtVO8sko98aV4PSi9eAWsOU71Of0r+vRJZnCFcA7xM+tcb0ckVah/osdqf9iRzZM+JldU//A5Gus1p5f9SFOmwNrgGGypigKD77dPY+7eBtAglZArrJSynV41p8uvUqdDzAoVq9M3wbUymfXjwIVpZQ3xPh+xwhYl1PDrCiAwFcxEX8pmdCIIEaP709ktWDatruP57q/w/nzlwgPv3HWrt9H/8T2uZt4euaLVL4vaxZbqW09Bh/+/Kp12w/pQPshHa5a5v8TPj43+Ybq+YQF0mfvVHRNeiROccYncmzcV3iVLEHjBZ6Xx/ZJDbD4SfQjs4GPcuWH3t8WS1go/nWyvWfFWyAvnkQ4NKQSddUx2lMymPfoOByxicRsOcQzO6egmFTuebUHix99D0XqBNXO2iTTEpIweVArewX4MfjoFx77uHdIN+4dkhU1wuRlweR158SKM9i07vi9iX1AEBB9I5XvGB2sxWrGJl2AxGQ1UayEseFisVh4qf/TVKlSgbb1m1PWUZ4zN0FEXadjfaq0rEF4tUKz3ChCPqCoap6sVJaQYKq9M5Rqow3u971f/sL8xv1IPplNKCoSKUFqOUlfnMmpSF1HqCqBjRqgWLM2stTGUw3CdqcOUkU7v85j/2vfncXctiNJj01ACkmoOZl1z4wG4NQ/mylmdeBncpF2IIsx7O73+qJ6mQlr9P9rdfMfCHo4BtgphFgmhFh8+chv5TtmBgtQr10tLp6J47sto3JELriMgZ/2pP3/7qZ+q2oeahvQNA0tPQOLv2f3y0r3VaPSfXnXL8LtgeJtm2eeS01Hz0ZTCSAsTqTNjBqQtVF2dNJ3RM3/DWupkjSZ73k1oiNRfMyQ5kTb3we11JFcZQ7NMXg/AnxMKC47QoLJ2xDU0X+sR1EMvaklW+wXn7CgHE4Q/19QgJ5c/xZ+xFgC7SXv6EB54o4SsGMXvXzV/MBQP5p0qMXsL/9E16F3/9zL9RXNeqJIScWBT1Luf/midCxCIcNpcxB37CIlapa+IXO3Oi93p3b/bpl1dUc6OE0IBWTnrGiuKUfPICU40/KOY6U0Go++cQjYVDgWC7k9r7nrpYc4+usmAksXI273CWp/8BzlH7gbgJY/j+Wvps8jkXTfOTuzzu8t+6Elp+JTKZLWM967oY27OxG3+ew0P4iVUt6Yros7SEWQXzidLj4ZNpPxr87EZsvJCeBMt+NwGZesetBluRwu1nz5DxcPFZpZXBE84J93F/Bjl484vcEzKxdA4qlLTG/zBgcXbfCYn0MwKyoo0thcK57liRXaphkZmhcZyXbOLvgzR/2D705kx7OvolR/HvOzaSh1nkdt6Vk32nBAFx7/ZwwPfj+cMpUCOPju1EzWLdUl8apSiXrv9s8xpsQ4BylOC3EHz+JKt13znvwXIOV/QkWwXQgxRghxz3/aTCu/SElKc+/HSnQ95w60ydsCDZpzYtUuypkMtqvvX/ieMjUjaDOgA6e3nmDZmMWc3nqCJ74zPPU0p8bUhycTXq0kPT567NZezP8TVGlfl6SzcYRWjsizzOm1B0g+F8eF7cep3v3eq7anmKyYHp4B/qFYgrMcGBL3HgUp0exOjkyZTsjddTgx5QfKPd+LtONnyDhzHunSULysmNpOzNfYA6qWRfXxQrhJ3nd+PJvEQ2fY8s73WAN9KdWinlHQ/Sj63VsHa/D1s3DdmRAFZkXwL+Iu99+7s6Xl20zrjrt6m82O0+nMM//dN6cQI86R5HMRH5+ctIVCCBr0aUtgeCA+xYPYsmALJ5ZuY8mYpUxpPopyTSpSLMKf8yt3Mabiy2yeuZ64s3Gc2n6KbQs8EzgX4eZRsWUtes4YiF/xvCke0+JScemC0k1rXLM9575/yPj6ZbQd/+BYMQY94TQAMUtXYMKJWXGh2DNI3LaXuHXbiN+4g/rTPuLepT+ielk59cNCNnR9PjPqw9VQ9+3nKdmyDlpaOgD1hj6Gf7lwhKKw+uVJaHbjWXXoBsdC1UdaXa25/xzu9BmslLKVhyPf5A93zAw2LSmdt9uNY+bhxVSuVo61mxd6LPfPvF0EE06GLXdk0KSoRMIbV+PBeaNQzSohda0sGjIdlxSkp9gYUnooZjTCvBXQJb+MnEfLgfcjgLBKJXJ3VoRbhrtffpAqDzYg5Cqz3MtQwsqjlKqBUB1oaz8HzY6rRj+kvGxj6wIBEZ3a4l2mJIG1q6GYzaRHx3PhjyVEL/4TR2wCseu3E/nwAznatsfGYQkplrn83/DYYDLOXeTUDz9z7/xJ7OjxNMFCUHfsaOyJKahuR5buy8bgsrkIrfz/xzrFCC9++wrPq0EI0RuY7XbB9ZRfEYhw2+fmiTtGwDrSnVw8HkOwTyDlKngOjxETlYDV5Y1N2qlWytC9fVLxRQRQvuu97F64lUa9m3H2l9V4BfvRZ91HvHd8Avt+3cqZk7Gcm7gcJwppLoNr86FRXan5YF1ij12i9eAi+9Z/E4pJJbRKyWsXBNQSFfEfvgTpTEcLL4davSMxu84Z7roSvMMCsQQHIkwqwQ1qZ9bb9Nw72GMSKPd4B/wiginZ3Qi37UxK5tBr7xC356S7pKTlBmPzLON8jDELs9nZ/OgA0I1XqnSbnGq6oNL/Dz/Q8o7e5ArBMM/ajsENG4MR9LUS0AKIBUZcq5E7RkVw6XQcwaVDWTh/Kj/MHO+xzK8z1xApAqhqKo48a2wkWFWJl0niSrWBEASXCaFih/pUvN9Qrez7az9/fL6KOm1q4f7mYtMM//l7+7Zgz9x1nPtnO4nHr254XoTbD8Lsg6nhMwjfMHYN/wSJikTh3oVTqTLsxVxeYunRCegSLKHBHJwwi51DDQcF+6UYkvYfw+UCh8uEpmUJDdXPF00HXUKxDvdxmVMgO87N/411rXsSt/b/m5pJGExp+ThuN0gpJwH1gTlAGNDG/fs88ISUsoeU8uhVmgCuYwYrhFCBbcB5KWVHIcQnQCeMCMbHgWeklInXeyH5xcXjMVw6Fcc/szbxygMTGfPbAO66wt714T6tWfyeEW7b6X7Iz6ZreCkKFVrW5N2vcobgcNqc/PjydDS7xsLhcwkwQePeTVk/YyMAw8oNoU772pS9tyoR2XgMinDnQbPrbtEn2TH8U+I276XKgP9R8clORr7DYfBYABZ/H7zNduyHDwCQuOcIDpcZHcOTUJNZLlm2DA2JGadqovaIF2DEC7n6vvDnapzpdhK27SWkeZNbcLW3B67kAL7T4OYu+Nt93BCuZwY7CDiY7fffQC0pZR3gCO7Q3oWFFv9rzNQD71KzRWWkF7mYlp66510eLD2E4DrFiHba+OBXgwd0fYpkWazBUH8lVn2zApNTw6RAiUphuIB9i7ejCIkiJFaLidBK4fScMZCgMqGFeXlFKGQIhFtAqviVjzQcAYplbaqpFguV+nbDYtY4OOYrnDrYEpMBCGnagPAO97lnW6AH+qLrOpteeB+pGx5jjgwXySfO5erXmWbj/M4oEu2+BLRreYuu9vbBZarKax3/VeTryoQQkRghAaddTpNS/iWlvBzucxM5ORYLBO+9NwZV9eeBB7py9vRFNJOO9FE4b4vj77+25igbe8GIm9TiwcasS/+Gxu2MSKhr4qYyb8f7TH52Jt2KD85R5+Cyvcb1SajephaaDgT4U7FJWbxUQbm7K7Pj1x0c25j3SmBUmYGMKjOQJe/MZevoaXzX9FV2zrihCL9FKAQcm/gN65p3y0aDJFECg7BrKrs/mU3a2Uv89cAADk39icPTfkXXXSiKDqiAmeV3d+PCH+vwKhNpzMaEoEb/3mRcjCVu2wFwutyxsRSW9xjBL/V7s27EZE7/uppD034BU2bcBtLPXrrmeHVNY0Pv19g68MMcKgwt4/psZ6e/8ANDSw5iydjfrqtewSJ/FgR3sJ72msivimAi8Crgn0d+H2Cepwx36IfnAcqU8cwQnxdGjzb4R//6azm1q7UhwC+ArbuXcN/9d9G+S86l1uIT47hwIpbSlXNuJphMJsY+8wMJug1rapZ514f3fYAUEoc0PMAa9byHis2q4lfMD7O3GalLhpYZgiIlXz8yhY/OTkTqkpNrDhLZqCJWv8smYAbR3KZv11LO15gpb/psCXc90eK6rrUIhYOLi5aClBjRq0BH4F8uHInAKzwEZ2o6GZfisSckEVyrIvrRXZhUcGgmLi9yj02dh0sDHRWQlOnaFqnruK7gMb0sSuP+2kLcX5sBwYk5f3D5GSnbwbDf1V0aQlU8eq3ZY+JJPXIKKeH8krVEdryP+C272TP4XSoOeprSj3W65jUf23CEXYt3AIJT24yNuRkDZrD95x28MPsFqt13a/gQpLxzrQgKCtecwQohOgLRUsrteeS/gcG3OMtTvpTyayllQyllw7CwG2e5AoXktBTCS4XwxU+vUf/enPpXVVUzheuZg1F898bPOJ3GBPtCTDwSsGHQQQ4uNYjoY9HEHI1BAZr1aY491YZfiC8nd5xCCIGiKliExKQY/LIbfljLoaU7WND3S9ZOWALAxoWr3DG5JFYysGkaaU5B9+8HUITbAwF1a5Cecdn1BPyrVaBU28a4dEH8oXNYgvwRqkry0XPcN/0dzCYjRpiUGlLqiFYNDVYoq4UsEZqTUlERbjZXYQhkn/KXTbEkJCcSEZBMqXAnQgiit+7n10ZPs6r32x7H6x0eRrk+3fEqX5bAGgYFojMlGeFlwRpSzGOdK/HbWwvxUiQmdE5vOgbAxSOX0DWd+HP5ijZdYLjTZ7Buwu7/CSFeF0K8dfnIb/38qAiaAp3d0RjnAq2FEDPdnT8FdAR6XRlXvCCQlBRF6dKRgCDVeRYd21VZ7nVNJ27fCd5/dCqLP1vBgk+WAfDjprfwDfCm1yDD7CaH3l2A2Wrms0YjeaXCq0x55HPeamA8/AoSVRiM8gBl7q5CjS4NqdXNiEqxdOhPSAy9XLLuS7LTC6c0cX7rNTcXi1BIuLT0bw68MgrNbrhJRzz8EC7FOzO/xmtPuM+Mh+DwjKVIzUXCrkNIKUlyBZCQ7kP194djLRVJ+Vp3EdygBlWf6YwwCSwlrhRyktaLxtNt5wyCIothUXXu/XQwisWEEFCqx/1oFn9CHmzv7tV45YSSt1Cp8sJjtJj/Mf4VDK3bwVETkDYHSQfzfq7ObT7CV/WHcPyvXVRuWh6TCl5m6DS2CwBDlw7hrU2juPd/9+T7XhYEdES+jmtBCFFaCLFSCHFQCLFfCDHInV5MCPG3EOKo+29wtjojhRDHhBCHhRD3Z0tvIITY686bLK5OgPErRoRaF5CW7cgXrqkikFKOxL2BJYRoCQyTUvYWQnQAXgNaSCnT89vh9cDPz4+UFIPBXVVNHD6+3iOL1mUcW7CS7R/OpGWr5vy51EGNphUBKBYayIqLWexJE89N4vePfmP7jPVUbFKBlv1acWHlbk6vOw1IUi4mGgWFMetRBJSsWgKfYF86T3g6W4/Z/y8KLqlhkRBU9mZm6kW4GRx8fzICQcCC34js/TAnF69F1wwzKiEkJeoYK5+IlnWJ3nqQI7OW46MaH9FlLfugumyYVNgwzOCZvfjJbB7eNYs1D/TBW9gJLmdsdroyeS4UvEICSTlxFtvFGIQQeEWE8sCqb7DFJHDy24WkJWnE7DhORSCsUXW6bv8xxwz4WhDeXsgMG8ENPJOLbxw7n13fL8clFdJikzi1Zq97ZBKTmyZaVVVCy97ajVpZsK6yLuAVKeUOIYQ/BkfA3xjRBpZLKccKIUZg2Ka+JoSoAfQEagIlgX+EEFXclgFfYqgtN2EQdncg76gGkVLKGzaCv5mrn4Khk/1bCLFLCFEogYEaN26IoghefXUwJUuG58jTtJwUdWF3VSasYVVkYCAJl1J4s+MUPnvJo+YCCxKvjBROr9iNoir0XjCUXu91ItJHo1aQsXscXDYUkJRpUIaZvabwQZXBjK05lI9rDCHlYgKv7/+Qah1q8+aBTwBIcZm5ZDdToVVtj30WoXDhiEsAzEhMWCsaZnXnV+7GIQUaKq5swfW0dDuuNDsgcEqBqoBMz8Ck6JhVHYOZzrA6ALBl6DhcCtZIQw2lWMx4hQXhW6Y4qpeFdY8OQ0hJlYGPo1rMmLws+JUuQZWBTxB+f1NqvfViZt9XE66p27fiiMpJNtRi+WxablhE6L1Zzgvpl+I5+vMaZtTqy9GfVqMICIrwZ+O7s5EpLvxNOr4myd4562/qnt4sCkpFIKWMklLucJ+nYFg0lcKYXf7oLvYj0NV93gWYK6W0SylPAseAxu4YXgFSyo3uVff0bHU8YYMQ4oZf6OsSsFLKVVLKju7zSlLK0lLKeu4jtwFgASAgwA9d1/jkk5whXvbsPkiwX006P9QHgLT4RDb3fgXbwf006HSXO1yJZNWsTR7brfVATUxoODSNDa9+yoK6T3B+yg/ULRZLGT8jFHK/eQOwqAqpF5Kx+llBgjPdiTPDyS9DZ/BhzZEcXbaHCfe9w8fnJmHsJUtO7jlRGLeiCFfB6Z+Xs7pnlqWgX71a7Js0B8XQkhuJ2V7k6O1H0KVA0yW62/5VStB8AwnrdD/G4s7QqS5r/Bi2FCdOacIhDRY2RVG4f9nnFK9cjN2DR6NJBaeuErMtJyOYtVgAdd4biF95z0Y2tqMHuDTuTVzxsWQcPcypN0ZytE9vor/61GN5MGx2/35gAAfeM/hlrWZBh6n9aTy4G74Rwfxv1kA0QJeSMk2r5NlOYcNw28nfcT0QQpTDIGHZDJRwBzLE/be4u1gp4Gy2aufcaaXc51em54VmGLPlw0KIPW7Vwp78jvW2N0CLj48HKXE5c1IPXjh/EYnk3Dnja7/y8VEoikR1ZVC5fln35pMgNEjl+9cXsem3XTnqL3liPN4mKB0oOf3HTuLsPiQ6vNgXH8S26FCcTieapiN1ia7p9F9r6GVNPla8ivlz1+NNUd3va3psttj0Ar58cGIh3Y0i5AV7TCKOhGTqTh1Lyw2L8Pb25sTsPxHCUPGY0NGzeVgF1qxgcBMg0HWB3WUmQzOTHK8RteUID+/6EYuqYVV0HC6JCRcqGqH31cvRb8KGHSTvOsBlSwFncirXg9Q1f5G2YSW2Q3swl4pE9fVCUXQydm/Ju5Kqclk91WLSS3T7+xPKtqxD1W730HvlWOZ0eR+L0FGE4OSy3dc1ngLF9dEVhgohtmU7nvfUpBDCDyN092ApZfJVevc0LZZXSc8LD2BEpG2P4VjV0f03X7jtuQi++WYKFSvUzJXe4cFWbNj8K+XdvATW8BC8086S7jShqErmHXM54LfPV7Jn1WHu7lQvs36wSCQafwJ8XDQaN5y/npuMLjXSNWNDZPm437l/RFfu+18jNFXBN8gf4eNNRqoN37IRqN5WnDqoAso1//dmCUUwUOX5HlR8siOqV1YImFY/fcTK7sNRXDooYMo2VWo86in+fNjYDPYrEYiSFIdSrBiWkqWo8sxDgGEUIAQENapL2vY9gESk5NzfqPnhq+hOF/u/X0rqsXM0njj8usZd7H/P49PgHrzrNEIoCtUW/kb6tvVYq+Ydk09VVZpNexNnSjrhLTxRkwoUdHQhiKiRP/6GwsJ1mGnFSikbXq2AEMKMIVxnSSkvx1a/JISIkFJGuZf/lynQzgHZSUsigQvu9EgP6R4hpTwthKgLXA6hsVZKme+v1m0/gy1btizduvVg9Du5LSNq16mGn58vACK8HKeSgog2G6z4pYr7UsIKPcqcZHCtM3QXOXVRYX5p1A8/R9UH7qJ88zr0OzSN5w5+jxQCl4S2r3REd7r4Z8YWln2/mcOr9mN3SuyaTtz+kyx+dRYIgQ60GmwwLhnsQYV9R4qQF7ILVwD/yHDCqkYg3Z/boMY1s+WVQHHPbjW7nVS7icQLyfgFqITWqQRAsQbVUP19aDb1DQKqlsWnVCiRD96X2cb2oZ+w/Y0viDtwhtRDJ8Hl4s9W/a5rzIq3Dz71mmTqZYUQ+DZqhikg6Kr1QupXy0O4wsuHvqTTlOcINLtI2Jk3ifmtgETk67gW3Dv93wIHpZTZ9SeLgafc509h7PpfTu/pNrMqjzEL3eJWI6QIIe52t/lktjqe+h2EYYJa3H3MFELk2w7zthewq1at588lGxn7Qc49tB9/mEulio04csQILFf76TakB5Wk3rDHAVDT0vE1q6TafVl3oRSx6b456jdduZDtFbpjaXd/jvS3T07m3dOfYbKYUS1mVMV4PRf0+ZJeXz2Dr1kiUbDFpVCicglKVCpOuYYV3bUvr0CKpOztgtSjp7GoLlQ/b6r1yQoRZPLJEsYpiS5suhmHNHNx7S7STp8HoPLjbfBxxbN7+BiCalWgyQ9jcrR9fvUubOkujv+4BJMiMSk6Umpojrz5iq8XGzr2Zk2zLpz+YcF11SvX9i4qPNiIpqMeL7CxXC8kAtf/tXfe8VEUbQB+ZvdaeiUhJJTQO0gHRekWVFDsBayAoKJgQUU/BEFQsaCCotJUBMUCooggAiIiAtJ7h0AS0uvVne+PvTRyKWACAe7xt+Zu2s7sLbOz77xFK99RDq4E7kdXE93iPm4AJgG9hRD7gd7u70gpdwJfA7uAX4Dhbg0CgMfQrVIPoPtRKUmDAOBhoKOU8hUp5SvojrcfLaV8Ear8BNuuXWuCg/1o3aKoisrO7Xs5fiyO5CRdcTr5cBKnjmdy1G250q16ElE+VjJsBuyaijW4qAbCm/d8yvrF23jjtulF0r996yfuDxvB/WEjAPBXNaIsTswWA427N6XPi/2wKC7Mqouco8fxjwrKt8ip3bYOIFFK0XH0cn7p/OVbWGrF4MrKZcOwiUUz3b+TS4r8Dco2U0YR0lK3dEpZtxGkJOWvfzn5w2/se+uzovWFbnjg1CQ2p4LdKVGFysEvfqqw/mtpmSAFRz+ZR+rm7cXyMw+d4N+Xp5O65wjf93iKIyt0E3LVoNJzyqM0vOXKCuvLuVBRK1gp5VoppZBStiy0sf6zlDJZStlTStnA/TelUJ0JUsp6UspGUsqlhdI3Simbu/MeL0OHXwCuQt9deJbjeqTKT7ABAf4EZjYkbZeFO/vqYZozk7M4NTuFUd1H0LlLewAaX9uKO2c8So9ndflzSICkeUgG0X45dH6sN3euKNBC2LZuPyt+3sYpq51uA7sw+453ebfzGJx2J99P+LXI+YevHU/9ni14dPkrZCWm8cekHwg2Ogk2OgkxaKSuL7jpB80cTGhMCNe96A2mWFXwr1cTS40wznQjeGLpWgLNdgJq+yOknhNUM4yoq9vml2n00hPUH/koTSc+g3+D2tQe2D8/L23vEZASQ4g/Tk0gUXFKIwIXUd3bl9mvlEULOTHuRTSHvdRyeR6pJOBIL67ffmrFBuJ+XsvKgePJPp3OH09NY2HPUWWe/3yQ53D7YnRXWIhZwN9CiLFCiLHourOflV6lgCo/wf62Yi1O4UAKjeW//wGAycdEndY1adahYHNJURUa92mJyaKy7+0Z5GRBtsNMqs0f54HDKGrBUE+7zQUlMGjybcT9e5jM+HRyUrMQbk90eX7MFYuJlg/2Jjg6lB0/bNBldoBdqihSUnix6h8WwOj1r9JtaK/KvCRezpLO779Ek+G3cfX8glf8Ha/PRHNKUg4l6ZZ6Eiwpx4hb/Ft+GSEE0QOuJzA2mmZjHiOgYWx+Xuo23QRVy7GC25ovb6LwiSrb0CRj9QqyN67FdXAFJTjNB6Dr2kU0m/gc/lFBmIP9iuXXvf8G2r09kqjrO5NnypubkMbqZ6YXK3vekXmBD8s+qipuee+DQAqQiu6W9d3y1q/yE+yJ46c46djNMccWXJruUejNKe/zxpq3WRW/plj5Tf3v5diCHwn1zWBXMnxwUGXCvKKvVj3v6MjTU+9FqQ9tg2/D5pJE1qtGYGQwcxLfwaWBXZM4HU7mPv457w94n2Nbj9NpcB+cUvfIJBHkSpUmZ/ikvZSZd/3/WPTwexe6G+dEg4duJbhBnfzv9R/U3zKEMGBUJAZFophNqCZjsbqb7xnG1keexlFIg6DObT1pNeYRui98gybP3es2eJGEX9Meg4eIxWdSc9yb1H2iFeL3W5AHvyu1bOqqNTiTkoib+1WR9MNf/8raB/5HaMsGdHn1EfovnYwhQNeCueKpAWX24XxQUaay5xshRKD7byhwBPgC+Bw46k4rF1V+gn3okYdQFSMSF6qi3/wTJ7wLwNw5ugMvp93Bt20G8V37B7ALH/x9nEhMrEw1UNKm040PX0Vadjq1ZRQ7kyXph3VXcoqiYLQYMCiCnPRcXEfiCFBdTO/7Bus+W8GVj/YgolENgsJ9qdEiml7Tnspv05Fj5d/JX5K87WBlXpILwvb5a0g7lEDc2t04bUU3cVZOW8HIGiMYWWMEm5d79AlU5aj/YH+ajhmMwb3MEtJF99VfEnVDtxJqCAr2SPTVbe1bumPw9WX7e4txSCOtXnyIjm+X7/Vc9Q/A0OIeqNkbEVlUpCClxOUsEB3UeWooETffQL0XRxYpt+WNL0jdd5JFfZ8H4KveL5GV5iC4bRPMAcVXu+cb3XjjonX2Ms/9dxN6oIG8I+97uajyEyxAlj0Ol7ST7dAnwWeeHQ7AoAfuAsCWmILLBU67xpVL5mB3mFBEgYVISW8gX/8wGYFAFYKOz/TPT4+qF4EQkJGQTmZCOg6p4ELhp/99j3/j6pzcnYilYS1u+1YPnphH8tYD7J/3K3vnlrYpefEhpaRm94JorjNaFmip/DnnD5a8VuBz9ItBc89r3/4Lsf27cfPKD7h59QfcsbXkfjed8j8ajX0GU2DxcNsn1+3Clm0Hk5mYnm091PaM69RWcmf1xr7jd/Av6sbTPiUA5zuh2Jc8DIAxKIjYkcMwVyvqSyDHKsh1qlgzivqKjd+wj/QjZfuerXz00EvlOaoahSxWY6WUdQsdsVLKuuVtp8obGtSrF8vBg7rFW56sql/jK7ni8ShufuM+APxiIml0b0+MIQEIRaH5e+PZN/5t94u8wM/f8yvbPyt3u9uFjMyCFcMrP48gJyOH8JhQ6nRuwNbVB5ASIusGs/IZ/cF2cm1x/cLIjk3p/OZwwq+4dAwPlgz+gGOrd9DzjQc95tdsrdv8K0g04IWNY85j7/47PtVCyiwT0sGzvilAnT5tEWIIUV2aYgn291jG9udnOH55HdMd72FqoRsxuFJOILP9QNGw7l2MT+N+HJ04HmdqKm53B2h7FmIN74Clk2fdWqtmQJMqwr2ybvpQb46t3E73iYOIaFXuOaDSuJijyuYhhPhNStmzrLSSqLIrWJfLhY9PKFarjWMH92B2+ROh6Argm+b9yY4fNpKdXBCau9VzA2n66C0AfLloD3MdTYgxWIg2+eKbq3o8R6frWxFqEoRaBDeMKgjP7BtoITxGF7PcO28Eb8S9z5txU3nyjwn5ZTQNEvfGFWlPKAo1+3TAp1pwhVyDKoFbBc2lOSl4Fyh4J6jVqhbdh1yDv1ESEmSiWo2I4m1cwihGA7E3dChxcgVw/PEJOHNwrC7YeFLrdwfh0jfXGuny4Mw1v5O7fQvaHbsQqoYwWRF/j8A6q4/Hdu2KGYcmyHbq93duhoNT+5NIi0utwBH+NyrDF8H5QAhhcctaw4UQIW63iKFuPwjlNo+rsitYkzEIkMSdOEFQuB+pjl0IIdBcGk3u7UbP2DACIoPYvfMgDRvXQVULJtFZb/8IEmqrgShS5lvynEmtBpG89teLAEW0DE5sOsTRdXvpNLRPEREAwMgD00g9Es8nN0zm0+tf57FVYwm5hON13fjxcKSUCCFYNdrza/Th9ftxSLe/aS/F8Bm8ENvSiZhvKdDDtc25VvfRbXIgnVacGVkYDBpSgrFGDZxhLVBSt4JUEBlrcP07FiK6okYXLJwa3dmdrXN+z5+g2j7cC7+IIOp2K9nM9nxTReWr5WEI8BT6ZLqJAt3XDODDEuoUo8quYPOtooRCxw5Xoyh6iI3Ny3by0eNfsfKrjSz4Yik9Oz3EpMemM3v457hcLrJSsunROJZmNaszYkJfosyS+iHFd4bziKwfSWT9omFmVr+xiEMfLWB+O4/+Jgipo5tgmgN98A258JsJlU2eIUXswKsAGLb34yL5KYdPA4LAqLJfty82Vg58mSXdSjbcyT6VzO4vVuC0lqzPqobG4HvvNFTf4Pw0efKY7jEgx4Ri9EFqEgxGzLF1MRgMEHMdKBIUDYTE9ssHpL8+mOzf5uS3UadXc+yaxOaeYUPqRND5ib6Y8sMZXVjyQsZcjHqwUsr3pJSx6P6v82SvsVLKVlLKD8rbTpVcwWZkZKDP/RpIyYSJr+bnNe5cl+6DOtNjYBesRgdtWjcmacl+MhXJ351iqVa/Orlx6YQLybr3luIUKk6bJCslC//Qkl/jADITEzl8/z0ExRtIFTXQXCUvyR78/rkKGu3Fw/Uv3Q8v3V8sfej3T7Nk7Hfc/fFDF6BXlUdOVhb//JmEwMDxRo9y87yRRLdtUqTM9hlL2P/NGnzCg6hzXdkGBnmI+r2Qe39EqaVHx8hc/Rs4HWiZuoMoS89XsW2fhGKUaFbQ7ApoKqwfBT110/vFg6ZiMYCrCjvAqIobWGeDlPJ9IURzoClgKZRert3cKjnBHjl8AoQB0IiPP0i1auG89epcPnrrG1q1a8jcxa/hF+BDemoWaftykKoFl6LQtGczgqKCefDD+9gy/y863NuZb8cvQSoif3J9fPhzfDLjC958ayxPjii6Qk37exWaphBdzUVq/AUYeBVH0zRmNNUdRw/dU7CKrd4kmkcWXHpxyPTQP3qQlxyXkd8emsLArZ8WKdPswevxj6lG9NW6T+Z/315A5uFT1O3RlJD2LfGLqV68YcD3vqLGQGbXbqrXO4ra1e04yJGDywDkKqCBWk/i6x+HiPDNr5M3dalV9D00zx/sxYwQ4n9AN/QJ9md094Vr0R11l0mVnGBr1ooi76cJCNAnxoz0NI7nbCRnfQJdajzMr3s/wNfPDIEmDG1jeG3mk5jdDjzaDWhPuwH6aqJl/6Krik9mfAHA/16ZVGyCrXnTHbi+mIQQLu79dVmp4WkuR5aPLJhcnA4HBmPJopdLgQbdr0BBAyTBRietBhffbAqoFUHzh2/I/7579i/4GXI4uHkNDpdCVKdGGIKCaTj2GY9RZPOxpiEEGAy5AMhDvyDs6Gsmo4RAA2pMDVy2Al3cK58bwPZv13HXV1XDNLY4VVbH9Wy4DWgF/CulfFAIEYnuKKZcVMkZZNbMueTtL0ZUq8svS1dwMH4bLqwk2vdTp2ENfHzNBAT5sXLHdLKPO/hm6m9lNVuEDh096yzWWbCZ2vO3krg3npcbjmLNR8XblVKSsGIdT9YaybNN9E2yxEOJLHhxIQ5bxXlSqmp0nzwo//OlPrkC7H7zM1qHJ9MqIpmYwAwch48UK7Pm0dfZPL5gNepjAYOi4XTpXqJSNu4kYcU6kteW4kAb8G3fGp/6pzBF64sEl7BiCDQgHRpaloJy7QHs1RvgbHBnfp24jQdI3R+PNa3cMfjOOxerFkEhcqWuH+p0W3clAuXWgauSE+zIUSPyP+fm2rjpprsY8/Iz+WnLdswl0G2X/cNHqziw5ThzJywp0sYvc//ktlrPcnDbCZxOJ1JKbDYbEg2JxrffzSq1D5qm4bQ5cTpdxfKsJxP5deS7OG0uslP0m3v81ZNY/dkffDZ4TrHylwoms5mhez7OFw84bQ7iN+1HlhLp92ImfuV6NClIyfblVFYQu5buKZJ/eNEaEv/Zw6FvVyOlZGvvXsQGxeFvTEJKga+PoMmE0QS1bop/g9L/TYrGA1GvWwjNhukJax9C8QU1SMFnVA7OgwMQKRmw89f8yMo3Tn2EIX+9TkidCH5/92eO/3ukMi7DOXORW3LlsVEIEQx8gq5NsBko/WlZiHJPsEIIVQjxrxBiift7ieFyKwKXK5NTpw4RpERRQ21O/Xr1MRv83HkFk17/x7rToHVNBr7Ut0j91MRM0pOzOLDnCNWC2/DsyIkkJRXEhE9NTSUzM5OSqNEsholH3qXH48VfCy1R1ej6zD1F0vLCMMc0v7Ae5M8nmz/8kR/ve5NDv1wc5rFny4EjcCwjEJevrx62SBOk7DrCwlYD+a7zowTWqV5gTS8K3O4F+ILBIGkzZwph7RvQYux9WKpXozSveNLh5PiYycS/PBznku64clWkQ4Mg3deFVBoj1u3BtHcvzvWfAKCaDDgcGq/WfYLV7yzls/5TKv2anC26E5yyj6qKlHKYlDJNSvkRur/ZQVJKz1Y3HjgbGewI9EiOefaCo/EQLvcs2iuTiIhqNAnqgsPhQgi47+4HmDNvFlde1SG/jMlkZNqfLxare/cz1zHg8Z7EJ54mODiQ4JDAIhNz+3Z9SElJ5d8tq2jWrLjDlnF1n0DRJE3u7MyAyfcWyROKQp2B/ZlWyH3dmDWjOfzPETreXv6d5Iud2t1bkbzneJWwGqoMcp0KLk3BlmTDoBqRwKGvlmIx2nFanSTvO6472RYCe0YWml8AIjsNZ1Qr2k94Fr/a0dhm9kCe+hdDr6Gw/z0wqBjuKv5gF6oBU91GGKNrg3UbMsuIM/ohLP115/2Weq+j+c5E5giUxgUP/QO/7wCXxCDAp3rweboy5UPKi1+LQAixCFgALJJSHjnb+uVawQohYoC+FBXulhQut0L54/QM1qd9hsFoICH1GFJK/lz7N6DLQleu/JOu7e5hwv+mFatrshipVasGh0+sZcwrT7BgwfcIFGrUqE5mRhYChStad89/5SqMUbowCo09P5cvgGREnWpFJtfkxd+x/8E7sCcnA/BwtRE8XG0Ej7fwrN41OGIEgyNGcPJAfP7nwREjPJatCD5pMphPmhRs8tlPJ2I9evSs2oi8oh7XzxhBQHRYkfSEA/H5zl9G1tDHsGjCD4yKHsH4TmP/c9/PFzZNxSZVbNKAS4JTgn90GAYF/KoFcmzhSj2oor8ffw58mbQEyLEGENq6MX619UClov51SJcBdk9FODVwah5XssJgoMbET6k2/GWUW7dgfvpE/uQKYDD6oPgYUQPtqMkFkZLb3dsVX7PApEg63dcF0EU3Lruzkq9O+agoGawQYqYQIlEIsaNQ2lghRNwZEQ7y8l4QQhxwR4O9tlB6W3dk2ANCiKmi1J1HAN5Gjyy7SwjxjRDiNiFEuRWNyysieBd4jqLXoqRwuUUQQgzOixR5+vTp8vbLI7NmT6VZ88a8977u17NF0+7cdMMg9u4+xAfvfFlm/TEv6vXi4uJxaTY0aUNKF3/+WVyk4pAqVqny6LfnNsmd/vR9ZHI8p6YU9aKfG2/j34UbeOfq8aQcOV1sIh3b5fUzm6pwdi/7O/9z3iS757572ffoI9jO8jfyFB5l8jXFx7Bm2u8ApB6rOmacZWEQLkyKk/o3tmb4vo95Yt/HNHz4VlqMHcbVX00i+rouODVB3dt7E9m9PQ5zCA0mvEz9Z4biOrYZLfU4Mnm77kDYIHR9KkWALC7XL4yiKCgmfxxzQnF85ot02JG2HJT24yGiM9Qp6tBdOjWEgL1LNiE1jQ+7vMSnfcZX4pUpPxUog50NXOch/Z3CEQ4AhBBNgbuAZu4604TI8/TMdGAweoyuBiW0Waj/crWUchj6xtYM4A4KAiuWSZkiAiHEjUCilHKTEKJbeRsu1MEZ7o7Rrl27/yRt8fPzZeasd2ndWg8fc+zYSUCS68rgqo6dzqqtAnGBi65di9e9fdpD2LJyiWh4bjLVoBvvIH3ZYiKGjCAzMzNfZ7Fpv4bE7zpBypHTZJ4ueFUsfGEK324/zVtO33t6n1MfSmLtU8Udsmuaft7s4wnsWbCWuv2uJKBm6X4FErYe5vs7J9HuyZtpN6wvLns28tQGd4QA3by28GKtKjtW9sTNM4aRsv8k7YcU+KlQjAai3YEPmzzYlwZ39sqP79V0hC6X1zJPkzv9RkR4PdQgF2rNHGSuCxSBxEHKT19gCK1L0JVXI3OSsH11I4rJiPG+NeBI5+SQXkibhn8dX/yic7DNC4STRpQR8ZiaDyvWz2qNIknaF0+7QVeDEITVjawS1lwVqQcrpVzj9gNQHvoB86WUNuCwEOIA0EEIcQQIlFL+BSCEmIv+5l2q+zshhA96qO47gTYUvLmXSXlksFcCN7uX3xYgUAjxBSWHy600IiMbkpWZzX333c6s2dPo0rkDf67diBDw82/ljuJAm7YtOXrkMHa7jSZNmngs0+SGK/5TX6MGP0bUYF0pf3DNEW6fKZKRnw5ndLOXyLLDGzfpzqtLm3dO7zr1n/rhEV8T5OimnY3uuwaAOhMmYTuZQNqJdHZ+vBhnjpW2z5UeMM/oY8Ic7IdPiK6r7JgeBnaVwYPr8tmn3fWNIXfZ3iOvZfnbv1T8WCqRej1aUa9Hq1LLFA6emIfwC8XQ6QGU6JYYGnZC7p2PTPoFEtbjyPHl5IdzMBo0Ar9fgUw5gJKxFaGAde7VqOpOjGHhOE7543KZwFdFNQI1FOy/NMR0a1yx890xdwQHft1Kk/6dEEJw3zejsGXmVNRl+E+cxUM1XAhR2M/qDPfirCweF0IMRPfROkpKmQpEo4d2yeOEO83h/nxmeokIIRYAHdEDJ34IrJKlhaA4gzInWCnlC8AL7pN1Q7fNvU8I8SZ6mNxJFA2XW2mEhgSRmZGZ77xl+ocTadVaX+Hff/tzTJv5PwIDi5vD7tt3gNYtCsK4bN6k73pLqbFtW/lkrADJ2w+yctBrVL+qFV2nPuWxzIG/duEb4kuNxnXy0577ZjiTb/6AvOd5ZnIWZ8ZNKykW7S8fbmL1lzuZdXhyuftZFo9uKm5KHdxB1wt2Wu24rHZiepTsoi+P0IbRPLi+QE7oSgwCqTDr8zb6mzCgusd83agbCKkeRFSzUu/nSwItO5vDP6cQ0NFOTLs60F7fA9587bX4m3OwOUyYQy1gMKDEdEIzVEdxJCAs+1AEBLeKJ63uEAL83d63jEYUs4Jawr9rv2pBtLq3IJz4vL6vknLgFBEt69B+yHXU6dmqdCOHSuQsohUkSSnbnWXz04Hx6LfaeGAK8BCegxLKUtJLYxZwj5RlyHVK4L/owXoMl1uZfDzjXSR2rFb96WxNttPb1INQQ3V+W7aeae/ovlq/mrSU4R0mkOnWUW3dohdCqKiKGaOxqG9Yp1NfY3333Y98+eXXOBwlGwrkJqYhXRoZh07iyCq+QpjYbQRf3zuN2Te8xeF/9wG6Pm3S2m0MuC6KkZ8NBKDFtbpZpaOM52CWQ/+BrGnW0gtWIAaLiQZ3dMcnPKjUco4cK7kpRXfDRY2mYFDAR/eEJoSkQeMCMUPHe6+kVus6ldDrqsO+hSvZ8PRkdm/IZMP7y4vkpThqcCoplMT0AA6dCs+f9Ky1J+LstQYMGsLPjAj2I9h3GiLAgvAxgcGIK0NDZGQVO9+OhX8y65rR2LMK8lQf/R7POpbIssenc3rH2W1eVhQScGnlO86pfSkTpJQu94ryEyBPvegEULNQ0RjgpDs9xkN6aawBXhBCzAAQQjRwi03LxVlNsFLKVYU8fZcYLrey6NmzG4sXf8P7778FQJMu9Rm35Ene/3QMPXp3ZMgTeoSDg1uOc2z3KXIy9Ympdu2a+TGT4k5to0Z0dUDy0MP3c/jIDqSU3HH7QAYNHEJs9DXYS4hrH9OzLVfNfBZOHWd5Nw+OTY4VPOTiNh8CYPaVz7Hrsx85+s8BDszVjSGGznmEJ74pkKUVfqxe+VjH/M+qos9XTa+sWmpQPz30LrPbPsmcLqNI3lPwxuU7/Hf8xsUxad9UWvVtTcM2NbnB7RT9csCeZWX3xE9g33ZCfXLwDfEtkl9/8ACyHRaEMODKdi8S9u8iZfYHxI8fiWZ14DxtRWSkoxgldqFgi6qJw+KDqOaDElrcc9uqlz4nOz6N+TcXbKbeufAFhu+ZzrVTh9DygV6ENrxQbw3li8d1rjG53KLJPG4B8jQMFgN3CSHMQohY9M2sDe7N+EwhRCe39sBAyn7zngXYgS7u7yeA18rbxyrpi6AkhBD07Vt0069Z14Y0oyE33dkjP+2FLx4mJ8PK8ZVbWHzbt6z+/ksimhWE5Yg7oT+0hg97hOrVC1wVSiTxybtRlJJ/cN+wQBQhEaL4Y/fFQx8wse7jAFz18HVIKZF+/hyJs6KhcPzvFOrMW03Dmzrw5dPzMQhd9Sd/fMADr97DA6/qmyUDw3TtgoBQn3JeofPD8XW79CezhH0//0PnxjFIKTm9J47QupEYzEbu/uhhVrz3Ext/2EhM26r1gKgsFt42EZNLJT7DHz+TnairWhbJr3PXjdTs35tjS9cR1d1tqr1tANEPp+NKtWGMvQXt34WIIH31Z7TaEHFHEJpECwhCBnQsds7IFnVI2H6ETqP656e5HE7WjJxORJsGdBl9eyWOuAwqMGKsEOIrdKcr4UKIE8D/gG5CiNb6mTiC7sMVKeVOIcTXwC7ACQwv9Ir/GLpGgg/65lZZ8Z3qSSnvFELc7W47txyqXflcVBNseTh9MoXrm42gcbM6jHywK7aMHJy5tvz89PR0JBoChVatC/4B5KVJNOx2u+6TE/j+81Xs3X6U5ybdj6IoBNepRZt3nuTENyvIiU8i7ZvPCerZC7+m+mv/i4cK5JvZSZkkHErCrEK2E6rXDWPxSwuotWIPvZ/oScL+RH77ZDVS6oEDzrRoufu1fvw5bwNDPizuIvBC4pQCFV2ivGf1FjqPvIVDq3ay8JHptH2gG71evp2N89ex4s1lAMQfO8XQOZWn01tVCK0Tgpak/zu+avF0LOHFg49mvnYlIdmpGHq6VeX8clBRkBGByOSliBoBuEy+cDIBZ7UIjNYEpKqCQyIy/irW3u0LRxdLs6dnc+L3LWSdOM3er9fQYEBXWjxyfbFylU0FaxF42nEtcWdbSjkBmOAhfSNwNh7J7W4tAgkghKgH2EqvUsAlN8FuXX+AbEcu27cdoM3D42l1fw9UU8Ew4+N1ZQeLT/E4XdJ9O/j6+rJp/S5mvPstR3ec5sSRRB59pj9hEbpc8uC078g+dIzNj4wm2HmY1GVLabbk12Lt+VcLpN87gwiqGUZMm7pkJaQxttN4Epbu4q7pD2M0G7j1f/14LHpkkSf9zhU7aNqzGdc/1oPrH+tRrN0Lj8jfGcjek4D15EkyPphA/UbR1HN70z+wdl9eUQ79dulF2fVEx44JrN/kAiS+1asVy3e5XJB9GkWVOP6ci+H6kRikXl51ObDXaoQxMR4CfOB4Mr7992NdFotwSZQAH3A486NLnMmG0R9y8tf1tHjhIerd3p1+P0/ElpbNz3dPJG1/cc2D80VVNoMtJ/9D1yCoKYT4El2r6oHyVr7kJthet3ZgXNIQWnTQ43cVnlwBXnxxLABWa0kPIf2O+Om7P1j+03rGvz2cZi3r50+uADG39mbvO7OJ6NEex/LDCKOxxBu/Wb8C6y7/yGBufqU//y7ejD3HhtFsYPHUn4qUHxZZsNKblvBeucd9tqTsOc6yB9+kzdMDaHTHNTitudi3r8W3fVGd22XtbkYoKrXHj6DRtd3y0wuvTA6/NgnSU6mrZhDbVVd7u2PqQDb/sLnsPdpLCEPGZnrc/hdS8/wGqaoqio8Dza5iue5pABw5NlSLEXtWLkrCP6AJkGZQ9P0Dtc0vSEcWbL0FhB7Vw3ryIK6jO/HrXGBwkLLrEALJydWbqXd7dwJrRUItuPuvqRj8dJ3Yw79uxpFro2G/zpV8JXQkF7+prJRyuRBiM9AJXYo3QkqZVN76l9wEC3D74OKK+YkJKfj6Wpg7dwbt2l3DkCEF/hpsNhs33ngtS5YsAwSqGoRAYe2q1XS4snkxv7C1br+WWrfr1neHT23FtnsHe2++hsY/rimzb4c2HOLg+kOc3H2SBl0asHTy2blZrCicVjv2jBzsGfpmS+pTV4HTiv2f6wgeVuA0RCgWQHBkzHv5E+x1Hwzml8c/Jm97LuaJoRx87kUi7y3w2aAoCvmi7MtkkvV74hcc392P2uzWIulSSqyb1mCIjiVw4kmc2Un5D2PVPfmZLBZEaBDOgBCMKfFo5jCy37sBY9sBmK56GGoc09tKWI2ccSuKgLTfOxD8oi5C7Dl/Aoe+XUXdAd2KnNsUWLDRtuqFWThzbNS/sWORGHSVycVmXJKHEOJMPcU8hfRaQohaUsrN5Wnnop5g9+87QnRMJL6+pW8Cpadl0bbBbTRqWpfZC19l+vR36Nata35+61ZXcvLkKWrWrMHx4yfQX4E1OnVtWXKjbrJ37sSgKEgNnDYbBnNxxfPCHNlwEBX4+N5pvHX4HVrf0pQt3+8kTxN20t7X+OiuGTy1+MmyL8B/IKJ1Pe7796OCFX5YNDLhIIbYM8VTGqBgL+SvodY1RcscHzMak5YF2ekez1V4Ye9wODi1I45aV9T574OoYiiKgvm24ibbzpNHSHrrGdTgHMI6JyLs2dh9VBz1PkH1DwZFIBLiUVw+OIIicYbWAlyIX//FnnpMn2DdaH/c6w5GL3GmbCLzt+8J6HkLRl8Lje4v1eqTPh8Ox2VznLfJFaq8r9fSKM01mQTKJbu7aCfYHdv2cnXnu+h7U3c+n/92qWV9/Sxc1a0tzVrWp0XzLmRlZfHr8u/p3l1Xzm7WvAnVqoXz57p1FKj8l/PVJqIRWuI+pITT878gatDDpRa3Z9v0DS27xpgWL5GYUFS3MTA4kOd+eaaE2hVLYfFJtQmLPZbps2FhsTR7Zq5bv0/y4JZ3OTXuf+Rs24xvy+JWTwpFF7Av1x2VnzHp6NRz7ntVJHeqL8JhQMRcgfnO1fnpInURltpgrG5DpGSDrwEl2wZZE5CBRsjOQtZrrN91qckQWQfsWRi6DsXQ/Noi53BUux3UWUhNkJvchJwZr+N/zY1IFH7vegdCUejx5zce+xfdqbjXuMpE9wd7Xk9ZYUgpu1dEOxftBBsdU50rr2rLDTd2K7Os0Whg3qI3eOCWMURFRHPUfpg+vW/h5Zef5eVXnmfy5FepWzcWg6FAzhoQUHa0WOlykbg3GX+zCavTTLWo2iWWdTqdbPn2H8btmMC2n7bR6sZWjKo5EosqcbnA4Z6G0tLSCA4OBiDzZAp/jP2SNkOvp3qb+iW2/V7Dx/I/j9g3vcx+FxuHpiHOIjyOf1gQ4Y2jUYwGfHx8qPv6G/l5eWpqADVb1eTU1jjPEoJCSxtN00jYc4rIxlHnJUzPF8NmUbNRNfbOX0OfSfdT5xpdA2T9gnXsWb6L9ne2Jyc9l3YDOnqUq4+trccfM9UN4MXfC/RP5Wl/pFQoavEJcsc4HCdr40w043etD5gVpE1BWCSGI0fRQoLRNA2pKJCdi5pxEikUZKPaGOqc4f7yildhzSwQkmrPf4C05iIMRnZPmYEqKOb8fPf0bzj27UpMMdGofj5c/eH5DS9zsa5ghRDPSSnfcH++XUr5TaG8iVLK4j5SPVAlIxqUh5DQIH5c9il333dz2YWBuGMJ/PnbNhwJYTzx5BAAQkND+OSTWTRs2IqZM+fifuYCMGLE8Py6e/ceZPGiZcXaFKpKta7tyHX44HBaiJvyGnHzPy5WDmBso+dY+MxXTGwzhjb92qCqKt0fcz8kFYHRfbzV+x0AnogawaSOr3B8zQ4Or9hSvotyDvz1zg9MbzKM6U0fQ3PacK5+Di2xbPPhOxa9wm0LS7/HHvthFC1aGLnnhTOd6UgizQ4+7vAMUkr+nruWD66bzMaviqohOTJz2DplHplHK84fw3OxI9i66F+WvLGMrNNZfPtggZvLb56ez7aftzPrgc/4esQ8ful4N5ueLmqgOLfPK+TdI/ZDZ/h19ZFgcKIM2lckWWk2msDWiQQ2S0CGBSODgkCRiPR0RFY2Smoactc2HCkpyFq1UdOTMSUcQeZ8Xqz/lsBAfF9Ow/eVNCyNW+PTWt+wajhsIJqmO+3JY/HVQ9j/6Q/YUjI4/e9+4tduI3nnof9w9c6ScjrbrqKaBncV+vzCGXmly2IKcdFOsGdLTO3qjBx7L+/MGsWkSWNxOJN5/IkhtGjRjGbNmtK8edMi5V999aX8zw8OfIq77xzGgQOHi7Xb4o0XsBhtqIoLVQhyF3zi8fxOt39Oa1aB9kK/l/sTXq8ahSf2MWteYO/fewHIcgoOZ5n4YeoaRtesHJlsZpy+ISpdErnpHeSW93EtueM/t3vPymfI2LSF2tn7yPq+QMwQ260BAIoC1vQckJLg6BAUYP3MVUXa2DLlKw5+8QurHq44K2xpz9P2ECTbVNKLGe3JAv1Nl+T0+u1FcjOPJrj9K0hEvisbcOTa+StxPKevWYE5LJp9Mxfx6w0jyIlPwpV0AJNPKsbaoAgNm18Y1gYtMEgfhK8R/KNQzAGoPj74JB1G+vjiqNkQ4TOoyLk1Zy5atudwxwYfC93XfUOP9QXX2pGRg9MlqPtwf/QRU27JV0WgaxGU76iCiBI+e/peIhetiOBcGDbqrmJpnTt3ZNs2Xel73LiXeeWV8TRoUC8/f/36zbw45im2bt1BbGytYvUB/H0zCQrMwmY1YrN5Fi089NUwvn9uAY8terpI+uPzh7Pph81cNegqfAL0HeX4XfFuSbBwu/2j1HAj5yIWyKPPW4/Q4KYOVL+iHoIU2LsApa3exx3f/Mm2L1dz+/xRGC2lb97lUdjQQqtVi5SIVhzclkyDA6cIrR/FkM/112truu4nQigKu5ZuAeD0/oT8untnfEfW0ZM4NUF4ywbnPL4zCakXRurBZF2TVwjsUv8nEL/rOCoaulaRgkRi0xSwakVU8CKCHKhCDw6TU8gMb1qHUbhyXWz5cQujDn5EdtxpcuOTyXm/A4E14nEm+EE8qM2y8c0+hCtFg9gOSOtplNp9cRyei9GeBUKg2HMwV/8UQloDIK2ZaMlHkCt7gTMdbt2BElRcZJR5Mpm1Y7+k8wt3ElIvilzNCFLiV6+2vkoUENoktsKuZXm4WGWwFN06OHMU5R7VZTXBeiI+PoGjR4/xv/+9RlSUHsP+0KEjAEz/cBZPP/0yfn6+JKfuK7GNyP+9yfGXXkaTKorF87VveFVjnl/3v2LpoTGh9H68V5G0ax68hoPrDlKrdS3+eH8xtmyJ4sE0t6KIvSZPW8IPZeC/+em/vvAFIJh/x1vcv/glj3VLQ1EUwq/pzInDK4tsqP308gI2fr6W2Ksa4mPPJbxFLcLrRdCsb+v8Mn+/twQB3L3hIwx+FWcqPGTe40zp/CoSUWTlJIwK/gawSw2bpiIAi1EiJdizcjC7ZfK+Wg7SZMAhBUG1C3wF27JdGBRJ3kth6zEPUzfkN/z8T+K0qnrobYdAaC4kCiKiEYZO8xEWXe6vJH6HI8WBIiQy0AdTaIG7zNyZ96Ed+wdj/XBUgxWMnh3xLH98Gil74/jl0fe4e+Uk/GJjSN9/AqdLwy82hoDakefVq1ZFWnJdAFoJITLQV6s+7s+4v5fb2e5lPcHu3r2X5s07ULt2DEePHqN9e90+XFEUXC4Xvy5fAUDt2jGlNUN4xy7EN22FI+4Uzb7+okL69tAnujOZ7CPxbP1mPRZD5f3DsGbmsvvX7VwxoIPH/OzEtHNuu8PjfenweNGAlBu/WAvAkbV7CTHr/wRH/D4mP9/pcLhX71To5AoQFhNWyIuZA1XRHd3PvvlNAk0uwk3ZHM7xI8BgJy7LF00KtCK+KZz4mXQ1qe5fFoSgMyoaiiJwuV1DCSGwhBwBBwinhrGBE2FQ0Bwaaq8t4BtTZLITDjumDF1cY+cME1ujCQQoHSdjaFGyI6e2I/qz/ImP8K+lezCzCyNZLhN/vDAHl8NJh/Gla7hUBlVUvlomUkq17FJlc1lPsOHhYbRs2YykJP3GTkw8rTuJdjq56aY7WLbsNwSCzVtWltrOkR8WY9u5CwEcnfs5sQ8+cNZ9+WjgDHYu34mPn5E3DryVn97vzfvoeE9nDvy4AXuWtcI91U8dMJHT/+hyve+e/oIW/dtyx1Rd9qfrW0KfNx6o0HPmvWD5R4fyyJLnMJ7htNpgNNLp1YEoauXcnioaEvAx6LJvh92B2WnFKQU2KantZ6N6u3rsXneIULOD3fNX0uZhfWILa1mPzJ0HcWkCn0K+BhS3Q/XCc7FqcKGluOXrQiANRsixIvwKe9LTceVkI2rXRAqBzMwukuczcDbayR0odTw/APMIrFkNl1MjfrNumpyTmquvwO0amlQ49scuIlqeX8c7F+n8WmFcNptcnvh12W80a9aM339fytChj5Lt9qkppcRoNCIQCCFo0bwTNlvJ/h1Sv1ukew5C12/NI+Gnn9hyZ39y4hJKrJvHzhU7AbBmO1g07ociedtmr2DnvFUkbiu+yfZfOf1PfBFDgO0/FArBLfRVpGosmOhWPjODmU0fZcm9+sZTxpbtZO7YfU7nVgT4hPhjMBuL5TW67Roa3HLlObVbFkFGJwFGF74qVLfYSdhxmEyHilVTuea6jdw9dB5dr5lLtJ+NUIuTA1MX5NcNDXWiKuBvKXo/GAQYBZiCCx6A6u1/ofT6FMP9uxGumsiMCOjs+Q1HmHxQ01NRM9IRatHrIcx+qLEdwekkZfZ75G5Z77ENv4hgAmLCqd1LFy9c+/ZDBESHYYkMBQSoFbIoKzdSVq4/2IuBy3qCHTRoKPO/Wsi8eQv58MO3MZvNgOS22/qzaNF81qxZipSS3bv3Uq9uyaFDWsz8GE1quDSoN6TAT6xh6XDqVN9Cyqs92PNMD2yvB2Kb5HkT7JHP9HoSaNO/qJXeVWPuos/7Q4nu1Og/j7kwEzvp2ieFNyIUoz7bxm06iKZJNAl/Tv85P//IMl3HM3HLQaSmsWvEi+we+fJZnddo0G3l7ptTPL5U/nneeo8jb79/Vu2WF0URBBh1YZqqwKLhM7GoGhbFRXSLBECiinhsTgWHS2B1FfwzqTNyBJGxgpr3F1UP1GXkkmuevSU/TSgqhib3owbXxXDPNkwDt2NqcJPnToXdgmY0o5l9MJvaeiziiD9OxpKvSPtaD+5sz7IW2fzUnBrxR1LYvngTG2b+So229Xng9wkofr7YXAJLGU7UK4OKiip7sXJZiwiCg4NIS0vn9tv7A/D3hjXMnTuPUaN0laguV3bCZDJhtztJSDjN6lVruabbVcXaMRgMtP+9uDcto48doYDB7qBGcBzIkp9nra5vxfunijp3ObzhIB8PeI+QmqE8v26sx3oLhr9J7v4TPPDr2TuGsZ7KLpY29KdnAdg8b43bnk0Q9+eB/Pz6/Tpz4Lt1tH68H0JRiB05DGEqvgItidy0bBQhCAj3JSzWc1BFKSUpK1eBolJn5BNnNaby4NIkRqOGWWhk2I3kugyYpNtDWO0otJxctJAA/ExOpFTxM2h80PYZbp/zJNa4eDLrXUfjBwYW9FfTaNgyiKw0O01uK35/lAdjw8G4vv0axZKKlrsNPNgRGWNiiXhhCsaYWL6/903iNx5ACBi6R9e93vXdOpACBKx992c6PNQHgD6TB3Jo5Q4a39S+eKOViOTilcFWFJf1CjYp+QiPDh5E8+bt6Nt3AFFR1Xn++ZH5vmABzGZz/it023aty9128u712NL9sab6oyp2spN9wWgHU8Gr5fob7+Hva/qy81XPpr7fj/8GhwaJR0sOFiHX7CAwMYXpDQeWWKYkzCH5bi7ziWqsb+jt+n5j/kZTUO0CWePVrz3IQ7s+oc1jukwyst/1RFxfVAuiNDITdX8FYfUiS7QeE0LQ/PPPaD6nPDHvzh4pwdfgwqDCkWwTgTHVMAoX4IKWv4PJgGpsjVqjOnlrrChXArmJqez7cjmHF60lO67AoZI9ORU17hDVQzWUcryGS5cNLekPpKbr0TqXxuJa3At52orrpETU7++xnhAC37ZXYoysoVvfnbHv2eTWzriEHoqox6sFKonVW9Smy4i+HkUxlY0s51EWQoiZQohEIcSOQmmhQojlQoj97r8hhfJeEEIcEELsFUJcWyi9rRBiuztv6tk4zz4XLusJFmDDBv2Vd8uWbRw+fKRQOG+dmbM+BMDPzwd//+IBFUsid/INKEYnKC4Uk42A0CxsjnqYRxVMsEpWGooCmSsLPGo5cu0sG7eQpEMJxG0+RWVqhj/247P50W5BMv5YgW8A6f6f6mdm8MrxFXbO3NRsNJdGtfpRJZY5+M4nHP30KxRLxYeeXvjETHKkRoZNJcuhEGJykPbvAUIsDsItVhZ2f575I7tg6jiHE4eyyHKYyXWZwaURVi+CbM1E2DXtCYwt6L+5WhgtprxE80nPlasP2pFP0P65C3niK3eKQCbZdZFF51cw9ijbsOLWr55n0N9T8levAL6hAZijqmHTVP6aseosrkrlUYGWXLMpbkE1GvhNStkA+M39HSFEU3RLrGbuOtOEEHlPvunAYPQwMg08tFmhlDnBCiEsQogNQoitQoidQohX3emthRDrhRBbhBAbhRClb3FWUcaMGU2bNm14443XqF+vGePHvV4kPzw8FE06yczKLDb5loYkmPT4CLKTQ7D4GRE2I47Tx7FuLdBIUCKikFIScU+B5dTvby1hw6zVfDP0U9re2oS8ye/Xt38ufhIgO9SfJLuJx/bNPatxA6hG/Z5TBMVWQw16twQhuH7ivR5qnju1OzZgyIqX6fO/kkOZJC5bRcLPv7Gm1/2kbNxeYrlzYdfiTfgoRtJdJjJdZj36rdR3KAUCh6YgpCTjwHEsdauT5VDJsBuIvP9mMJk58c9B9q8o3qewzm3wiy2qHeCwZmB/z6IfP1TD/l04mqahRPRERPRBhOniBFftrzi9/woSDrZHdBnpsd/2Lc9iX94AR/r+/DSfoOIP/G5P98UnxI9rx9xSLO9CIGX5jrLbkWuAM1/l+gFz3J/nAP0Lpc+XUtqklIeBA0AHdwyvQCnlX1IXXs8tVKdSKI8M1gb0kFJmCSGMwFohxFJgHPCqlHKpEOIG4A30mDkXFXPnfMWWf3dgNplo3rwZ7Tu0o3mzdqSmphJ38iCxsbHgNjR0OByo5dyJTTlZE6vdB4Nix3Q0Av/ap/Gr4cTx/e1YvwlirxjN8X1OMEbQYUiBSWTb+67i0No9dH3yeg58vYp6/naO5RhZ+c4vrHznF55f/wrvdBmHGmDkfzum8PDqD8957EHVQxh39H2PzsIHfDzknNs9kyP/HmD+gHcx+psZtW0KYXUjSy3f5ov3Of37XxyZ+wOm4IAK6wdAYEwA6XGZGNCQCPwUOxpGfAwucpwqoODEwJo7R3PTzFdYcMcUJAp7vlzJVc/dyZXPDyCgRvFQMB7JOg4NaoDJAGYVYbUid41FaT4OreYIXGueRg1vhnWbAdvpXJAK6d/NIewOD/qqiQsRPha0v6+FPiX7E2h1awda3Vqw1tm1bBvfPzuPu6c/SN0rK3aTtCwk4Cy/KVe4KOolZ4aUsiwZUaQ7kCFSylNCiDyhfjRQWNXihDvN4f58ZnqlUeYE657p83zqGd1Hnugk0J0eRNnhb6sks2ZPY9++A3To0Jbbbtef+jffNACAd96eSoeOHahZswbDhw/FUuiVNTfXyqgnX6fvTd3oe3PxHYnUrGAyrH4EWjIJzQ0k2OcUqsWJdKgofqkc//JPvaBDvwGduTaEUSUsNoKhy3QnKrGd6pF+OJH3bil4dX/nynEAuDJLDi9+tlSmGCpxXxzzB7wLgCOrZFW3PJzpqWSv+pnqffoSc3vfMsufLbd9PJhVd71Kks0H3FHYAHJyJapRgnChSUlYh2YE1q6Bn+pAVQQ2h36NrniouDN3T9h2PABZO8DPB1QFYc8FlxOXmovrn6mwdjQoIJM2EHDPftJW/Ix0gW9rzxtRmqLi9A0HiwPVasVgsSBz4tD2TkNp9DjC17PIZfFzX2JPy+GTuz7gtin30faO4oETK5Oz2ONKklK2q6DTerqhZSnplUa5tAjc8otNQH3gQynl30KIp4BlQoi30EUNXUpposoSHBxEhw6e1WJu6HstTz/9AsePx/H33xuK5B0+eJwF85Zw4sQpjxNsUk4AoJKW60+kloQUNhxOFYETgwpKgBEt0wpIcpNTWdprBAC3bJ6TP+H5hgXiGxZIntNr0Gh8bWv2/OLZ29Unt47juncfoGYtzz4TLgS/jJlPwb1d9r2c+dtSkj//GKEohNx6T4X3Z9Mrn+FrcOLnsLn1nDUyXRKX4sLsZyG4TnV6z3kRo6/+MNWkJECx4hN4ditpkblZN4vNTAOpIe0azoZNwbgHl7IeY2gw0seMknwSLeVfYmb/gbRmYQgK99ieQwNTdjIgsKfHYbDUQx5ZALvfRVoiEU08OwNyWh0IAWaLEZ+g8xudWFa+p6wEIUSUe/UaBSS6008AheU1MegLwBPuz2emVxrlmmDdIW9bCyGCge+FEM3RBcVPSym/FULcgR7hsdh2shBisLsstarQP/wz6d/vHuITEli3bjkurUB96YMPpjBu3GQcdierV//JNdfoyu9Nmzfgp+WfUree5zE5NVCExGjMxqK4sEkTfpoT/FwIRaFx4H5EIBw4FY4obLHkDjGraRoz248EIbj52Z6seHMZjdrFcOfHj+QXzfNLCuBj0FCAr7pP5rmD5y42qGj6v/8Q0zqPIe+lZ1aPV6jWNIYbPxjssXxgr76gKgR2r5woqMrp06AIIiw52DBiEXY0q0JsPX+6LfoQ1VD0n0THx64j4auF+DTwLBbQNA1t2dXQ9FkMtfvlp0urFc0JalY2snokSk4mWm4W0uKHCKuOEnMSxelAJgnY8DSGW/4Bc8mbeppiIGGxL+H9FMTBWyFyK6L+w2AOQ9S6tcR6z26aQPrJNCIalrypWHlIt2+ySmMxMAiY5P67qFD6PCHE20AN9M2sDVJKlxAiUwjRCfgbGAhUjrK1m7PSIpBSpgGr0HfeBgHfubO+ATxuckkpZ0gp20kp21WrVjzSZlVASslPPy1j08YtbNu2s0he3bqxDBp0LwsWfMv4cZMZ+fSLZLktvjp1uYKIyDCPbfb77QOunv4szRulYTI7ydpVR59jHCoOh5a/sRQe7Yc50Jc+U26l7+JxRVSXHDk2HNlW2gzqQ5CPbuVVVchNz+bjm95k97KtpZYLjAzhwZ9eREFiEJCdlEFuanH92zzUwCBC+t2FGlg5SvHNn7wdXT0Cqkeb8bPYiQ3KIERNLja5AjR94k7afPQa7ae94rE9bWlbxOlNsLqopzZnYARCCGRIKEJV0ILCwG5FTT6O7dejZK0xYhOhYDBAcNnaKQdejyL7pEr8u4JTb+umxcIUhFJvEMJY8ura7O9zgSbXAj3YitAiEEJ8BfwFNBJCnBBCPIw+sfYWQuwHeru/I6XcCXwN7EKPCDvcvUgEeAz4FH3j6yCwtCLHfCbl0SKo5l654o4P3gvYg760vsZdrAew32MDFwFCCJ57/in69etLq1bFQ6Z363YVPy75GrPFzPvvf8y6P/8us02fasFU79KCrMb92XOqLoF14xBCdz3oNEH1BoepVucY/o5T2HdvJv2zcWR9XWAsoCgKD298h4c3vYslyI+Bv4zltnkleKOPLgjNUlnrhY3f/M0LNZ/knZ56qPm32r7IqW3HWDDYs//bwkQ2icaguDCrLrTcHNIOVZwD7bMl9vbeNB1wBdUDsvCTqfiaHKTk+nLgiOfVoxCC4FaNMfj5esynxs1IDVDPeP02qjija+OKjMblGwiahjgcDweOYTh9EushCzk/5yLCLIgmr+VXc2ZksueJkZxecobWiDShZqnkZPvhchR9EOyb9SP7ZheNTlxVqChLLinl3VLKKCmlUUoZI6X8TEqZLKXsKaVs4P6bUqj8BCllPSllIynl0kLpG6WUzd15j8vS/IBWAOUREUQBc9xyWAX4Wkq5RAiRBrwnhDAAVtxigIuVCRN0c0+73U5MdGNiatZg82bd65MQguuv7837U3Wdw75972DjptUeJ+MzOfhvJqkJwTS3CvyrAZoLY4YJpwpCuKj26FBMDVrg3/8RfNp1y6/nOLoEsWEU4sZ/ADMhdasXa3vs0Up9uynCj6/ojpwT9+l+FbSzNCD3N+qrdodLYE3OLLtCJaKlp2MyupD2HExGQNjRtLL93bqsdoRBQSm00hVHZ4LZAIai10OtOQ5n3Dg0oxljVjIgdW9aiRYsDQS+V2SgNHsDnBmo1Qt8LjiSk8netRtjaAjVbrwhP10CdrsJUNx/C9g17VuEImj4QMVvCv4XJOC6iB3CVgRlrmCllNuklFdIKVu6Z/5x7vS1Usq2UspWUsqOUspNZbV1MZCUlExKSirbtu7CaAjNt/UeP34SK1euQkr9H9KmTf+W1gygix4aNPel06C2+BjsaJoAoeK02XFaDditCtq6ueQmniLwtscwxRZEVZB/PYxIOoL8tuRYXOeTJ359FtWk0uUhPRrvDa/diWJWeOiH8sV4ytvwcEpJQAkmsueL+uPHEHz9DSRn+ZGQHoTNqYC/maWPvEPSrqMe67hsdn7v8wjrB50RJqfhk2BQwVJU/GUOvho124Eh5VSBoqefghJlRTXkgCMLlxaB84fHsU3xQ3PHevGJrUPzL2YR+9LzRdqrNWMaNruq62I3Lqqm1e2LV+k2d+w5X4/KREpZruNS5bL2RdC+3VVs3vxvkU2tGjWimDz5VZ5/fiwgMBiCGT78Uex2Bw6nQ1fskRrNmzcps31rQhJHft6MagC/TgG4tjgAIzlWI0d2NaNa9ZMIWwqOZwcQWuckhqFr8KndEADFlQ0mBdTcyhn8WRJeM4LXDr6T/z35YCKaTUMpp6XZkD26KMGTzu35RjWbiR31JBvnbkRVQEqVpGTIWreLGp0aE960drE6QlXxq1MD35pnvEm4AtDUNig3/HJGDYlwpKFmpaH56jJSLdGJwZCLMOm61NKRrCtXaOBcOhhTX92Jizmq+NtKRP16BI45jiExAc0dFDOP4EbF+1tVuJQduZSHy9pUdvNmfRWqKkU9XI165kn8/PzQ/Xsa+HrB90yf/i4///xdfpkuncvWh7REhhN9fSfqDx6A+faFbNnclhk/9mPNljbYHGb8aiRjNFvxDU9FteQg0+PZ88cenowaQUauL8LfiFKCfuOF5tqXb+G5rZOIuaJOuev8PXoaP3R4iJz45MrrWDlZ9/x0kqxGchwqp+0qmQ4Iu7odLQbpv2tuaha/vfwlCTuOsmvuryzq9RQNnx9KqwlPFWnHteZpOLUONr9ZJF0IBTWwCy6farhOZeDclY7i60CGhaCZTGhOicHoQESaIUIgD31ZZp+12uNwhofhMprKLFsV0De5ZLmOS5XLegWbR2hocRWc9IzjmE3VdDUcTfcLe+21PZFoiHI+l4QQtBw3Iv/79vSGgJ3YukdpEHUa39B0RO1EZJQFVRU4sn4ibkcfNAkvj7mbyTsn4B9Wfv8H5xMhBL7BZYc2z8Nls3Nk2T+gSewZ2fhW96x9cb44vmwD2Q4LKXYVFY1Mh8KWn7YT3GgZ3Z/uS9w/+9mxYC05KVnkbtwEVit/j5/FDfNfzW9DOp24Mg0oJhdaZhJn2vgZW35U5Hvuh1G4TmsIzYy5dl20qN5IqwsSVIp46i4B33p3Qb3iceWqMpWsplXluaxXsNk5ySSnxHE66bjH/L83/EbDhg1YvuKHYnndu3dlzeo/6dypJ/HxZTvUBjCFBiOEizqWNFRc2K0AEu2QHVQD1BxOz8d65sevSjxc4LEpJzOHB8JG8ED4CM+NV3HmPPQJ0iVxAUH1Sw/Bcz5QIyPJdgk0BFZNQaLgkIKsDF0ko1jM2FyCnUu3kpPjIt1u4cSWojrpjoQ4cKhoWRao49lnSO7BAyQvWYzUNIw9PsfY4iXM14xE7fkFijMFGeKD7NMQ2bSc5rcXERKJs5zHpcplPcFaLBaCz5BnFaZ165bs3LW+iLZAw4YNkGjcfc9tXHvtrfzzz2bq12tdasSDPAaveIWHhhtRsGBPDUJYfVGqqRjqKuTstpH20gCyls+l1W0tcUn4/bNVBXVrvYBRBYOQbHmjYuJ+nU8Ord3N1hR/9qb4leim8HyixtZBShdOlyTbAaqQIKD9I50B8A8PwCD0SAWWmrpTHqEW7bcpujbc/CuGoTsx173W02k4Ne0DTn0wFevBgxia9MLc40kMbZ5DBDXBnp4I1cLB5APVPeuIa3Yb2Svm48otWXe4yiK9IoILf6dfZLz5pq6z+OijT2B36JOq1Wrl7SllW08pqoLvvS9gdwhcLkF2qgVhMaAYVOzxvmh2yP5mMhu+3AzAP98VaCpIgR5hQIM9XyzHaXdWwugqj2S7QopdJc2p8s83ZesRVzYOH38ynWbSnSoOFIyKxKxIqkfrvj/CG0VjDgtAsZgY8O0rDN7zCY/u/LhYOz6tOmCMKFlOHvXYcKKGPYGlbvFYWHLeDSipyYj0ZESiZ93g9E9eIevLiaRNK58rxKqGLOd/lyreCfYsufbanpjNZkymohsN9913BzabjU8/+Zzly1eRk5Pjsf6+l6dy5HA90lKDseX4kro6kIy1fvhUz8E3MpnAZkfyy5r8C87xWdwbJNg0EuwaXx/xpU/I4/TwG1opYzyT7PQchtR8hhe7vl5imTmTfuL6iCfZt+WYx/zwprWwqLoGwZLXl1RWV8tN31duwaRIzIqGRQEXReWFiqqQle0iO8dF8pFEFtz8Kp+1Ho7LfnbWdD71GxB2cz+EBy9smgxF+FhQ7FYUzXO7Smg4mku4XZ8Xqpu2E23LK2ha1X3QSkBDluu4VPFOsGfBqFEvYLHoPj2fe26EO+YqvPveG5gtZr77bgnDhj1L3xvuIiTIs/6qKTwEkDgdBqyZFoIbJRDQ6DSGcI2ARvGogZKPEt7jo4T3mHqwYGfaYFQJNQnCjAp2TcFYDvWorOSsCtEx3P3HPjSbg4Q98SWWmfP6EqzZdl576DOP+faDJzAISXWLg5adi0dVPd9sX7wRgyKwqBKTqrl3ewuuqdPqwCfUD3OgD77BfqTvi0OzOZjTvah+6s7ZS0nYfoBzwe+5g4jsHER6OljtHssE3PgI/tfdQeBdRf3EaiuvR+5+B7nlhXM69/nCO8F6KTdz5swDwOFw8NprbyLRCAkJ5umnRlOndgvq1YvNL1uSrmeT157H3zcDNEGOIRZXuhEtzUjWUYkWYsalmchaOpnMH14tUs9gMNC6TxNS7C40IECB2vVL9u3wwf0zeKbpS7x3t76TnafQvW3xZo5tPnxW4253Y2taXt+Sm0bfUGIZg9mATTpxap6dkmdaNRBgVODgbzs9ljmfVG8ShUDDoEiMCghFD8SY90Cy59hIO5aCLSOXX8d9i0PTHfhkJWblt/Hn2Fn8O+Ublt894dw7YnOBzYZsPc9jthIQQsA9L2GIPuOBHVgNabEgz38UmLOgvAKCS3eC9appnQVNmjRk3brCbgsFKakpqIqJmjExtG9/Be+8OwEfHwsPPeQ5EoAQgmxLXXIT0zA5TOz+qy1pyeFUr38QX5/DSM2KIfRdUASpH50mZOgH+XVHfjWMKyfMZd3sPwkyOenx9oAS+3r6aDJSQkpcKokH43m/+0QUkwG7zUlwTCjP/zX2rMb+xBwPTqAL8e7PI3l31Fe8+PEDHvPDq/mTmZxFrtHEo4svvDyxToeGBJk0rPnPA0l4zcACV5Gh/tz12WDWfbyC9g9czXe/bsCgiPzID5rTxZ5v12GW8j+55FNvPQyaHYPZs5vCklC6LkfGf4eo+cC5n7ySkQKcovxRQC5FvBPsWTB8+JBCE6wgTzJ27323se7Pv7HZbIx8ejSapjFr5pf8tvKHYrJagBZvvMSOFyYTfFt/Zo3+juuiU3GkBmOItuPIBUNqqm5amvAJoE+wWzbtYvTIKcwZ/xgnvlmGUYW4n/+gTs/WHvu6eUscmoRbHr6a0wdP64687E76TbyD8DoV79WsabtYZqx+scT8cdsnVvg5/yujDkwrNb9hzxY07NmCz26cRI5mIsBHZfCfuhzakWtHc4FVqNz719lH9M1DGAPLLuQBxRwKtR8pu+AF5lJ+/S8P3gn2LGjVojWKsCBlgbxMIPh87nwAxrz0GhaLhZycHNav/5vly3+nb9/i6juBjevS5fuPSU9MQ475kfCaacREHSdxZX3CeuwDPxPC5UKJLYhbdV3XRzHhQ/tbR/FQQDPCDFaqt2hWYl/zVlWLpv7O9M0vM+CDB6neqDpRjaqmZVhVxGlzMOvacWSmWQEIblIbS5DuVUsIcKpmgmOC8Qksv8HF5YT+8n95G8t6ZbBnwTOD38XPEIEq/BBCQQiFg4cKogu4XA7uumsAeZsly39dXWp7md/M5956hwgOlLhsZkSADVG7Fq76TXDVbUDIwNn5Zbv7tKSPXyMUu4kjmQY2pfrz56/78vOPHj2GovjkO6G55fHuhEcGMm3TGACuuPmK/Ml1x+97Gd54DDvW7K2Iy3LJIqUkNyWLkEh/RvwzkYHfFGw0HVmzk5xcjdNHUi9gD6s+3k0uL+VGahKhKJgUX4QwIoSRe+4ezNMjhwNw9dVXcez4CUCgqkaefe6JUtsLvqYralAQRkcSzhwzwR2yUNzK7NIlSX+5OpnHdgMQajQilMLu3wTpiQVu/2Jj9YB27dt34cSxeEz+Cq98PcTjZtuU+z7hdHwG7w2c+R+vyKWN0WLCz0ch5/ApzD4mTmzYzz+fLkdqGjXa1cdskASGe1evpaEJrVzHpYp3gj0LsnZb0aSLAEMkdUydiTQ1o2Onttx11wAMBgOvvDKBFct/JzDQj1zrKaKji76OO51OggLqEhGue+Lyb96Mlt8uQLXYUExWZHV/XKsTkEfi0X4/hlFoqJ/roc5MYUHUbF6Ldp3yrMokD797t8d+Dr5tLMumrGLqw7MBSE/NZPaUJdzWbDR2u50eg65ECOj/rGfrIy8FBFUPwqBoZJxIYuX4r1kz6XtSj57GPyKYYTve54E/3iixrj0j+5J2xVcWuoCgfP+VByHEESHEdiHElrwItEKIUCHEciHEfvffkELlXxBCHBBC7BVCXJCb3TvBngXSqRBGTQIJxSTMhIlQvvp4DQcPHsbpdHLiRBygawpMnDCFGTNmF6l/9OgJrFYbGRmZpKQUvFr63fkiqqqgnjyGQEXuyNZdiKouNKdg/M1TSIrPYP+Wk8z9fCzXX1ePF758iJrNC2z6Pxv6LgH4cXTvXoY8dwehHcN45J07AegR/Tjvv/wNxw8n0jvySXat3MFdo6+l7/AelX7NLnaaD+yOj0my7aMfqdaoBoqQZJ1KYdF1z7DgikfYNWeZx3rHlq7jh67DWD1k8nnucVVC4sJZruMs6C6lbF0oAu1o4DcpZQPgN/d3hBBNgbuAZughrqa5gwacV7wT7Fkwc90rtGndggD8iBHBRBCMGV/uuONWVq3+mdGjdRndjTddx9ixr/P48GeK1DeZ9IjnUmrUqN4if3UjrTasWSZcMTPIiqtG1vEIqOUEXxdqQ419fxZYR53eE8exv/ZxbF1R+am/jz9P1n+A4KBgHhn4PPP/+JEeN9zP6OFFd7iruyRJh5JY8pbnicFLUbZ8tAihOTj269/sXrQBAfz+2kKyTyahKHDs53VsfuML1r0wvUi9A/NXoAhI2X7Ic8OXAZLzIiLoB8xxf54D9C+UPl9KaZNSHkaPweUxbmBl4tUiOAsatKzJgrWv0y7gHuwiB5uw43KHTrnqqs5ccUVLgkOCufXWm3A5nVQ/w3Hyyt/WAPqrU2HJaNbfm3DZzSTPfoOIJglITWB1DMLfMhv7Xn+CLVacDouuk55twyUFe/86RLv4dEKq68EBb59yL7e9dY8uc81rXMCt9/Zg+azNeV/JcNpw2oyX8LZCxeKKT0IRQo+nJnWvgmmH4gkPCiQ3K5uuo+7gj0d1MUHiPb2JaKEbBJikFYNwEtWhZE2PSx9Z7td/IDzvtd/NDCnljGINwq9CCAl87M6PlFKeAnCH784LlxENrC9U94Q77bziXcGeJaqqUk0JJtYcQj1TOH26ds3P+/ij2ezdcwCr1cb+/Yfo3Kl9kbo7d+5Bky4E+g71L7+sBMCvmx5Lya+2GdWkoZpdiJw0kjfUI2N/dVwOEwYFzApsmKnXidsVx/RBnxZpP39Dy2FE0UxYZCgdurRgU84cBr/YDxcaNszkuiRWl2T8kDPvXy9nItwPQwVJ9Ra1EAIimkRjCAvCp0YkUe0Lwvz4RhUYC+QcOIS/yYbtVPlcWV6qSFzlOoCkvOjT7sPTzXmllLINcD0wXAhxdSmn9mRKed7XFd4JtpzEnUjk9pueZt/uw9wyogeHc7M5aM0iI73Ajdzo0eP54IPPePHFsWzatIWhQ5/ixIkT+fm6CpWG5o4gvGypPlkG9riJOgvXE/ra37jsApdNwff2KYS9PJfwV78kon4kLgltb2lF37fux+GSKGgEJBf4J7WnF/gdSHL8Q1LuVk7krszPHzLmVv7JmY0TSY7mJFtzsuLzSyKMWqXiFxGIQbgAjahWtQFJ6t5jpB1KIO14EkIIbvr1HW5Y8ib+4cH59RSXAwmYfM672K/KUNGbXFLKk+6/icD36K/8CUKIKAD330R38RNAYacXMeiRsM8rZYoIhBAWYA1gdpdfKKX8nzvvCeBxwAn8JKW88DaQlUSrxjfg0Gz80fEv4jPW4xPuy+Qxs/FPL26JY7c5kVKSkpJKndotcLr0Da116/4BIDDQn6xMKw6nE4fDgdGoG5SrBgO+r6QVNBQVCYDi+zM2DW545ga+6PkyQUboPbwXIbG6COL38V+z5tM11Lsiivt+eAkAjZL902pItxWaV1BQFv1+e5/Di9YSULcGO75djxB6RF2jUhDLcOO733Lsx3XEXNueblOGAeCUBkDoQQovWyQuzs77WEkIIfwARUqZ6f7cBxgHLAYGAZPcfxe5qywG5gkh3gZqAA2ADcUarmTKI4O1AT2klFlCCCOwVgixFPBBFyS3lFLaCsk+LklsziycmhUhFZb98BfvTv6cNCWRrGNpAKz/azN+hkhsrkxee+0lvv32h2JtOJ36bmloaBhZmXF8PvsHvp63lKMn1+Pr61viua+5oy3x7WszrddYAg1GpAZ/z1jGsB26D9qta/bjlIK4uGwOHDiYX89EvYq7AJcxsf2uAuCqRjU5uXEf1ZrWIuHPbdS4uiUAx35chyLgxLJ/YIpexxQThS0hiU4zJyGlZMfzr2MKDabR6GEXahjnHd1dYYXpuEYC37vFYAZgnpTyFyHEP8DXQoiHgWPA7QBSyp1CiK+BXegLwOFSyvP+tCtP2G4ppcxzIWR0HxJ4DJgkpbS5yyWW0MQlgVRsSJz0uaETT9/3DrlZDpAQEqnHzLqpz2AshkACTJF06VI8IGJeWGaACRNeQggVBSNOOxw+dKJY+TxyUrP4fcL37Jm/Ft+WgbpMULjwVVzs+ll3XP39+l18m3qc/YcyMBgKXkltck+x9tbk6KIt7+r17DGYjNyzZCwxLWsh0zOJqFewialJ8s1Cc04mknX0NE6nimoy4khNJ3ntRuJ/WllS05cs5bPjKnsSllIeklK2ch/NpJQT3OnJUsqeUsoG7r8phepMkFLWk1I2klIurcRhlki5tAjc+mObgPrAh1LKv4UQDYGuQogJgBV4Rkr5j4e6g4HBALVq1aqwjp9vfvl1AV/M/Zr3P3yd3q2GkZWRy66jC1HdjpQfGnw7n330DRYfM7UaNOT48WOcOqX7T7Xbdd8FwcEBBAYG0r1HV3x8fLBbc3j3vddo2qwBAM6cXBwpqfjE1Mg/ryXIl9Da4fhHBvLxT9sRwL01NQItsPaFL0nbn8ouqZvM/mFzUKdOHb799hvq1Ck5lPOPcVO4KXoUD71yY2VcqkueBgO6YgkNIKZbKwDu3T6To0v+ILqXrgVkDgvBUi0E/zr672gIDCCkczv8G9a5UF2+QEg0LmcRCYizsTQRQgSjC5efAOYDK4ERQHtgAVBXltJgu3bt5MaNG0vKviSYOnUGz4z6H1I6yNu0tFjMvP326wwbpuvJOpzJJCSc5vjxk7Rr1yq/7j833YszPZPmH79FQJOGxdpu7/sAAL3DoUUwJOaY6THpAXoMelLfM5VwOrvYM86Ll3NCCLGpkEL/WWNUA2S4b+tylY3PWvufzlVVOSs9WCllmhBiFbplxAngO/eEukEIoQHhwOkK7+VFRGZmNgIFX78AsrLSAfD19WXfvqJe7yMjqxEZWdRtoE/tmmTt2Y8xrJQIowL+SFLZleaLzeXCb79bMiPhvU9eqtCxePHy35D5GjOXK+XRIqgGONyTqw/QC5gMZAE9gFVucYEJSCq5pcuD3r2uYdLEqbzwwtOkpCQxbdpnfLNwLl27dsbHx8JNN3sO7wzQ/INJpbYtACEVDChIqUuv3nxtLjE0QiC4557+FTsYL17+ExKtgrQILlbKs4KNAua45bAK8LWUcokQwgTMFELsAOzAoNLEA5cDX36+iKeGvo6JUJ4f/SQAk98YB8CmTVt5/InBREScu7NrgUBBkEw2Thfk4kAIgSIFrsvc76aXqocENHl535fl0SLYJqW8QkrZUkrZXEo5zp1ul1Le505rI6W8/LZIz+Dpoa+jCAVVmOjR5W6klBw4cIiDBw/TqWMvbr3l/iLl408m073tg8yb9XOZbTsdLsICAggJ9ufGge1JJ5tssgmWAfhgwZ+S1by8eLkwyArTIrhY8VpyVSDR1Wq4/QwIcjMEzZpeSdMmXRg58mUA/v57UxHF8xnT5hO3J5XXnppZRI2rMLvW7+OO4CcZ0W48oaGBNG5em4kfPc3/3noEVahedSsvVRcJUrrKdVyqeCfYCmTD/gXU0GoRq9XjuccfJi7uFAA//7Qiv8wtt9yHy+Vi4z9bmPzmO8Rr+8hypvHWRM/Or1/o/R6KEMQfTmbv0eMcPKy7RBwwrAc39e+Mn6pSp3kUs9a/XPkD9OLlLKhoU9mLEe8EW4FsXruP6iKMYBHA5x8sJTdXj+WkCBWTEgQofPnlDK6+6iZ69byVvMufpaWwZNEKj21muxxo7g0th3Bx9KTuPOQa3yGs+34XFpcB5UQODVpevDrGXi5dpNTKdVyqeN0VViSKJFFmoSCQxzPx8w0mOycNX0M1FKGiamYCAgKoWSua9IwM9u87hCqCcQorew7sK9ZcbpaNRLJw2CVONIIVnwIDeDfZwH1Duhar68XLhUeiyctbi8C7gq1AOl7TnLqtauAUDh4fcyuvjX+FQGMMUrg9u0ubrl4lnbRvrxsY2FxpOGU2o18aUqy9D4Z9TpgwkU4OCqBoKj4Yi5QJMhj47u0Vl3VoEi9VFe8ml3eCrWCahtWgjhrG9+N+Y/iTd6MqRkJFNMEiCoPw0f3ALv2NZct+I6am7v/X5XKw7vctxdrKybLjr/hjwIBAwYFGjntDILZRFAEIUl3Z5Dit53OIXryUC4l3k8srIqhgMnOsSClxuuVKAVoY4SIMB06ClBC+nr8Ihw3CakVw6MBJt2argU1/FA8t4h8ZgMsoMLhUXG7Hzw631sDsf8fS2vc+/ZzSyRX+99OxZh1UAR/uGu8xmqwXL+cXeUnLV8uDdwVbwby8cCgJWjanZDpOp4vaRBGm+BMmAjBhplpEGIqi4OcbiKqY8LeEUyO4IVd0blysLdWoYjIbqRYZmP+yNf6rRwsKFJ5DJWQnZpCVmEn8wUvasZmXi4jLXUTgXcFWMKGhgYTUD0TTNFRVoctNrflryTZcUmIlh569ribbegSbzcY9dz5B/1uu5f5BAzy29dTUe3hq6j0ATHhsFgFBvvTs1zE/v0GTGuzffRIEXHtLOwKsJqRTI6p+5HkZqxcvpeLeb7icOStvWv+Vy8Gblhcvlwr/1ZuWEEZpUIPLVdbpSirzXEKI64D3ABX4VEpZuvOOKoBXRODFi5dKQo9pUL6jdNy+UD5ED3jYFLhbCNG09FoXHu8E68WLl0qjAg0NOgAH3JEN7Oj+qPtVaucrAK8M1osXL5WEPJsNrHAhRGH54YwzQndHA8cLfT8BdKSK451gvXjxUomUe4JNKkMG60nvsMpb13gnWC9evFQSEllxWgQngJqFvscAJyuq8crCK4P14sVLJVIxm1zAP0ADIUSs29n/XcDiyuhxReJdwXrx4qXyqCA1UCmlUwjxOLAMXU1rppRyZ4U0Xol4J1gvXrxUErJCHcJLKX8Gyg7/UYU4r4YGQojTwNEzksO59IIlXmpjutTGA5femCpjPLWllOccRE4I8Qt6v8pDkpSy5IigFynndYL12AEhNl5q8dAvtTFdauOBS29Ml9p4LhW8m1xevHjxUkl4J1gvXrx4qSSqwgQ7o+wiFx2X2pgutfHApTemS208lwQXXAbrxYsXL5cqVWEF68WLFy+XJN4J1osXL14qifM6wQohbhdC7BRCaEKIdoXSewshNgkhtrv/9iiUt0oIsVcIscV9RJzPPpfGOY6nrTv9gBBiqqhiwbNKGVOYEOJ3IUSWEOKDM+pcjL9RaeOpsr9RSeNx573g7vNeIcS1hdKr7O9zySOlPG8H0ARoBKwC2hVKvwKo4f7cHIgrlFekbFU6znE8G4DO6N6BlgLXX+hxlHNMfsBVwFDggzPqXIy/UWnjqbK/USnjaQpsBcxALHAQUKv673OpH+d1BSul3C2l3Osh/V8pZZ5nnJ2ARQhhPp99OxfOdjxCiCggUEr5l9Tv/LlA//PX47IpZUzZUsq1wEUVI/xsx1PVf6OSxoPufHq+lNImpTwMHEB3Uu3lAlIVZbADgH+llLZCabPcrzYvV6XXtXJSeDzR6G7X8jjhTrsUuJh/o8JcrL+RJ4fUhft9qfw+FxUV7uxFCLECqO4h6yUp5aIy6jYDJgN9CiXfK6WME0IEAN8C96OvKs4LFTyeKuE0+L+MqQQu2t/IU3Me0s7rb3SO4ymt3xf097mcqfAJVkrZ61zqCSFigO+BgVLKg4Xai3P/zRRCzEN/7TlvN0cFj+cEuqPgPC6I0+BzHVMp7V2Uv1EJXPDf6BzHU6JD6gv9+1zOVAkRgRAiGPgJeEFK+WehdIMQItz92QjcCOy4IJ08C0oaj5TyFJAphOjkfk0bCJzLirHKcLH+RiVxEf9Gi4G73LL+WKABsOFS+30uOs7njhpwC/qT1gYkAMvc6WOAbGBLoSMCfad3E7ANfbPoPdw7o1XhONvxuPPaod/gB4EPcFvTVZWjpDG5844AKUCWu0zTi/U3Kmk8Vf03KmM8L7n7vBe35kNV/30u9cNrKuvFixcvlUSVEBF48eLFy6WId4L14sWLl0rCO8F68eLFSyXhnWC9ePHipZLwTrBevHjxUkl4J1gvXrx4qSS8E6wXL168VBL/BwmDipsLZIbkAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Geographic coordinate sanity check\n", "OK, great, GeoPandas makes creating this plot a little easier than last week. \n", "\n", "Now, let's dig a little deeper and think about this map.\n", "\n", "Note that the default aspect ratio for the above map is 'equal', so the x and y scaling is the same\n", "* Check this by quickly using a ruler or piece of paper to measure the distance spanned by 10° on each axis on your screen (in mm) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Questions\n", "Discuss the following with your neighbor/group and provide answers in the notebook:\n", "\n", "1. Are there any potential issues with this scaling for our geographic coordinates (latitude and longitude in decimal degrees)? ✍️\n", "\n", "Do the following quick calculations for a spherical Earth (or attempt some more sophisticated geodetic distance calculations, if desired). Drawing a quick sketch is likely useful as you think through this (no need to reproduce your sketch here).\n", "\n", "2. ✍️ What is the length (in km) of a degree of **latitude** at:\n", " * 0° latitude (equator)\n", " * 90° latitude (pole)\n", " * 35° latitude? 49° latitude? (these are the approximate min and max latitude values of the GLAS point data)\n", "3. ✍️What is the length (in km) of a degree of **longitude** at:\n", " * 0° latitude (equator)\n", " * 90° latitude (pole)\n", " * 35° latitude? 49° latitude?\n", "4. Based on these values, does your map above have an equal aspect ratio in terms of true distance (in km)? ✍️" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Extra credit\n", "Create a plot showing the relationship between the length of a degree of longitude in km as a function of latitude in decimal degrees for a range of 0 to 90 degrees latitude. Add two red points for 35 and 49. Fine to assume a spherical earth with average radius." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Hmmm. So how do we deal with these scaling issues?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Part 3: Use a projected coordinate system!\n", "\n", "We need to choose a map projection that is appropriate for our data and objectives. This decision is important for visualization, but is also critical for precise quantitative analysis. For example, if you want to analyze area or volume change, you should use an equal-area projection. If you want to analyze distances between points, you should use an equidistant projection.\n", "\n", "https://www.axismaps.com/guide/general/map-projections/\n", "\n", "Sadly, there is no \"perfect\" projection. https://en.wikipedia.org/wiki/Map_projection#Which_projection_is_best? \n", "\n", "You, as the mapmaker or data analyst, are responsible for choosing a projection with the right characteristics for your purposes. Let's explore a bit further, and we'll revisit some general guidelines later." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Use GeoPandas to reproject your GeoDataFrame\n", "* Start by reprojecting the points to a Universal Transverse Mercator (UTM), Zone 11N on the WGS84 Ellipsoid\n", " * You'll have to look up the appropriate EPSG code\n", "* Store the output as a new GeoDataFrame with a unique name (e.g., `glas_gdf_utm`)\n", "* Do a quick `head()` and note the new values in the `geometry` column" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
decyearordinallatlonglas_zdem_zdem_z_stdlulcgeometry
02003.139571731266.94334544.157897-105.3565621398.511400.520.3331POINT (1431183.070 4955789.787)
12003.139571731266.94334644.150175-105.3581161387.111384.640.4331POINT (1431181.915 4954913.882)
22003.139571731266.94334744.148632-105.3584271392.831383.490.2831POINT (1431181.639 4954738.855)
32003.139571731266.94334744.147087-105.3587381384.241382.850.8431POINT (1431181.394 4954563.604)
42003.139571731266.94334744.145542-105.3590481369.211380.241.7331POINT (1431181.226 4954388.366)
\n", "
" ], "text/plain": [ " decyear ordinal lat lon glas_z dem_z \\\n", "0 2003.139571 731266.943345 44.157897 -105.356562 1398.51 1400.52 \n", "1 2003.139571 731266.943346 44.150175 -105.358116 1387.11 1384.64 \n", "2 2003.139571 731266.943347 44.148632 -105.358427 1392.83 1383.49 \n", "3 2003.139571 731266.943347 44.147087 -105.358738 1384.24 1382.85 \n", "4 2003.139571 731266.943347 44.145542 -105.359048 1369.21 1380.24 \n", "\n", " dem_z_std lulc geometry \n", "0 0.33 31 POINT (1431183.070 4955789.787) \n", "1 0.43 31 POINT (1431181.915 4954913.882) \n", "2 0.28 31 POINT (1431181.639 4954738.855) \n", "3 0.84 31 POINT (1431181.394 4954563.604) \n", "4 1.73 31 POINT (1431181.226 4954388.366) " ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create a new plot of the reprojected points\n", "* Note the new coordinate system origin (0,0), units, and aspect ratio" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### OK, what did we just do?\n", "\n", "Under the hood, GeoPandas used the `pyproj` library (a Python API for PROJ) to transform each point from one coordinate system to another coordinate system. \n", "\n", "I guarantee that you've all done this kind of thing before, you may just not remember it or recognize it in this context. See: https://en.wikipedia.org/wiki/List_of_common_coordinate_transformations\n", "\n", "Transforming coordinates on the surface of the same reference ellipsoid is pretty straightforward. Things start to get more complicated when you include different ellipsoid models, horizontal/vertical datums, etc. Oh, also the Earth's surface is not static - plate tectonics make everything more complicated, as time becomes important, some coordinate systems remain \"fixed\" relative to a moving plate (e.g., NAD83), and transformations must include a \"kinematic\" component. \n", "\n", "Fortunately, the `PROJ` library (https://proj.org/about.html) has generalized much of the complicated math for geodetic coordinate transformations. It's been under development since the 1980s, and our understanding of the Earth's shape and plate motions has changed dramatically in that time period (thanks to GNSS like GPS and other satellite observations). So, still pretty complicated, and there are different levels of support/sophistication in the tools/libraries that use `PROJ` (like GeoPandas).\n", "\n", "We aren't going to get into the details here, but feel free to take a look at the Transformations section here to get a sense of how this is actually accomplished: https://proj.org/operations/index.html" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Define a custom projection for Western U.S.\n", "\n", "The UTM projection we used above is not the best choice for our data, which actually span 4 UTM zones:\n", "https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system#/media/File:Utm-zones-USA.svg. Each UTM zone is a north-south \"slice\" of the Earth's surface covering 6° of longitude around a central meridian.\n", "\n", "We used UTM Zone 11N, and while distortion should be limited around the -117°W central meridian, it will increase with distance beyond the -120° to -114°W zone boundaries.\n", "\n", "Let's instead use a custom Albers Equal Area (AEA) projection to minimize area distoration over the full spatial extent of our GLAS points.\n", "\n", "To do this, we'll define a PROJ string (https://proj.org/usage/quickstart.html?highlight=definition), which can be interpreted by most Python geopackages (like `pyproj`).\n", "\n", "This interactive tool might be useful to explore some options for a user-defined bounding box: https://projectionwizard.org/\n", "\n", "The Albers Equal Area projection definition requires two standard parallels: https://proj.org/operations/projections/aea.html. Here, we will also specify the center latitude and center longitude for the coordinate system origin." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Define a custom Albers Equal Area proj string `'+proj=aea...'`\n", " * https://en.wikipedia.org/wiki/Albers_projection\n", " * PROJ reference, with example: https://proj.org/operations/projections/aea.html\n", "* Use the center longitude and latitude of the GLAS points you calculated earlier\n", "* Define the two standard parallels (lines of latitude) based on the latitude range of the points\n", " * Map scale will be true along these parallels, with distortion increases as you move north or south\n", " * One simple approach would be to use min and max latitude from the `total_bounds` extent computed earlier\n", " * This is fine, but note that this could lead to additional distortion near your center latitude\n", " * Extra Credit: figure out how to place them slightly inside your min and max latitude to minimize distortion across the entire latitude range\n", " * This might be useful: https://www.sciencedirect.com/science/article/pii/S009830041630053X (one of the \"Existing Recommendations\" is fine)\n", "* Use Python string formatting to dynamically create your proj string (don't just hardcode your values, but substitute variables in the string)\n", "* Print the final proj string" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Reproject the GLAS points using your custom equal-area projection\n", "* Store the output as a new GeoDataFrame and check that the `geometry` was updated.\n", "* Sanity check with a scatter plot\n", " * Origin should be near center of GLAS points" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Extra Credit: Create scatter plots for comparison\n", "* 4 subplots (WGS84, UTM, custom AEA, and Web Mercator)\n", "* Might be useful to add gridlines with constant spacing (somewhere between ~200-500 km might work) to each plot for projected data using matplotlib `grid()`" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from matplotlib.ticker import MultipleLocator\n", "\n", "def add_grid(ax, tick_interval=500000):\n", " ax.xaxis.set_major_locator(MultipleLocator(tick_interval))\n", " ax.yaxis.set_major_locator(MultipleLocator(tick_interval))\n", " ax.grid()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABDgAAADPCAYAAAAQyGE9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddZxVRRuAnzm3ths26O4URBqUUAQMFAMFVASxEFsswMACCQOJT0BURBTEBEEQpLu7c9nOm+fM98e5W+yyu8ASC+f5/a7cMzNnzsx173tn3nlDSCkxMDAwMDAwMDAwMDAwMDAwKM0oV3oABgYGBgYGBgYGBgYGBgYGBheLoeAwMDAwMDAwMDAwMDAwMDAo9RgKDgMDAwMDAwMDAwMDAwMDg1KPoeAwMDAwMDAwMDAwMDAwMDAo9RgKDgMDAwMDAwMDAwMDAwMDg1KPoeAwMDAwMDAwMDAwMDAwMDAo9RgKDgMDAwMDAwMDAwMDA4MSQQjRXwjx35Ueh8H1iflKD8DAoLTR9daGMiE+vdA2GzYcWiClvPUyDcnAwKCUUpQ8MWSJQUEIIaYBx6WUbwghOgAzpZTlr+igLiNCiKXoc55ypcdytWCsTQwuFiHEa0BbKWW3XGX7gH0FlL0ppZxVgs8+DMQAMVLK+Fzlm4FGQBUp5eGSel4xxjMcqC6lfOhyPfNqorTLE0PBcYU4XyEC/AA8BQwEqgOpwG5gYpaAEULUAz4FmgMCOIAugP7w1vcGRgDlgWPAMCnlvLPGZQW2AgHX02LpfIiPT2XVmrcKbWMzPxZxmYZjYGBQiilKnhiy5PrGu5FvBERJKZ1XeDj5EEJIIBOQuYpHSik/ukJDum4x1iYGJcAy4FUhhElKqQohogAL0PSssuretiXNIeABYAKAEKIB4HuhnQkhzFJKTwmNrdQ8uyQo7fLEcFG5ciwDWgshTABnC5FcZVlCZDzwHPACEA6UA94AcmvOfgX+BiKBssCz6IoQhBDlgJnA80AQ8BLwnRCi7Fnjegk4U7JTvcaQIKVa6MvAwMCgWBQhTwyuX4QQlYG26MqDnpfpmRdy8NVIShmQ61WqlBsXOOerD2NtYnDxrEPfizT2XrcDlgB7zio7IKU8KYQIFkJMFUKcEkKcEEK8m7WH8SKEEBOEEClCiN1CiFuKeP43QN9c1/2AGbkbCCFsQohPhBBHhRCxQoiJQghfb10HIcRxIcQrQojTwNdCCJMQYpgQ4oAQIk0IsUEIUcHbfpwQ4pgQItVb3tZbfiswDLhPCJEuhNjiLY8RQswXQiQKIfYLIR7PNa7hQog5QoiZQohUoH/RH/dVTCmXJ4aC48pRbCECBABPAvdLKf+WUtqllKqU8j8pZX8AIUQEUAWYLKV0eV8rpJRZ/m/lgWQp5Z9S53cgA6iWNSAhRBXgIWDUpZr0tYBEoklPoS8DgwtBCHFYCGH3/qBmvT7z+rKq3utUIcRmIUT3XPcNE0Ic8tYfF0L8cFa/nYUQS7w/7gne+18RQvicYxz3CyH2eBclZ4QQ04UQQd46m3dBc8Tb3yYhxG1n3e8nhPhCCBHv7WNZrrqO3rGkeE1Sz372O0KIbUIIj9dE9JqmKHlicF3TF1gNTENf6BeKVw7Ee+VIn1zl57shiBBC/CaESPYu5JcLIc57vSiE8BVCTBNCJAkhdgohXhJCHM9VL4UQ1XNdTxNCvOt9H+odQ5z3/t+EEMW2Kj3XxsVbl28jIgrZqAkhqgkh/vHKznghxLdCiJDz/TwuNcbaxOBikVK6gDXo+w+8/y4H/jurLOs3fTrgQT+MbQJ0AQbk6rIFcBCIAN4GfhZChBUyhNVAkBCijvf7dx/64WxuPgRqou+VqqMf+OY2NYgCwoBK6Fbvz6NbhXRDP+B9FN3qDPS9WGNv+++AH4UQPlLKv4D3gR+8SttG3vbfA8fRXWnuAd4XeZU2dwBzgBDg20LmedVT2uWJoeC4QpynELkZOCalXF9IlwnAfmCmEOJOIUTkWfXrgV1CiJ5C12beCTjR3VGymICusbRf8MSuCzQ0zVHoy8DgIuhx1mno097yVVLKAPQfzqnAbCFEmBCiH/Aw0Mlb3wxYnNWZEOJe9B/c74BKUspw9EVDeaDCOcawAmgtpQwGqqK7M77rrTOju7i1B4LRXehmC/20OYtJ6AuGOt5/h+aqywD+h24tVhD7gZeB389Rf41RuDwxuK7pi75I/hboWsDvem6i0DcR5dCVIZOEELW8dee7IXgBfRFfBt0idBh5XVCKy9vohyjVgK4UQ0mTCwX42jumiujrks/O4/4CNy656s/eiBS2URPoBz8x6DKtAjD8PMZymTDWJqUNIcT/vIcI24vZvrdXWbhDCPHdJRrWv+TsQ9qi702Wn1X2r1ce3QY8J6XMkFKeQXeTvz9XX2eAsVJKt5TyB/RD3NuLeH6WFUdndFf8E1kVQggBPA4MlVImSinT0BURuZ+pAW9LKZ1SSjv69/gNKeUe7wHvFillAoCUcqaUMkFK6ZFSjgZsQC0KQOhWH22AV6SUDinlZmAK+vori1VSynlSSs377FJM6ZYnhoLjylIsIYK+aDmd+0bviUuyEMIhhKgkpZRAR+AwMBo4JYRYJoSoASB1W6IZ6D/0Tu+/g6SUGd7+7gLMUsq5l2qy1wxSIjVPoS8Dg0uFlFJDVxD4oisfmgMLpJQHvPWnpZSTIHsxMAbdJ36ylDLR22aPlPIZKeW+czzjWO4gX4CKvvDHu5AZLqU87P0R/w3db/YG7zNroZvTD5RSxnmtzTbk6nutlPIb9FOdgp49XUr5J5B2gR9R6aIIeWJwfSKEaIO+uZ/t/f4cAB4s4rY3vYv6f9EVhL0vcEPgBqLRFaJuKeVy7xrjXGz0rkeyXl295b2B97zPPYbualssvJuOn6SUmd4xv4euVC3u/UVtXLI3IuinuufcqEkp93utZ51Syjh0mVrssVw2jLVJaWQaeV3Nz4l3Pf8a+uFDPXS39UvBMqCNECIUKONdJ6wEWnnL6nvbVEK3RD+V9d0HvkJ3kc/ixFmy4wi6orAwvkGXdf05yz0FXenqB2zI9cy/vOVZxEkpc+++K6DLz3wIIV4QQuzyWpQmox/anCuuRAyQJUNzz6dcrutjhcyrdFHK5Ymh4LiyFFeIJKAvNrKRegDQCPQfbeEtOy6lfFpKWQ1d8GTgFQ5CiE7AR0AHwIr+4zxFCNFYCOHvrXvm0k73WkEiNUehLwODS4XQ/cUHAOnAPnSTzr5e8+9mIq//ay10S42fiuizjffH/eyyFHRFQy9g7DnujUQ/Hd7hLWqB/qM/wmvOvU0I0ev8Znk9Ubg8Mbhu6QcszKVo/I7CLSCSsg4svGRtJC5kQ/AxuiXVQiHEQSHEq0WMtamUMiTXa4G3PIa8C/4jRfSTjdDd3L4SuitcKvpaKOQs+ZbVdofIcenL8qEvauOSe1yFbtSEEGWFELO8riup6CbzV2FwPWNtUtqQUi4DEnOXeV2i/vK6Vi0XQtT2Vj0OfC6lTPLee6ni5a1C/74MRLfmREqZCpz0lp2UUh5C/w45gYhc3/0gr/Ili3JeJWsWFb39nBMp5RH0Q5NuwM9nVcejW3PVy/XMYK/1anYXZ91zjFzu+Fl4ZcUr6IrYUCllCJCCd09VQD8ngTAhROBZ8zmR6/pCLN2uUkq3PDEUHFeW4gqRf4DyQohmxe3Ye1ryObqSBHRTzWVSyvXeU9d16C4ynYAaQGVgudB9cH8GooUQp88yOzcAQILmLvxlcNVwlZqAFsa8s05Ds4JY3eRdeJ9G9ye9S0qZIqWcia6c7Ipu8XUm14YkaxGebQHmXagnCyEyhRAPA0g9nk9I7kF4y4LRFSQfo1uH5UEIYcFr3i2l3O0tLo8ud1LQNzhPA9OFEHUu/CO5lilCnhhcdwg9PkZvoL33d/g0uptXIyFEo3PcFuo9rMgiayNx3hsCKWWalPIFKWVVoAfwvCg6OGBBnCKvG1zFs+oz0ZUvWUTlev8CuoK2hZQyiBzL1tybpazx1pM5Ln3Li7FxgbxzLmqjNsrbvqF3LA8VNI4rj7E2uUaYBDwjpbwBeBH4wlteE6gphFghhFgt9ECYJY7Xims9euyK5bmq/vOWLfO2OwUsBEYLIYKEEIpXOZPbuqks8KwQwiJ0d9k6wB/FGMZjwM1nKW2zLFgnA58Kb5IEIUS5XFZjBTEFeEcIUUPoNBRChAOB6G5pcYBZCPEWujVXFrFAZeGNP+TdV60ERgkhfIQQDb3jLNWxNs5N6ZYnhoLjCnIeQmQP+mnCLKEHC/T1nmK0yrpB6AG5RgghqnuFTAR6IJ3V3ibrgLZCiMbe9k3QXWC2AtvRFyGNva8B6F/sxlxL5lYlhJQaUnUU+jK4qpjG1WcCWhh3nnUaOtlbvtp7HSGlvElKuSjrBinlt1LKTuj+5E8AI70/+AneJtG52t7vXfBvBPKdhp6NlPIE+olvnnz33h/9bwAXuhIjiywT93elHuz4X/QAyl2K/xFcPxQlTwyuS+5EdwurS87vch30dULfc92EbjVl9W7wuwM/XsiGQAjR3buWEOiZ2FTv63yZDbzmXZ+UJ7+V6GbgQaHHBbuVvG4fgeiyJFnoQQnfPo/nFrVxyUMxNmqB6BZzyULPSHeu+EFXFGNtUvoRQgSgr+1/FEJsRl/7Z/1+m9EPJDugH3JMEZcu2O2/6MqJ/3KVLfeW5U4P2xfdKnwnkIQe1ya3xfka75jj0d3M7pHe+BeFIaU8IM8dd/AVdAuz1V6LqkWcI26GlzHosmghujybiu7iuwD4E9iLbl3mIO+e50fvvwlCiI3e9w+gHwifBOaiu/b9XdR8SiOlXZ4YCo4rT3GFyFPo/qtj0M3ZjgPvoAcLPIq+yaiM/kVPRVdaOPGmKfJuMoYDc4QQaegm6+9LKRd6fVRPZ728/Wve66s7D9CVQErQPIW/DK4arlIT0EuC1P3lf0RXXNYnJ0DX3RfZtZm8GZcE+iIhEuglpcytyt+KQfEpSp4YXI/0A76WUh4967f5M6CPKDit6Wn0DcZJ9BPFJ3JZVZ3vhqCGt006uqXpF1LKpYW03yLyZn4a6y0fgb5xOIS+ufjmrPuGoFuIJAN9gHm56saib0Li0Q9q/irk+WdT1MalIArbqI0AmqJbgfxOfrP5qwNjbXItoKBnPGyc65Vl/Xgc+MX7O38IPWBnjUsxCCnla1JKIaXcmKtstrfsq1xlKVLKwVLK8l7LsCZSylneumlSytZSd50PllLWlFIuLOSZlXMf3OQq93ife9h77ZBSDpNSVvVaWtWRUo731i2Vugt/7vtVKeW7UsoqUspAKWVzqbv0q1LKx7x9REspP8o9BqnH8GkjpQyVUjb1lh2XUnaXUoZJKatJKSfmes5wKeVDF/iRX32UcnlybeT+LsVIKV9DPzHOXTYbXduYu0yiKzjOFaQrgyIilEspP6MYUci9C5lip2O73hBIRAloLr1WOOvRgzB1955S/YCuqDoM9M7aaAshXkM3hVOBZ6XXx1kIcQO6hYIvutnfEO/fikHhTELfAOwTQrRANwG9Gd0EFCHECnTrhuFSTxd21SKE6I9+UrkMXQ50BeoBa6SUUgjxAjDZu7GZg76ZqI6unDhXn33QFa3H0M3K3yNXZhbgS/QT5U4yf6TwZehK19eEEKPQY3J0wHvq6bX8sKL7vAuhZzbQpJ5ZKsvtxYS+0DN7693XqrLVkCcGZyOlLNDi7Ky1Qf9c5UvJ+c1+r4D7HOiZUIYVUJf73qyyT9GDbBZnrOd01ZBSZpLL4kQI0eGs+vXosqqge0+iy43c5N5YnV2X+14V/e/7sVzFH+WqH17APSnAYO/r7LodeIMo52L0uZ5/pSgpWQKGPLlSSClThZ7y/V4p5Y/ew4SGUsot6ArAB4BpXivtmpwjWLeBwcVS2tcmhgWHgcH5UnJazSHArlzXrwKLpZQ10DeTrwIIIeqiR3Ovh+5q8YXICbT2JXq8lhre1yXxybyWuIpMQM/Fr2edhhaV2SgVfeNyFF158REwWEr5H4DUU7P1RvcbP4Z+IjobXcnzI+jBtoQQ6bn6rIvua5qOHh9oD7p1C0KISsAgdLP507nG2cf7PDd6CsZu6Ceek4G+uU6T26Gbnv9BTvrH3Kc6k71lDwCve9/nTsN2bVFyFhyGPDEwuJ4p2RNXQ55cBoQQ36NbSdUSenbEx9CtmR4TQmxBD959h7f5AnR3iZ3obp8vyWK4exgYXBClfK9jWHAYGJw38qJNs7z+yLejn7Y97y2+g5wTq+nAUnTT4juAWVJKJ3BICLEfuFEIcRgIklKu8vY5A913+8+LGty1T7YJaAF1x9FjXbjRP+ssE9B1l2NgUsrKhVRPO8c9P1OEybTXCuWclihSyuVAQK7r19GVCwW1PUIRAfa8J54tz1G3tLD7pZT9yXU6fe1jyBMDA4OS4OJlCRjy5HIipXzgHFX5NnDeE+vnyfl/YmBwCSndaxPDgsPA4HyREqE6C30Vg7HAy4CWqyxS6sHOsoKeZeUSL0de/+Hj3rJy3vdnlxsUgtQzFR0SekRvhE5WZoJ5QEdvuWECanDpKUKeFJOxGPLE4CqnIP94gxKkZNYmYMgTAwODUr7XMRQcBgbnjURonkJfQIQQYn2u18Csu4UQ3YEzUsoNxXxgQafdspByg1wYJqAGVzeFyxMKkSVgyBMDA4MsLm5tAoY8MTAwyKJ073WuSheViIgIWblyZQAyMjLw9/cv/IbLxNU0Fri6xnMtjGXDhg3xUsoyRTaUGniK1FzGSymbnaOuNdBTCNEN8AGChBAzgVghRLSU8pQQIhrIyuBxHD2Nbxbl0SPlHydvcLis8lKJ1wwtDT24kOfsz88boO4X9Ij8AD9LKUcW1a9hAmpwVVO0PClMloAhTwwMDKAk1iZgyJPLRu69zuXkSq7Xr/Re4Xp+ftazr5e9zlWp4KhcuTLr1+vpj5cuXUqHDh2u7IC8XE1jgatrPNfCWIQQR4rdVrvwhA65M+d4N+0vSikfEkJ8jJ4J5wPvv794b5kPfCeEGAPEoMeEWCulVIUQaUKIm9BzjfcFJlzwwK4OOkop4wupXy6l7H7ZRmNgcBkw5Enp4EptSArjSi/Yi0NpGCNcveMs9oaEi5MlYMiTy0nuvc7l5Equ16/0XuF6fn7Ws6+Xvc5VqeAwMLiqkRLhcV2Knj8AZntdKI4C9+qPkzuEELOBnYAHeCpXyszB5KRO+hMjgFceSmpDcrUufHNjjLFkKKkxFv+UxJAnpYUrtSEpjCu9YC8OpWGMcPWOs9gbkksnS8CQJwYG1xelfG1iKDgMDM4bCRd5SpLdk55RYqn3fQJwyznavYcehfjs8vVA/RIZzJVHAguFEBL4Sko5qYA2Lb1xM06ia4N3FNZhSW1IrtaFb26MMZYMJTXG4p+SGPLEwMCgJCg5WQKGPDEwuL4p3WsTQ8FhYHCeiEt7SnI901pKeVIIURb4WwixW0q5LFf9RqCSlDLd69M3D92ELQ/eIEcDASIjI1m6dOlFDyw9Pb1E+rmUGGMsGS73GA15YmBgUBIYssTAwKCkKO3y5LpXcOz5fQUhlSKJqFkJpMRks+Zr405JwZWaCoDq9mCyXP0fm9vtRmZkYA0JudJDufaQ8qL9XA3yI6U86f33jBBiLnAjsCxXfWqu938IIb4QQkScHbPDa/kxCaBZs2ayJE7jryfLg0uJMcYCMOSJgYFBSWDIkuuK06djiY9P4KmnhhAaGsa8eT8U2C7leDy/3/Y8LtVE3YFdyIy0cHrVVra+8hH1Rz5FTIeWaB6VXW+MIH3VOnzq1sC3TXfKd2qGX2TYJRn7ycNxBIb4Exjid8F9uFNTOTx2PMlLlxJ+fx+qDnwkX5u0uDSO7ThBnfa1EKKgZBwG56SUy5Orf6d+nmRmZtK+fVd27dqD3W4HQFXTGDduIvXr16J8uYpsWL+NBx+6k2/r98UqJJmqCTMebBaBr9mFSzMT1bImoa1aErdpH2LtAqQUZPTtzk/Pfc2tc0cRVCWmxMe+YdlunrnjE3o81IbXJvQv1j1bPpiG9Hho/MYAAByxCax76FmEIwWJwFanCjdOGg+Ay+5ix59bqN2pPh93+xQhBG8ufy27rzc6j2b/+qP0fus27h6aL8GEQTYS4XFf6UFcUwgh/AFFSpnmfd8FGHlWmyggVkophRA3oqe5NlK4GpRyDHlioB9KzJ37Kzt37mL58v9YvNgIV2Bwvhiy5HqiS5ce7NixK/va7XZTv14LDh06wvxffmLYax8weuxbHBs8EWECH5ObTV8uouyQNmwc/Q6JTn/WDh1HTK8D7PhuCTXCz6Bqvsid+9mz8lvSj8bS9LWHS3zcCbEp3FH3JRCwImkSVmv+g+Wz+e+J9zmzdjetv3yJyBYN8NgdLO3yOGZhx+EKRX7/XbaCw+N08/3T06naohr/fr+O49tP8MjEvjS/6wYARvScwM5l+5DA7OTxJT6/a4fSLU+uSQXHpk1b0LM96owc+QkjRrwDQIWgJiQ4TlGmbBhlAhKxWWBfrC9JagghOEl3+3DcHkjmyv2ErN2MKu2E+PggESBB8fHBnu4k6BKM/Zdp/+J2efj566XFVnDsn/UPAPVf7Y/ZbObUwv+wJ6dhtVhRUMnYvo3kgycJqRrD+lmr+PWtn+j80u3E7o9FAE67E5uvDYB9644ghGDWiD+oUDWS5nc0uQSzvAaQlKifqwEAkcBcr4bdDHwnpfxLCPEEgJRyInAPMFgI4QHswP0y9xf9MiGlZM+evYSGhnDq1GkaN250uYdgcC1hyBMDYM6ceTz00KPZ161a3YJJUWjUqCH9+/UlJDSY+N82cHTaPJwehYCK4VS5uSkZZRV2jZ9OnWf7AeBKSMSdmop/lcpXaCYGVwxDllxXDBz4KHPmzGP58hUA9O37OPsPHADg3jseAbOVcWOm8lRYIv4mSHRCnLM8Hk0hw2njcHoAviYrtnlzqBikYTO7cbgVhHBDjZpkBERcknEHhvihb6kkxw+eoWrt8kXeE7duN0g4+M0fRLZogFAUpKYizBZ8bSrpDh/WjZpJjftuRvHzZ+dfW0k5kUTq6WRMAtbMWk3zu25ASsnO5ft0aw4p+fT+ifT/9H5Co0MuyVxLNaVcnlxzCo6IiAji44/Sq9eDLF26HIARI0agH/ZC+YDKBASbCTGbcVkUQFA+JIM9SeHE221oQkEiOJ4aQEiYhwCLC3+fDJCSNKsfa4754Pfbdro1qFLiY39j4qNsXLmHZh3qFqu99KgIIRFoeFIyMIcHk7l7ty6csCCEhzOyDr/d8QaVbruRhkPvJ+FQHI3vbMbcUX8A8FnvLyhXO5oDqw8gQTdJAkb3n8b0E/Ww+RWtWb3+KNlAXgYgpTwI5NMUeBUbWe8/Az67nOMqiB9/nMsDD/TLvh437kO2bd1N9x63Ui66AuUqRLH4wQ+xxseS4TbhF2yhws1NSF68jPDWjWk++lWklKzvdjfCaqb6J2Pwj4nA4u97BWelIzWNw5OmEvfzrzSaPxubj0+e+hXfrUIArR5sCcDRvSd5ucWH1GpVlRG/D7kCI74WMOSJAXTu3JHBgwfw5ZdTAFizZi2gsHLVWmb/bxlucyajo6sSGgQZ7gBOH0jBfvRXfJ66jc1T/kENLMv2yb9TXjmKRKAobpxVW3PztNev7MQMLiOGLLmeePrpJ3j66ScwmQIBmD37J2+NiXpRLalaLYZxU19jX69+SEyE+Xg4BGgIlOq1kJvP4FAtaPihak4cHje+NgfpLn82rDpNeOxG2j5zW4mP22qz8M2K4RzYdYIqtcoV2V51ugipXYnUnQeI7NBMn6HNitWsoggNk+Ik2e7Lye/+Ye8PS+izeSrPL30dv7AAXq07DATsWbaXVd+v5njcce57oxOz3lkEwJoFu2i5fD839W5W4vMs/ZRueaJc6QGUNP36DaJr1zuJiYnOU964xs1E+zTjePxJbPFR3NDhJhAehPCwNd6GwwNlfTMIC1EIszmoGJAGgKZaOJ4cQbojANwuur7UjVZ921ySsVutFn7bPYbhEwecs81HT89g5GNTAcg8nYAAMszB2EJ1AVdz+PNYzRbcqsCl2iA9CZCkL13I/OFz2bFoJ4FlArP7a9K9CXGH4ok/nEC3gW0RQJaXmqHcOAdSIlR3oS+Da5f69evStGnj7OsXXniTKVOnc+edD9C5bV8aN+gKcfuwWFOQuImPdxO3YAnHU/zZ//cOfmj3LMvbdCEzFewJLtb2eYY1w74qsfEt+30Tnco/xeK5a4tsu3roGJb0eQPQLVOWde7Lwa9/JyHRxOZbdTc11a0yrssHfPP4FL4dOotvh87C7fQA8OKNHwCwe8UBFk9ZxhUwqCn9FCFPDK4PDhw4xKBBjxVYF2OrSOPG9agdKSnrq1A1PA03FhIcAqeqcCAtkBOfT6KMthtNKmhSAekh9WhsiY1PSskDzd+gZ90X0TStyPZH//yPjNgcD8Idr49ibcfOrLulMxn7D2aXn9p1gvSEdD7sOprvXsyJIfDz+L+4P3QIb3QdXWJzuOYx1ibXDUuWLKNx45Y8/PBj/PrrnDx15fybERefzNY1hwkKDiQx3YOiuNly3EWaS0FKSYuBt1AlMIU6oUmoqoqqKaT4VCM1MwChCgbPGsTAH566ZOOv3bgytz/Q+pxxMfZuPsTr938OwJlV20neeZgMj5UyLRpmt7E2qILTY8XuCsBltaGgESjS+bZ1Pz7t/BGxe05RtkZZAKJqRRIQ5o9iUqjXohZmITB7n71h8c5LNs9STSmXJ9ecBcfMmd8BsH79hjzlZ06kIoVGjCkae3AaiqKw/Hgl7G4PAWaFGN8kbGYLVncylYM9eDSBqpk46vBBe+BOmtwQw36Tg5H3/YTr9dksiv0Mv4DLe+KanJjC/P/pVil9X7oNa3AgSW4zLrMFoei6KovFgr70EAgk5YLTMIkMPCqs+28XLrsbTZMM+28Yo3uO48zhOPpM6EPy6VQqN6rAgsn/IYCily/XOcVY4Blcm9StW5tlyxYSEKD/cHo8LrJ0xdGWClRpFkbltAQkCoHWZLaeqcDxZCfxqi9mh42mPifw8dNweCQmoZLmG42q+JfY+MYNm0VKUgbDB03hlrtuLLTtiSWbEQJS9h8jqGo5nGlOrGYTviZJmt2fOR2eo+ust0g8moBiUjB5VeJf9PkSm48Fs0WguiUSmPzSTzTr2ZjgspfCge8ax5An1zUNG7Zgx478i+wY/+agQbozk14170bunQsoCE3FpQIyCBBIBGl2X4L9JP5+GUgkW9JrsvsgdE5Mxz8s4KLHqHpU9u88DsDapbu46eZ652y7Z8pcdnw+FwTcvXEGaqaDYwuW4WMNAFS2v/keLb6fyskdx5lw60dUa1OLo5uPcmzrUR785D4AZr31B4oQ7FtzhOXfrabtgzdd9ByuCwxZcl3QqdPtAGzbtp1ffvktuzzSrxGa1FBMAqeagM1mJbPhrWxbtg9NdeHCjc0kWfniRCL99TiFLtVEmstC2ef6U69eOQJ8LXw4bC4LZ63mzamPcdv9rS77/B5t9T4At0U/y2+HPsFu8ifDoSKVnHP5agP6su3p9xBC4uuIIzLEH1UTHIu3IN1uVI/Km8teZ/qQbzFZTNRqV4sEWwI1W9fEP8yXjER9/o9PuP+yz6/UUIrlyTVnwZEVrObsaMKxmVs5bV+PpmXwzfyPAHj14Je0vKcJAVZJosuXnSkmkl1m7B4zTo8JVSrszZCMHTWXI0oAisWC0+FGSog7lXxe4/r2swW0Ch/A7s1HLnhumamO7PdlyoVgCfTlnhWf0XdF3hOOkFu6YlI0yt7eGSkzUYQbm8WOlm4nONwPm7+NBWP/Jj0+g0WT/+PpusN54+YxLJ2xCqlpaFIaJ7GFIfXAO4W9DK5NBg16GpMpMFu5kUW5gOaU870Rl0elc4NbQWiAhtvhxq1CiqorMBRF4tFsJGcG4m+zg3Bz4pRk08qTJTbG4ZMfx+pr4a5HOxTazpmUhmIRCDy65ZaiYDV70NWbGknpATgSUvmzy2BaP96ROz/IWQTEHY5j5+JdNGleIY/Vl9vjKbF5XDcUIU8MSj9//72YwYOfQ1ULNvcNCNAzCZhMpjzlHtWBRzoop0TQ7q7GLDtegeXHy7L8RBWifRIJs2Xia/bQKCwBi9WNU7NwKjWMDEcANar50eXFbviFlozy1Gwx07ZbI0LLBFK3SeVC2/qUCUFKSdZ0NLcLi8mKvuSU7NsumdngUYJjQqjZoQ7N7muBouhyZM2Pa3ir6VsoQrcakcDnT32PppbehfZlw1ibXDfUrVsbgAcfvC/PHjQ2cyuJ9l2YPRk8eN9dAPSe/hz3ju9LhB/E2NJxaZCpKTjdJtyaCUUINCF5+r5P+OzjX/GNjGDJz+uREmZ/vvi8xhV3KolHb3mHxfPWlcg8bX42TD5W7l/7BY9s/JygcuHZdUGVKoCvH4EtW+DWfLCYnfj6ZBJuS8AiJJHVI3E5XKyatZb/Zqyif8xLHNp8jM8fn47bqSLRZUxxgpxel5RyeVJqFBxJSUmEh1Wi5U2dSE1NPWc7uz0BVU2jR49uecpVHIDg6a8epP4NtbLL/9q+m0zVjAdfgiy+mDBz2iFIcfmS6PSleYikVlAUTVvqwmT8788z/OvHqVQjrwtMUageFY9bRcoL/5GOqRzJ6PlDmPrfMPwD/VDdKlt/3ZyvXcaR4ygCUv9ZRHIG+PtnYLY5aRh+hrKWFAAe+PBearWpgUcBswJCQJXGFVGFACEIirr4E59rF6lrNQt7GZRakpKSzlm3alXBbh8e1YUHB5EihBs71eHf4+X573g0GxOrU8aWToyvk2YRcTQKS0BKD063QoJaDpfqT/uXetDi+S4lNv4GN1ZnRfxknv/gwXx1GRl2upR5mpGPTubU0g3g0Uh32wioqvvBBt3XDbdqwa1aCArwEGBxEBlg559P/2LRmD95atZg/MsG0H5Ae15c8BIPfPIgZh8Fk9fUMyLm0qSUu7YpQp4YlHp63t6PyZNmYrNG8MSgl/PVr1y5hOTkk7hcyXnKzzi2kuDYQcNWtWjfvTn9fnkFHwUibG4yND80zChIrIqG1WxmT7qZ1U3bUev9Ycx3luOt13/km09+L7F5jPlxKAsPTyCoAKXJ7k2HGDP0WwB2Tf4NRYC1dh0AzEGBmE0qHlWgaRb06HWSeW3u5vT+M5StmbOeUmwKyadS6PpgcwCyVD6KqdQsV68gxtrkWmD+/N8ZO/bzQtts27YOVU3jm2+m0KFDbrd5iVOmE1hfMmLas9ml1Xu0wKEqpMsQBAomFJI8CilOH87Y/VCQNKhQiS49davPyUuG0aprA778+5XzGvuxA7FsWb2fFQu3ntd9ZzPuj+e59cGbmHfgYwBUlweTjyVPm1OL1mB2peNYuwpV8cdqtWO1OLEqNvzMHvzDArD6WKnRqhqWEEv2htc3wIfAMgG6FDIyxxZC6ZYnpeYXY/YP83Bm2li/bhOhoZXwtVbKU+9yufJcx8bm9T39fsZsov2a8dwT7yGlZGKvMYyo9CSLVu8BNExo+Jg0pNnCPlcS2zJTsZrTCbV5eLrSYWw+uoavecd6dL3v/E0lH3y6K7PWv0udJjnBSTet2MM34/7M58/69qCvmPHpb2d3AUCLTvWp1VTvI/V0MvNe+4ElXy1B9eScDDUc8Qxh7VsQ9dDd2NUyJKWGkJoWik2BKPdpQNeKdh7cMdsXxcdmokrjCmhS4tE0MlIc+Z5t4EVK8HgKfxmUSm5o2oGosnVo3Kg1iYn5FR1btqzh5ZeHcuLEvjzlZ+xbiLNvo07j6tzUuRH9576Kn0klzOohzmUmxWMCKZFSwaSYWJRoZZKrLO3/+4knn/+VNx6Zwtcf/FrscTodrqIbFcBdlV8iM8PJwllrqXBbKzItQaj+wdl+sE2HPI4iPJiEhxDfdMJ8M7FaXFgVSUTFUFLj00k+nc7sN+fzavuPebn1hwSG+qNKWSy/fIMCKEqeGJR6TIovNnMIVlMo/5s6M7v8229nkZGRAUBgYCDz5+eVAYF+YURFVWT8Qj1QaEzDqthMkK6ayXTbkCi4pSDObiPFaWFPOsz/7j98G9Zl03+6jPq3gEOQc7FpxR5OHY2/oDkOaP0+P3+1lD6N38RSLhqHR8Hh1uWKEAIpTUgUJFAhMJEqwQlUjRCkHU8g6WgCfb/shyXQh2NbT/Po9Me57fmuKEKc00ffoACMtck1wb29HuelF0fg61uW9m3uKLL9n38uzHMdHdCE+KNmkpP1A01N02hepzeq1zBbAJkeK4cdaSR5PGgS/CwaT4ZtRzusW5PWbFyJ0XOfw8fn/KwbmrapzZwNo3j10755yt3u8/vbu6FDHd6YosckOrbpMMNrvsjiT/Omzq76YDcC61bDt4w/CXY/UtKDSU4PJtBH0jA8CU9mJgAvzH2WcrUr6lZiAh4bez+nDsZ71y2Gtfo5KeXypNQoOO7tfQdSgs0Sho85HE16cDj0TbjJFIivbzgmUyAPPzwAmy2UCuXrIHKFGGnTsQmprqOkOo8BsOu//aS54f7wqpzJyCTMZsemOOkxZRA9IhXahNqI8nOAUJCYMFtMBY6ruEx4bxa33fAMi3/POQH++KVvGTtsFkf35yhj/v1jE7/O/I+xb/xQUDd5CCwbRIV2dfnxnd9YNn1ldvmKJz7gwF/bODh3FSE2N0npgFSxmVUgRxGycOwCbBKqNqrA+P16Gt3ACD8QgqkH37uo+V7TZKVOKuxlUCrZu/s4AjO7dx4hskztfPVCCEaNGklUVFSecl9bIGGhZfly2VsARDeqgklRSFfNmIQPJmHmhN1CgsOHuEwf0hyC1Nh0wJsyDajeoEKxxrjsj020Cn+cedP/Pe/51b+pavZ7k4+VPms/p/+asdmbiPSjpzApAkURCMWBxIlZsVPOPwO/ACuNbmtASFQQbi3H8isj3anfL4Th2nYhFCVPDEo9LtWFEAJFMSGEwOVyUb5cDfr2fZygoCgC/CKpWrUed93VhxyHL/CnMmpKKNOnf897TV7m7YpPonm/YwJBpseKS9PQpBmHauXe8g7uqRNGcFgAs7e9z4NDujJ56bBijfHkkTgGdHmf5+8bd1Fz9Q/x5eaJL9Bqwov0mPZ8dnnZ+3sDLjSTgp/NjqKoIN1YFEnZGpEs/GwxmSkO5n+6iI/um8zLN+mHUYby9Dww1ibXBBZTAGbFD1Q/Vq1ex5Ej+r7l99//xNc3jNDQGP77bwWHDh1m/fqNee6tWbM6HtVFclocX3w+hVGNXuaDak9zhz2cNLcdG04Qkiqta9Ap2kV0QAqVQ8/gZ/Hg1nwR31xcorr0NDsTP53D+pU5MYUWz1vHTSGP8ffPeS1gW5cdQFP/h9m19XChfdr8bfiG+rNy3haWfv1fdvmpfzeSlKxQ+9OPiAxygNSwmlQ8qgUhtezYhOt+Ws+hFXr6XLNF3xeabWaklCiWUrMNvvyUcnlSaoKMhoWF4dEysSi+aFLXGpnNWcMX6P8n4Kcf/sKjelCE1Zvn2IREpUKFGtl9Da73AlscyVS0+mIVCvVCVMwmKxaTRmSLJuzRdGWGEJDiMGPGCUBqSgbzZy+lZ+8O5z3+Zq3rUnfhRk4dSCAtOZPAED9GfDWAfduPUalGzmapSRt9nMJU9KmF2Wahx+s9cUtB7bY586s98E4yT8Zz8psfQFgoE2THxyrJdDoIeuAeNFXln2e+pGXn6lRqUolbnr4Ff3/d5HTagQ/Pe27XGwKJuMo1lwYXRseObfhnsZ5TXiL54/d/yLSncOTIYW65pQeBgUE8/PB9LFiwmNxyJ8RSHelUeP+9T1F+PoMnKZ0ImwZILIrEo5k57sygui0UgcJDVRw4lCMIIfjr2PjzGmNgsB/BYf6EhAcW3fgsxvz6PJqmoSgKqbEpzHrya1o91oH63RoD4FuuLMLHismVwbF4f0IDFJIzAijvn4E6dya2V+7kxflDeOGGd0CCzWYi3e7Co0kUME5bLwBDnlwPOHUlB2Z8rYFYrVYSYpOyJYjT5eHIkaMoQj8t1aRuoXXGvg2AsJBg1p9Ix98Ch9Mh2s+OVBWCywbiY9bw903BYvZgEhbamfRAoOGRITwzqnexR1i2XBi9B91C41a1im5cAOMXvMD6xbsYOPwuTmw9SrpDw5zr9Ddp4w4sJhMm4UaYHATYHKRkWqgelExgmUAGT3uMKYOms331YcwKlKsXw75NxzErSrZSx6BwDFlybdC2bTOWL9djWEg8vP/ueL6a/DE9e94HSFwuNx3ad0fiARQUYUWT+gFmr153Mnbs59hddh54sBdjJnyMIhTCzRp2zUKZYCdmoWHPdJOQJjGJYDIcGgFWO6ARmMfd5fzZve0w875bSlpKJq06NgLA18+Gf6APfv423GRmt7Vn6HuruVOWUGf8I+fss2zNaAb98gKv3/gO6+ZtpMMj+hiTth8k7cAJNo34EhsqTo8Zk6Lib3OjqgJrkO5qH1EpnJga4Tw45gFOuE4AMOvMpxc1z+uB0i5PSpXqSuLBpaUhBIQEhyGE4JNKDzGpZm9GV72bAFMM3cIa0bnzLd6gXQqS/BqmtUdPkqJ62G3PwI2N004LZuHBrOgL/9hUDT9LBplO8Gg2XLYyABw9dJKnHn0n32lCy6hH6VQtbzqlSqG3UC6wA71vHwpA205NeHTQnUx49Ueme31iazSoSLez0iQFBQWwMeMbNqTOKNZnUr5uDM9+N4jomjlKkiq9bqbeM70J69IBIVQ8mhkpwa2aCK0Uzd53RhF1cC7ff7CQZVOW8Xbjt88ZwEvTNBbNWMW+TYfpFvAU3QIKTxslcwUoVVWVQTeM5JMB04o1l1KDpFT7pRmcm3+WLEHVXKiaHjypdZvmPPXki9n1aWlpfPHFZA4dPI4icvxBYzO2EWffRmhYIKdPpZPshFMOE2ZpJ8DsIKRiEB3LOon2y6BS0BkQJvwuUL9cr1lVXhzXh2btdAuT9FQ7r/b9nPRUe3ab40fO0Cbqcb4YOSff/Yr3VCPxcDyH1h5k9oj57Fy6GwDnmSScAeUo88ijWCz+WISKj0VgEqB53eDWzFqDj4TwmGDG7hrOzJOfEBjmxwNv3X5B88li4Ter+N+b8y6qj1JJUfLEoFTjdDpB6tZNAnC6M0k+c4Zx1e/kq5r3UcZcnuYBDQgKCkSPOJFjLapJF5p0Mbn/LFbYEznp8hBgVagQoBIZpGHzN+tRODRfbMIEyAt2Klc9Kg4cBITZAP23/OU+ExjxxJQ87e67aRiPdn4n3/1N29Zm4HA9qOH3T37NN49PZc/yPdn1Dd55Fr/a1XFoZlLSg0lJD8blCSDM5iF+1QbCyodRv0OO1VxHb9YUt6YZWd2Ki7E2uSZYtXqtHmBYdYE0cc89PQAwYyHLwsssbCiKghAmQKAIXW6MGvUJdru+Fvjxx7ksz0hgaVocp10uwmwCIUxIBAFk4jRbCPZJJ9CWzsFUXw6n+9Lo3WH8/vNy7mo3lFMniueutm719myL+hta1mbqvLeoFFWOX2foWR9bdWnIstNf0bprozz3vTHhEVp0qs9r4/oX+YwylSMYuXIYT33zeHZZncF30/X3T1EsClIq+Fg8+Pl48LO6MPnplrELej7H1mffIjUula+fmFas+Rh4KeXypFQpOJACIQUe1UVqagrt2twBio1tyT64VR/G1WhD9/BI/vprHqlpyWgyJ45ERISe9aB69ap0fqIuUlNJlUkEWAQZaiCb43yp/fbTAHT++QuSfSphrn0DKIJ6T96NlBKPdJOqxeZRSGz4bzcp6emcOh2P25Wj6fJ4NAQKO7bvzy5r1bUhvQZ2pPvDF6chBV3xoLoK16yZ4o4QUimUNFMYJ5LDSXP6Ya5VGcfRU5xKCgXAooBy1nrowPpDDK37Oif2nubI9pN8+cz3DLttbHb9rQFPMePd/DFCnE4nPYOe4Y6gZ+gZ/gydA59k967j/Pbdqoue71WFlOBRC38ZlErcLjeq5kKTbswmC4oCb4e0p5JPGPV9KxFkifFajinoGxH9y6NKFx7p4KdhC1iWkcBJjxM8kpgADR+zgiUtGTM+uFQrYAE0NKmhqioOu/O8xjj32yUM7TeaqeN/AeDgrhP8/dNakuPTsts83vldMtMcTPnwl3P2U7lFNe4a8xCnDyXw7zTdasWVkk7GsVj2f/M7PiYBUsHXphJgyyS8UytOrtkNBw7Q4NYadH28JUEhQVitVqYf+pBeL9ya3bfL4cbt8tAt4CkeqJI/qCKA3W6nV8RzDGzyNu/2n8KoQdOYMfpPdq8/dF6fR6mnKHliUKpp2KCt7p4i9OWWlBqTmr/G+kQ/dqfaeLdKKwaVq8ozzzyJJu1o0p6vjyMuB06pccCZQZpLt4oQQP0H2gMQ6JOBpqmczvCj8suDmTHxV5575KPz8nvft+sY303+i0lj5gKgaZL/FmzNEywwPjaZfduOsXnl3kL76vHOvahBgYzu9QWpcbpcWv/yBE5sOonbY8LlseHyaEgp8TE7CWmgW42s/HYlvsBj4+6ny8D2vDzrcXwDbUw9kF+hYlAAxtrkmkAoGhpuNFxYrRZOnNTjYnxe8y4m1+pNr/B23B/ZiimtHmXp0t+RUs22+spNy5YtcEkNN5JyNSM5bvclzamhmBW6zR5J5Z53k+Iwk2K3EWyxEKDohy7fz/iNlRvWsG/n4Tz9dag4kIb+D7B++a7ssvZN+3Jn52eoWqarPnYhaNC4Oj9PWsL/Pig4lmAWdz96M1/+8kqxLT+jqkfiF+Sb63NS8IuJoM3kEUT3vpWAzl1weRQynFaE0A9aox3b2HJK4Ml0kxGXTvyRcytt/p6+ktkf/Jl9mDvumZnndI/LzLSz/u8d2dePNx1Bz/BnSU3KKNZcSgWlXJ4U+whR6GrC9cAJKWV3IcQPQJYtYwiQLKVsXMB9h4E09OAPHillswsZaEpKSs6XQIImVbZv28vtZSqQqZpIdLnxM+k2Gw+3vS/f/fHxZ9i3bytVq1Zh1849/L34HwY82IuMz/dy0g6xDhueZ2bw4V0tCKtZkXv/ze+HGhQUSLfbbsnzZbyhTW2CfQPw8bVhseZ8nN/O+4BJE+bw3byPs8vCI4N5eezDFzL9fCzs/yGZN8Ww8/RC6vbNm4Eh9cAxbOHBZOzciUTB7AKVIASS3QNfI93tj9vlQ4BFw+N1x1FMCk9WfAG3w4Mq9cXT8PYfMvH4aPq9dye1WlRhaMdPsp9xYt8ZTu4/Q0z1nHSZD1cfhpQSt5TgAD0Jk0ByDZqXXuWaS4MLROi+7dLr9/3U4NeIyfQlSFUYFNMCxaThExrAY2umkdtFJYs4j4amSA46M4m0hCCxowhBg6fu4ui4Lwn1SyXdYSLDHUTHWSPof8fbrFu5ndX7vyEkLMflxO32YLHkyJN5c/4hKSGZRwbdTYfbmnHHig6c2pXI4T2naHBjNaYsHEai40R2+xGTBzK4+0e0PevE5Gya39OcoKgQytfTs6iE1K5MtyVfcGD2Ao5P+QGTSWBSJIqiEV63KglvP8nxoyHsS6rAvn/2kZFgp9eIu/P0qaoaj9V8g4REPcZISlwG3YKeZuqWt/O0e6DiS3gckpP74jm6Lx4ViUCgWK5DNxdDnlyzJCadRkqQUgXvolsKBZsiMQsPDlXiVlXeey+/e+hTTw1i0KBH6d7+EayZMUQFQaBFYd2ZIPqMu4+Gvdtx4MtppNltuDQzFqEQc0tr3q97L0lJKQwbNYCyUXpmo1HPT2P+t8v4bfsYwsuEAFCvUk/SUtPZH/sX9RpX5ZPJQ5n54V/MnbqUux7rwO+7x2DKlb0kIjIEs8WE2Vp4TLJaHevS7YVbObr1GAFhuvtrrQF3EL9xD2fm/IJUTAT7qwhUEtMlfmXD+L3bU1SKCiYtDiLL6QcwN97WkJnHP8nXv6ZpzPl0Ib1zKVXPhcfj4YHKr1KpTjSf/P1Cke1LPYYsKfWkZ9hRhKKvp90unhj0MsffW0hCph8WIekaFonJJMg8mUD79mdnYDPRs+et3HTTjdSpU5vjrp0oUsFsr0oZHziQ5k+EfwCax0OzNx8jqGZVHIlpJGzcRflO+vZs3ZZ1OGQqW3bspF3nnC1bfEIqmtCY8NYspi8ZAYDT5dLXTLliBwWHBzBlyTBCIs7fjbYgkvafILBiJGZrwVvWg5/9j9T586j32Ycs+3WNXmh3Yj92glPJoZS32El16TLF6pfjNiel5PkGb9K4c336fXo/37/zOylxOQdFC75exYpftjD76MecTe/IlzABbimxSz1QK0hW/bqZrn1bl8i8rwpKsTw5HxvpIcAuIAhASpmtRRBCjAZSCrm3o5TywkJze3nvvY/RvGbjCAUpNTIdLhyqhxqBGqrHg1B0bVLqzsQC+6hVqzEZGXE0a6qnkJ01/U+6aNWI9tEoawMfRbLzz1W4U5wEVouhavOaee6vWq0C3/+UX0GxKu5/+co63NKCDre0uJgpF0porYpk4iGoYmSe8n0z5rN/wveAJMRPoAiJgodK4bFoUpCQ5ovTARIT5UIk++Lhpr436RYhDg8CEIpA9Uhcbg2TSaHn0zcD8Ef652iaRuyRBIY0fZfNv2wmOCaYzzfrG5fMZAcaemIWAfgJMyFRAYz69blL9jlcGWSp/tIbFMyvv/6R/V4iUTUPu+dvI8ivoffHSyCkwpZDu7NbZTFgwCN06XIz4z/5lpObHdgCVMKtEaw+E0yr7nWp2+82Yldu48iK3dhMKgIIKleGxSsXYXfacefKJ94o4EHc0kP/J7vz8sd9OXb4FE89op9g3tylBZWqlKNV60aMeno6VWrFMOitu2jSuhZLl57K7uPG9vXZkFa0m5sQgtpt88o5W0gg1e7sgDh+mIRkNwlr12F3mykTGkJCaiA4bFgU/TuecDSOzIxM0mLTGdbiPaSENxY9T4XaUQScSeHI/jhAPw1eNGMVMa1y0ku6M3XTcxW9LzOCCrWiqNmoctH/s64pDHlyLTN9+iR69LgXsKB43U8OODIoZzMTYPagKAqqVrAxrZ+fL9WqVcUcLIipp9LkdEXi0zQOZShMf+4HPrm7FaF1KlN/xvu4klPR3B6sQQGcTjqOlBJff1t2X99+9Rea0Hi4/XD+2DmWtLQMUhLTkUgmTpjNsy88RK06lTi85xRbV+/nrsc6EFrABmVt8rRizbvjo23zXJfrdCPlOt3Ivxs24zx8GE0TCKEfgRyZOJly7j0s2F4XRQi+fPBLxp3Kf8i0d90hPuwzhVMnkwGY9vav9H6pK/3f7pmnXe9yL+BMdeLWNDKlBwnErUjL19+1hyFLrgWU7ENUgSZVBGZcmWD3KHgUiapquFQFX3NBhwEqo0ePomrVKng8Hp596QHMFgV+TiLNBbvTLNSMz2Drj6to/EBbat7X0Xtfznfos4kj+XbGLzw28N48PT/6bA8WzFnDpL9ezy5bvX0Wa1dtpVmL+nnaNmhRvQQ+CTjwywpWvTGVoKrR9Pwlb/ID1elGc7uJm/sLUkL8wsUoSCSCQEsqB376h0y3jXA/FeE1rDBbTHz28CS2LNiBX6gf6YmZ/PvNKvp9ej/Df32azFQ7I/t8RfLpdDTAbDURfzyJiPKh+cbmlhJNSiwoOL1Hui17NCyReV8dlG55UiwFhxCiPHA78B7w/Fl1AugN3Fzio8vF++8P59df/2Dv3gMo+JOV33Tsqb+4ObghNz11CwnT92NWIEjzw2Yug5QeXGpOqsfw0ChMppyTh0OHjyBDq2Ez6xsVi5D899yX1AhLIwGoumpuvnE81HMYN7aqz7OvPngpp1skLV7vw9KlSynfIe8Jbeqe/WTlmDcrugVFuisUd5IDX7MK0kS1Xu05+vsK9hzRNZl7luzjp/d/x6zoFkkt+7Zi0dQVIOF/L81m76qDvPfvS5hMJhRFIbpKGYItAILUU6lMfXkOte+Mov29N/Dv7PWYgdBwX9ypbkL9/KhcN+byfjiXGgmoV7dplsH5U7FiBTyavghWhA8SSHTFUSnchc2kYceNCViYdCLfvQcPHqR7948Z+sw7aKFObq90O/FHM9mfoZA6bxetnz5Mx6/yu2ooZpBOidWWc6qQFVDv5ME4b6OszY8kupweD6hbn1YEhfnT4pZ6FzzfpUM/R7GYaffRoHx1e0d+RNrWndhNgTjcPgAcfe9DUh0RlA0SePUWBIQEMKTKa94Taj0w8z9T/+P9hUOz+zp1KJ5F01by19hFdApuzpMvvM0XW0egmBWk6r0RiLDauKNPqwueT6nFkCfXNN263UrjRjewdcsustYt0xKWIoA3Y27HrlmREiymIBRhxenJOQuaOnUmE8bqBxYnj8fRoXINAk0O6gaCSdGyZUNEg6p5nvnlpPdJSU4jMDBHoVirTiX27zrGmxP01IuBgf5YrCY8HpVnnu8DQM1GFflt/2hCywZd8HwzTicQt+Uglbs2z1cnVRVb4hH8yodw+rAVUBA4sJ9J5URyOCY0LIoJj3dNnXAykS1/7WDmy3MIjgygz+gHSI7Nq6j44ZMF+RQcWWnuJWBC4IFr05L0bAxZcskQQoQAU4D66J/0o1LKVbnqBTAO6AZkAv2llBsL6KpIPFomClY07Cj4AC4yhEL1ACeqJnFKBYtJ4ZSjYEuqGjUa8vffv9Gj22PeoQpG3tAHS3IGtQIkFiHZ/8dqGvRuhTPNiZ83k1sWnbu2oXPX/K70z4/qw/Oj+uQrv7HlpdvUB1aKQphNhNWtnK9uYRv9wDnYx4PFBAm//U75MA8mk0ZyqoUjPy9DlWY0FAIrhRNeMQy/EH+2LtiBAqQnZeLRQJOgqRoV60QD8N1+3ZrO41Z5rdNoBtd7m3J1o3j9xycoUz6MzEwnSIknO/ixIMzHwrt/PU9QaMlYrVwVlHJ5UlwLjrHAy0BB/+faArFSyn3nuFcCC4XuEPWVlHJSQY2EEAOBgQCRkZEsXboUgPT09Oz3X345ho0btnq/+LrfulBMSKlRp04NUiIiUKWGjzuVxnT0mk3l1T6NH/cF77z/HAKFatHlSI9PRRH6CWOaCqEWlXSzPuzFfy9CMZkQ3iAVyckp3NSxGpCZPaYrSe7PJgvZqQnu8sEAxPkqaE4VM+CRggxFRdMEptrVCWpbndb7TuOyu4moHIGUcONruilapUZlebh9N6y+Fo5sO0Gte8rx168L8M8lBDt90AZ7mgNNQnS1ENLT02netyrNHqrCkW3HUUwKodEhBIT5XfbPqqDPpWSRYOTOvuZo1KgBw157lQ8/mOCVG5IEj5mvz6zlabUJiS5/zAok4cRmDselpiC9GZ3++edfKsQ0IyNDjxB+PDSVcJOgeRg4VNgycyEpcTdRrU0dLD45wUmPnFqBqqpYrTkKjv9OTGbD0l3cfKe+QahQMZITaUvyjNVqs3DznRfk7QeApqoc+3sDQgC5FBy7v/iBQ1/PJdA3DbMAf08qoUFuFJNGSroJFTNSClyA2WrmwU/7sPy7tXrGKbduibFq/hbCK0XQvEcjyteKIrpKBI3a12DZl4tRBMQf1ZXO3+wfxZCW76NkOgkM8aN840rcMbTTBc+p9GLIk2udLVu2ItEQWQFApR/RkdFUHNCGbRMXsSvjBB41E0XkXUwKTKiqRz+YEeBx2vExgTCDRRHMa9Yby8Db+PuV9+m8ZmH2fQ/06ZFvDD+tz+8Ccyjh73xlZWLyn1SeD7/3HokrSVdC5FZyHP5pEWpGGm67C4/jDBbFB7dmIcTPweF/92J3W7EoUleUAmN6fcau5ftQNV1xmnw6nWa31mfm8Y/wDfRhz4aDfP7cj+Dy0DtsCO0faM7AT+/HYjUjAJd382ESJvzQ+OZIfjPzaw9DllxCxgF/SSnvEUJYAb+z6m8DanhfLYAvvf+eN926deKPPxagCJ/ssu9SVnODrTweP2glK2HTTLikwKwEoCg2XJ5EcluVRkaWzbmWkHg8GT9FEmADk4DDKw+xtFUvFEWgdOlM+xFP5hnDgb3HOHM6kZbtCndzvdSUbVyNPpsmF9rGYlYBE06Pibg0H/ytHjSp0mLcCywfMIoNGZGkxiYQfyiBek/UxyT02IMVGpdj11r9wOrkgTMsmvIf9711O74BepwPs8WEOy6VEJsgYW8sQ5u9x8zTo1GdboQQmKXEL8QHJcMDGtS7sdql/jguM6VbnhSp4BBCdAfOSCk3CCE6FNDkAeD7QrpoLaU8KYQoC/wthNgtpVx2diOv4mMSQLNmzWSHDvqjli5dStZ7gE633OU1QBKAQFGs2EQQaa69WM3R3r5UNPIH6gILFpOfN7BVKAt+mMKGL7fic+w0v8Q6vKJA45VaLhLtNhLcG/ALC+CZdR9Ru0oXnhxyNxPe/hO/ABtbTg4o/IO7DOT+bFK278G/RhXMNisr3/oEhCAy8jinTkXjawOQBPilIoRCjUHLcaWm89fQx7EBN0wdSdmmNQt8xs+bFrB7xX76PvNgtvXL3hX7+On1ufR8vQedn+6Ubyx/7FhMYJg/bXvddGk/gHNw9t9MiSMh+4jJ4JrinnvvYNSoTzAJX1Rpxy6SOKEFElm+LAlSJcll54w7CUWxgMxrVm6z+WQrOML8/LFmZAICf5NKwl//YvvvL07i5uZVv2bfYzKZWLl0C01urE1AoL5eCg4JyFZuXCoUk4kWb/dDmPPO4eg38wCBRXhQFDMezURSusRi1tAQlGlchcP7kpFnwO3w4HK5spdUXQa25u+pK6l5Y2V+fO8P5n2ygOmnxwBQr31NYmpHoUmweX1gQ8oE8vXe93iv2zgCwwN47tvHuS4x5Ml1gL5mEVhAgJQO4uLPMHf9In6PXYQQepY4VeYNCpqS7F3HaBYe73Ev2uoErDYzh9OdHHNqNCurkYEA/PPcN/Wzn3l/2Nc88GhX3h379GWao06lLs04snA9EY1yFvua28OuD6YCGuH+eiySsIBUfK0qmQ4zrsxUwA8hdIVw/0n9mfzEdKwK2FVwabrtiz3Tjtup4hsItW6oyvjlrzCw0osEmSSrvl/H3rVHGLfudX3z4f3MbQLMZishERdulVJqMGTJJUEIEQS0A/oDSCldwNlRPe8AZkg9jeBqIUSIECJaSnmK8+TXX+cQFVmLpMQ0pBRI3LjsVhY6t3Bj7SaYjgucKjhVJxLNe9CiQK6skePGTsYkBKqEJx/th/WvOFRNZP9eSzz6ATGCtPlz4SwFR5cbnkSgMGn2MG6+7dK5218MAjeKgDSnlUCbi6TMADTpw+l0CLI5iWhSm7s2TEeMnMc/Xy4hKEqXAW6v0rRK86rcPOBm0pIy+bTPVE7tP8O+9Yd575+czHkt7mzC4inL0DSJ1Rt7KDA0gMnbhvP9az+x5e+ddBjYjjptS8Yl56qilMuT4mRRaQ309AYLnQXcLISYCSCEMAN3Az+c62Yp5Unvv2eAucCNFzNg3dhKoAgbimJF09ScvMpCoigmffNRACYhaN26BTYRiFmYCawQwQNj+7Lcbsn1pRfc/u8UNB9/TEIiVBVVVYmNPY0mNcIqWonPiOX40dMXM40SZd+4r9k++GVWddVNx0KDYykXcwx7hpXa40eD9zTaZBaoKrjtdv7u8DBlg9MJ9HGy9pn3z9n33S92Zdjcp7KVGx6XC0VzElQ2kIDwAH545Qf2/pc3onq3Z26h7YNXRrlxOZASpFb4y6B0Mm7cFwBo3gWDR7pwqumEh4cx/PhPjI1dpG9EtExknvWNjbj4U6iai/JlKmA648SiCI6lO5l/xoWvxYlEQdUsOFJz8sAPe3Ycj9w5ghsqXn6Xt5r3tqfGXXn95MO7tUXBTWKmL+DBrboxmW0Ikx5ErP20ETz07xgqBruoXEPPoKIqAreAfh/0ZmbcWO57uydmiylPyscdf+8kcd9pQiMDmXEi5yRVURTe/Gvo9avcoGh5YlD6sTvO0KhxXSQqUqoowoREpecdtyJETqrHszGbs0zQTWw+ug9H+ShUCRvSNc64Yf5R3ZVuZ0IZpnQajtQ0vhz/HWNHfYsiTcz5ZvHlnCYALd54mN7LxhHgDW4KeF1p9FWWEBIpBadSynA0Pph0h0Ktu1sR1bwGdlU/c/t7wt94XDnWHMKsYPU1M7DyMJ6o8ToHNh7N7rpp57redzn+4vOSxzHgzR6U8THT+4UufH0kv/XKtYixNrlkVAXigK+FEJuEEFOEEP5ntSkHHMt1fdxbdkGEhgSjanakdCKlm1SO428pw/QZE/m1zHHeOf4DH56ag6pl4lZTyK3cAJg+7QecHjsKVuITkrD62zAJOJHpJNkjmXPKTYbbTKZbcETWZVLHt3DbXSxfuo67bn/Se4hMtgX71UiQnx0fi0qATyZu1UJMSCrlQ+OpFXmKGjEniVusn6VbVv1Lh6h4nvpCDx358q/PcM/IO+nzzj20uqcZXR9vR8eHb8JkMXFzv5bZ/UspMUmN+4b34LmZA/hfLjkSVTmCGi2qElMzkl6v3EqLHo0v69wvB6VdnhRpwSGlfA14DcBrwfGilPIhb3UnYLeU8nhB93oFgCKlTPO+7wKMvJgBq2oSa9euo1XLW72/l7qOJj4+gcaNmrBlyzY8Ws4Gol3b1tzbuxfjx33J9h1raV2nHw1tNxFKAI+3eY8y1cL54/Q4vh33B18O+5FKfgJbkB9dJz7Lb09OpOsn/VEUhZtaNSEoKBCHw4WmaTid+VMyXQ6S9xxlcd93qP/MPVBeDyDmVzEGTYISqHsQlZ84n/3vfoS7ei1C69fANmE81rBQtj7QFwAtJRWr2Y3VpOExKwRUK1Ps5++/uxNCwIPtmuBXM4rvn/+exGNJ1BlYu+ibrxUk4Cm9ZlsG5+Z///uCGdNnoqFgEhavokOX4iZhQQgFRfgUkMpRT3moCDNxiUk0G34rS8f+xuZM/d4xe/x4sZaLQ6nBbGzyEo8teJOHBw5j385jCPxRrpJFRJXH7ibjr78QQmLziUNRygAOQCU4IoOjP8xjwyc/UTvAhZqWSPzWA0w+NTZPH5Xrl2fGmTHZ1/bMTFyT36daixaYLWaeKzeUXu/2ot1ZQQivWwx5cs3TuvXNbN6ck25VlS4a1G9Ko0b1MQtfHGoCWQqAWrWqs2ePnl5+/bp/6HHjs5jR6N6+B7UbVWXckFnZ/axKstJWWHFJM45DZ9iz8yDDXv0Qk2KhfHA1XhxZMlnbLhbFpKDgQXqVxqpbEB2cgEtVCAtKB4+bNpPf4Hjnlzh5PJ2nf3uOLx75mm0Ld3LXW93pPqQzAI9VfAW724FvYE7wVH8/K4061KRu96bc0k+P4WMymbi5f2s0j8rNj7TBP1dqyWsaQ5ZcKsxAU+AZKeUaIcQ44FXgzVxtCvoRz/c/41zu+Gfz+MA+uazVs29m2bJlDBx8D8kpevYUKQuOkWAx2/CoHhRhJigwgKpPVmTfpqNEIAkrF8Aj77XHEeKLWdOIsLuRwLL/lrNn7yHad6rPnfe2QVMlHpFaoi7fF+tCnrH/CAD+1Svh7NcDkyKxawIlogLJp3VjGSEkcYrkwNFD+C7VUHs2wAys3rQWS8WynOQ4ttoizzgCGpp4bHZPwJ1dLjWJM9pBnDiD2c/E0iVL8yh8Ahpb6NK4FRu2rb9s878YzvvZpVyenE8WlYK4n7PcU4QQMcAUKWU3IBKY602raga+k1L+dTEPjI2NpWXLvPFM3aqLgAB/1q7/kwr+7TnpyInrM+S5p5k0cSaHD53hyJHj+J7wwyQU7HioZhV0q6+bhfcZ0g3nVz8Dgp96vUOvn97kqY05i/Q/F01n6dKlbNo7F7fbjc1mY9Gfq1ixbBPDRg7Mk9LxUqKpKqrLjeZyA/qPfLm7ulLurq7ZbQLLx9Bk4tic67q1kFKyOeRmLHhoHh1Fl3W/s/mxwcS0bUvVvvef9ziSN++Cbz5n0MyBlK9fnk27Nl3s1EoXV7nm0uDCUUwKqupC9eaVVzX9eyaEBVWzo0mH91pgsVhxuZzMn/8dT/YeSxBWykZFsD85FXeD6rBMz5PukibqvP0cR16chpASs6+F1as3AFAhshJVapa/AjPNYXm7u0HTaPnPbKpWPoJiUkmI90eTCorQsJhdaBqkLFyIv5JJeEAmKXYf9v3vJyLG5g+emptD99xGkFnS2T2X477DMNvMmCzFMR68jjDkyTXNhg2b85XVrFWLpjc0ooK5NvvUf7PLP/98Avfd+zivvzGUuVOXEE0UAcKHeV8upUKjvcw/9gk9qj+LI8XNIy91ISA6BF9FJaR+ZVIzMgBJQKAvsaknGf3hVB56rPvlm+hZHPvxd5LWbILubQgNTsLjshFVNo6E+EiEAF/Fg82iErfkX5KfGUhg0lFq+sGaN6fy3LeD8/U39Wh+S4wDaw6QeiaN1g+1YuP8TTTt2QSAkMgg7nn9ys39imHIkkvBceC4lNKbg5Q56AqOs9tUyHVdHjh5dkfncsc/m4oVK1KjRiPAiiIUNKliMfnx6qvP8vSzjxETXR+ByA6MDuDv509GZgZRkVGcOLmPav63E0EQd/brxIEVOxn6/oO8/vCXNL49mq9f/5epy16njMXMT/eOQvr6cP+Wvnzw7kOsX7eVpk2asHPrQW7t3pavvz+3lff5cj4u5HEb92DysRJWtwqgp4de+cZdALT692eObFiBa9mvZDo9hAz8GLCSuHQ5tsQ9OFwCn8q1qf9IP9aM+AizIjmZaCXg06HFev7u559H3b2RwLodqTLkaSbc/Rn21ExG7RqFolz4+uWSu9CX9LNLsTw5r/9LUsqlUsruua77SyknntXmpFe5gZTyoJSykfdVT0r53tl9ni9ffTU115WCQAE0Bj+hL7JjZEViqIvATEREFJ06daBBg7pULFObV58ZjxSCCv5uJAKPYkJu38PiF/U+s/IYJ0WVLfDZLpeb2NPx2Gz6hmfMqOlM/mwORw/lk2ElwuvPTOCh219Hy5WmJ6xuFe7d+DV1Hj2/H26pSfZtjuXQwRzrlsZTv6Ra/wcR5/FlDby3Hw6niQBfiX3rFurdUo/gyODzGkupR4JURaEvg9KLelbUaE2mAnBLnW7Zyg2AihWr0KZ1B5o1bUXHju2oIKOJphwi1sKMsX8w8rtBjP/tOSr4QM8YhZo9biSwYhkqtapFQGQwYeHBVK5cjrj4JDau3XnZ5udISGHN65NI2nU41yRVPSRzphNX+Q6kpviR2bgfTX75karvvY9bCSIlLRD/ujUR0oXLYwKp0WDIfed8TnbXmkBK0DQFz/GjjD70Ca0fvobyxF8sRcgTg9LPZ5+NOatE4ec5elpqqzRTleaAhVYtW2Gz2khNTeP06Tj+mrSWMIsJF5IYq4kHIpLx9ffhgVCNRyubYfY/2IL8eGjxe9w/60Wa39iQr2d+wg8/TaBc+UgefaLXZZujlJK4jXtwZ+RYtx0eN4m0NetwJabga87Ax5qE02kj8I7eSKlhEi48HgWTkKzs3Jeo4FTCAzJwrswXpi0fp/74ld3d29E7/B/e3TySb56dyfQnpiNl6T1xvGiMtcklQUp5GjgmhKjlLboFOPtHez7QV+jcBKRcSPyNLKpWrcqyZQvJShULbtxqOmkZqUREhONnCc+j3PD19Wff/m288fqbrFmrK0z9hB8RhLJy7mb+nL0Kp9PFV4teIzrQyhOVTRz4+AeiGlWmx4wXeGDuMACmfzea734cz6efD6Nlm8a8+taVcR9V3R6WPPI+/w7K69IacXtXIrp1QTGZqPLC69T6ZTV1vllE5bs6UGVgP274bgq2tj1wa35E9tbT3NodJtIdFirf2a7Yz5d71mMxa/jt/IfAIDPl6sVQrn55hLiOvkOlXJ5cHrODEuStt4YxYsQo75Xmtf8yMeeH3/l62nhOh20jKT4TxeNHUmIa4aE1sZj8CTLHsGLZBsrJSmRID/dWslM5OJMjSZHYF23GkZrJ/ipV+evfndRYd5izQ4g6HE527tjHc4M/ZOeBRQBMnPE2B/cfp1rNipdkrj/MWIimaSTGpxJRNiS7/FxfMM2hLywUn/zmmIpJ4c11w8+peXSmO7AF+BRYlxvX/kMowoQQEmuNyixrcxdmoZLe927ooLeRUrL91lsAqPv7QkzmUvdnVjSlWKtpUFwEWRam6ekZREVH0HBHV3awBBUXq1cv4uYOd5MUm8ptEUOwCSsqIKTgxUqpWKVG4g9L6BZlAiRCUXh08TvZve87shQhBKuWbya8TAjpaZn8Pu9fut3RjsCgs917S44z63Zz5LcVWAP9CK1TGYAm08ejOp1YQwKp+uG4PO1Db7qBxE4D+Xv8Yobcdi+dX3juvJ5X949/2NKlCyYTKIrkzLpN7Bk6nHJP9KfqQ/ppzJbbuqBoKhqSRgv+KYlpli4MeXJNM3jw45w8eYL33x/tLdEwKXqw3f1yM4rFguKxsGbNFu7q+Rhh1mpM/2whFWQlGoVrrDkTQMMwB6f2Kmz530JEgB+kZ5Lm1cWGVIzIftadd+um6+t3zQHg8zHfMWvGn/y0YBxlI3PFxShhYldtZ9ngT6jcsw03vqNvinxr1sR+6AiW4EAa/LWa5H1HyTgSS8wtzZCD+3Hsq8kcmv0HZRpWo2Hn9hwePQ2PKqj17ANFPi/xhx/QDcEkm3v2YuC0MWiadn1tQArCkCWXimeAb70ZVA4CjwghngDwHvT+gZ4idj96mthHLvaB7dp1OatE5bbb9MD+zSPasOTECSR6YOKmTRsx58f5fPjBeHx9bfz1znbCRRgONESqxouV3cRU0t3RPU43IEjYegiAijflJBmIKRdJTLlIAH7+cwIAK/7dyJP932X8lNdof8ulDYCehclipuHz92MLzrsWqv3ak/na+pQJyXO9LjaG9Xtr8Uo1PX1th1yB3YvrouE2+YOagdNpYl2P+3l82Z/nN4FrhVIsT0qlnbCqpp1dQsMmdQBo1LgxILGY9E1+sChLhFIZPeGaCWlS2epwUPPetbR+cBFWnDy4+D0OL99J+J5jtKtahncmDeJsbDYr4eEh9Ol3Z3ZZxcrRdOh06b7sr496nAHP3JVHuVEYx57sxbEn7jpnfWBEIP5h+TdOW3/dyPA6L7NxztoinxF+7wNomh6MtdqIkSioKIrMkyvZkZKC/qel8HGth3kqagh2e0FZbUoxmij8ZVBqyZEvWSeB/rhcLvyqu9ln2YJJCUARflQs35QzhzxIVwix4gwCjVCLRiV/lTRN8kO34bQbPQCPphHvVEmKzyu3FEVh1879NL2xLrXqVOHbr3/jhSc/Zub/fqWk0DSNn79bzJGDOQdJ5Ts3p834odR/Oud0N6BaJYLrFpxJCQCzFU0W7GRcHEwmSZbr6p6hw7GYNE5M/Dq7XvEGdTUJeCpqCE9FDbnAJ5VSDFlyzZOj3NC5+x79EEBIM5pUUYQFMzb87FHZbTKEnT8S7AxteJyu1fcg0LAE+GJu3oDxRxx8n5Df//63+Yu5pd2DHDumf+d37zzEoQMnSEtJL9H5HNx7HJfLnX0dUrsSMR2bUql7jnVWs/99TNslsxEmfakZUqMi5To1RwiBYrVwMrQx8w9UI73NA5S/827aLJ9Ph5W/UOH+nkU+v970mbhcAqfLhL/NTYU6odS7pV6+dmmHjuNITCmBGZcSjLXJJUFKuVlK2UxK2VBKeaeUMklKOTHLil3qPCWlrCalbCClLH5ghiLREysA9LhdD4HY6ObK3GDtTrS5HiFBUQx59mkqV65Ew5o38cWH83GjYkLo6d5NkuiqG5lc/0kS957AEhyAQ9VYZC/472H/vsP89OOf2dZQCfEpJMQnkxB/ab5HEz74npohPfnvn7yu7rX73UaV87C6yCKqdjQRlSPwDSr60PZc1J70NQ6nFZPJRICP+5ztpJR4Mq6x/U1uSrE8KZUKjvyYeGyAbiq96O9lmKQNgYJZ+GIyB5CppGHTrHSo0JIgLYAYwvn2t7a89/ldPLJ7Or7hQRxZth2TEFTIcFK7ceV8TxBCUKFiDK+/9TQHDx7lww8+y2fKXtI88mRPhr1f/HS0thp1sdXI/wNfFAERgQSU0V+5OTlhDDvv6ELG9pzgaEEN61Ft/BfU+XEu1qhoyvR7iEyXGWv5nEWZb0gIqtQAlRMZurvP6NvPNtEtxUiB9CiFvgyuJVQCAgKoUKGCvhFRrAghKKNUw4qvHrwflZMkUz7sJI/UPohULVTt0oStXy9l5hmN7067OX4oNk+vK5avp3XzXrw8VPdv7dGrIwOfuZc77rm5oEFcEL//tJwXB42hz+2vZZcpJoWY9o2xBOS19JJSomacrTzW6TykCx8fGUNM3bxB4ff+u4uZA6diT84s8D7QFTl+t96FKk1Yo6LRfIPwaAKXlsuyq20XJB72xpmvlR+l4lOEPDEo/fz449w812YlhC8njuHRvs8RbC6PrxKCWdEtTTOUVISUNLM1JogApGZDVV2sPFCdgbsnU6FdA+IWbKJNmB+jv3su37P+XbKajeu3c+iAnmlk7FevsuPY/BK1NP1l9lI63TCIAfeMyC7zCQuizdghRLaoW8ideYmqFU1krSiiakUV3bhALCjChCIg7t+1rGjbk+VtcpQje0e+zeEn+rPvgbuZMfRbTlwid+KrBmNtck0xd+4s2rVrBUg06dQLpf67WbFxMNu1lSTIU6SmpfLAA4/zaL8XOH44Do/qIYVkkmUm91Y7wXONTlCpSjImmwUUgTApTD3pYlecHbfLk++5zwwezoB+r7Bty24AevbqyN7Tv3P3fZ0uyTyX/7MRj6qycc2uYrWXbhfuk8fOWX/zk7cwbOWbBBXgPq95NNz2opNEqBkZmBSJokhMZhPr+g9lVbseeeQLwLaundh1dw+29LqzWGMvVZRyeXJ1j+4cDBnyYp5rs+LPo4/q0cLLWKpTxloFmwiie48uuIQDTWrc0L4Wfx/9h21iI2mBiSw+cII5SWey+2j5zO2oQHB00bnSe97el5HDP+WjD78o0XldLFGvfULU66MLbWNfvxg1OT5PWdWWNahXP5RTyzbkKc/csxM8HpxHj+QpD6hTE3NgAAC1Hu/NzavmYg3IsQyZ9MgUpm5rwKStunmYW4NX/iw8EGGpQ4rCXwallpo1G+W5njJlLFarhVFvf0WQORoBmIQPTpMDlymTG8IaUpHy+AorNmcgm06UI7pNM9q98zBrJi6gW4gPrzx5Cw2a582TXq16JVq2bkrXbu0BiClXhrfeH0xM+YJjAF0I9ZpUx9fPRttOTYtsmzRrMkf7dsGxc3OB9QWZfm/4YTU7/tzCqV0nsstSVy1nZ88unJ4+Jbus+tCnabRgAabAQNr//Q1tls/nlpU/Z9fPmJHE5K0NWXKyDqqEutdgyrVCuY5liRDisBBimxBisxBivbcsTAjxtxBin/ff0FztXxNC7BdC7BFCdM1VfoO3n/1CiPHC+wcrhLAJIX7wlq8RQlTOdU8/7zP2CSH6Xao5Pvts3jULUsHPz4+/f9pCoAwl0FQWEwpuxY2UGiFBAWx2bCaWY9StU5FHtqeR0bcNAMkHTyGAylYzbbo2yves9z58mbWbf6FdhxaAnlEkOCSgROdj8lpk+Phai2zrPnkUNTkRzenIV1eleRVeWfIalZpWzlN+etdJfhw6k9TThZ8Y+7a/Vbezs5g5Nfs3fUOS6yvjPLAH0LMqrPl+Le+3vA7SxRprk2uGnj1vp0uXW/KU+fjo37lbb+uMEAom74GLCQu+9rKYVQsCQZgSTLopnd1KIg3ar+Tvhbfz2MbxBJaLwJ6QRo8yAfy4ZhQWa34X8rdGPssrrw+mTr2cNYuf/6XLRPTZjNcY9dmzDHr+3mK1j5/4Icef6Y1j7/bzek5qbAqndp3g64e/LLKtb7VquH3C0SRUeP0N7EdOIER+K1YhJCBQ0lN4KmoIQyu9cF5juuopxfKkVCo4vvrqf3muPVoaCxcsAaCcVoFItSwumcmf8//FInyxKDYqVgqnl/8N3GNrRnCMD1IVNG6UY+0QVL4MgY1rcfSMi+oxnWlY/dwmks8+N4DKlSvQ+76izSgvB1LVOPLLv4zr9gljun6cbVbmTMng1PIc64u03/9HyoTniXuuc577V4+fy+m1e9n1bU5gr32rD7DYfhNlRo4lrFuP8xpP5SaVAKjQsDwN722BQ4Utf1++IIqXHAnSYyr0ZVB6OXDgYJ7r6DL6yWeIuRwBhOGnhFGxXAUkEo90k1YmiZ1sxSXTmZl+jHdi99Dzf3qAdafDg1URuLYfzfecqOgy/PH3NG67vQOffPQl27fvKfG5VK1ejh2xPzNqwrNFtrVEl8cUEYkSFFLs/u/64H4GzhlClZtyFkKOQwdB9eDYXfzvfMOuDUBAz7d64FDM7Ft9GAC3w80vw35gzz87it1XqaMIeXKd0FFK2VhK2cx7/SqwWEpZA1jsvUYIURc9e1s94FbgCyFE1of0JXr6xRre163e8seAJClldeBT4ENvX2HA20AL4Ebg7dyKlJIkNTU1z7VHJjL4iZcor1WmDBGEeUKxCB8swgezYqNJuSp0D6xNmEVyUsTiqwRSvWpVAMq3rI010EpIhYKHarVaqFGzCi+9OJLwkLqsXrWhwHYXQ/de7fhv1zS+/O71ItsmzZmGmnAG++Y1RbbNYvO89Wycs5Z9y3dnl3nS0jg49EkS//wtu6zykCeJfn4YdWfPpeWcr8jQ/PBE58iiqBETWHmyDIsOlC2di93zxVibXHN069Y1z/Xd9+jr99u6PgxSD0BqEn74KhFkKmk4lUxmzxyDj/SlvFaGGo89Rd8f23H737qlqMWrlAxSBNrRvFalWbRs1ZRXXx+MyWRixrQfiYtLuIQzhLJRYdzXrys2m6VY7X0bt8BWsx7mMtHn9RyfQB+sflaqtqqRpzxj+1Z23XkrpyZ9nqe80ffTqDtnHsGt29J28SzsfpEEPtgnTxtXeFnAw9SteiY8lzO/RUyppZTLk1Ip8++99+58Zbd1683iv5ejeDOrBJsiUYUTi7ShaCYSZsfiYzHhY7NQ8VAIGw7+wMz5ebX5gWUC8Y8MIi01g4T4pHM+f+Cgh9ixeynVqlUq8bn974XZDG0ykszU4vt0xa/bzo53Pyc0YROpscnZCo6/H3ibZU+P4cDPekRlc4XaSMAlLUzp+RGaR3exKd8uv1vLyllr2PDrNk4lnv8fcJdnOzPh1DheXvAStz3VkR5DO1OvvR58ev+y3Uzo+gFn9l5wcOkrjyzCJ+0q90szOD963Hk3qSnplJcViJJRpHpOE3c6HbNixSJ8qHbYl56+DYgVJzFrvtSsUjPb2qHXVwMJqhBGo7d7sWTR6gL7n/b1bN5+6xO63/bQ5ZxWPgI7dKPcZz9hLV+5wPqU6e9zeuBNuE8eyi7b8MU8FvT7kK/q6HGLNFXjz3VWYjsOpuI7HxX72Q+Pf4gJJ8fReXAnxm4bwXv/vcLanzcw65XZrJ25guUTF5/XXDweD71jXqBvjWHndd8VoSh5cn1yBzDd+346cGeu8llSSqeU8hB6QL8bhRDRQJCUcpXUfwBnnHVPVl9zgFu81h1dgb+llIlSyiTgb3KUIiXKjBmT85XVrVuLNJkIgAM7Ts2JVfohNIWQYwq+Jh+aWesyaszz9BvUk9vv1C29hBAkqj78d+AUUYGtOXzoRL6+AZb+sxKHw8nmTZdGORhTvgwmU9Hrg9D7BmAqE4lvk5uK3XfHZ7rw8JQBNL6zWXZZ6r+LcezdTdw3OZn0TH5+lOl6MyY/X4QQ3LL8B9rPznGHnTnkW7bHl+VAeiQmXzOWMsHY0/JbklwzGGuTa46mTdvkujIz8auxAKSfEURZaxFiroC/NZDAMH9UqaIoMPyT8WxmPQfZxy8/LmXziUTi45Kze1FMClIRVO2c3wIsN598PJHBT7xKp5uLzpZ2OQlo24WYUVMwh4afs42qqqjuvLEzrH42IqqWpUWfVnnKHfv3Id0uMrduzlNu9vfLtlYXikLHP6fQ6MmczyL5dDLTlkQyaWtDVMJAg+Z9iraWLTWUcnlSKtNbTJv2Fd9990OuEomfj5nhIz5gv/skJsyc1nYT4qf7dSpYCNBScHgicKrglgpz3/mTh969G3LFoOnz5aMAPB43pECzrctBwvEkEk4k43EVP75H4j9LCPXLpIJfJrfd0TA7U0p0u8Ycnv8f4Q2qAaDt/JM18k52Lk8AjqK6VRSzifKNa/LE7kl5+rx35F3cePcN1G5bSODBYlC+djTtHriRTX9s5ftX59Dy9nqc3nWSuINnKFvz/LSvVxNSvbo1lwYlhyYdHDqYZYEhCTNXRgIWaeORZ7uTNm0/AB09N3DXuDuo17Ba9r0n9yewf38qw28djNuj8u/amdSuWzVP/927d2Lcp5Pp27/3ZZpRflIPnmDl53+x8Put9Jv0CI26N+bMht3s/WYhzYc/ii0kAPuSH0FqnBj9GmXfmIpfqD9x2/L6waYnZrDi29UcqBFJxxcvTIZafcy80fp9nKl2nBlOnpzcD9Wm9+XIcLJ10U6a92ycz2WmT9gQkNC4RzUGjx9ARpqTjDQn2/7bS4M2FyfHLjXXuTyRwEKh2/p+JaWcBERmpViUUp4SQmT5bZUDcmsKj3vL3N73Z5dn3XPM25dHCJEChOcuL+CebIQQA9EtQ4iMjCx2FP7chIeH8NFHI/OUmYRgwPtd0aQHiQp0wKr4AYIgxQdFgCohIfEEHbvVY936HAuIhq+0oKrdTpO0GwkI9ClwTB+NfoXMDDv+AX4XNOaSQvNoZGgmlq1YVWCUYs/pI+DIxBRTBWHVF2SO5HTSTiSwY/8mytTTD5Lsqg3x0ECsoSGcKuZ8GjxZn8iuZQkqG0RGqh1HupNVa1eimBTS41JRzCb8QnPca9PT06/oZ1USXOey5BpHZcf2PTRqXI9IyhGgBnGYNFweJ0qqH1bFB8UMZXZ6uDOwLr+n78SRrmIRPlSqlCPaAsuF4woN57WnPmHR0tX89e8UoqLL5Hvarbd14LPx/+Phvpcv3XRROOKS2L54F6tmraPfV/0LjLMBEPdoUyRQ5otlmP1z2sTvPMq3g78nsGIEfRa+j9vpYUt8GWoMHUm5djee11iyMkQKRfD4N4P4+N6JODJKpd3AOSnN8qRUKjhMJhM2mw2n0wlYABuaI4wT+zJxWQVOt25OlZx5mgC/qkSEhxIZE4Z2yI7V7CEpqjzLvl1Dm97NqdMmx1QpM9OOn58vEWUuiZUqAC6Xm6mfz6XdLTfk2Qhl8cL3j+NxqVh9imeqBaCumk9ooIoqJT71GmeX3/DqQ9zw6kPEv9yB+NSTYHKRvvcGELpiYemYX+n8esGCyy/IlzrtahVYl0Xqpi0k/buC8k88WmD9ty/PYsvv20g4o0dvNwmo1qEeFdrXoUy9mGLPLzfrFmynfI1IoqvmF8aXCylBXuWaS4MLp23b1ixfviJPmSZVtqrLyfScQeImwloXKSxsWLyXSqr+g1aNM1QKKEuDJjmb6ab33oimaRz+S2HX7oNUrJz/775sZARbtp+fhUJR/P7ZP+xYtpfnZjxWLFmya8x0lI1raVzeH6u/Hq193fCvST8aS0CFsjR+4X4C+77B8UmfMG9eEJEnp9L/+2e589uXWfjCpGwrsKAygbyx+CUCI87t828/fBR3UhJBTfKfHj0ZOUS3MvOmJnt53jO8fPt4pAZ+wT7Uqh3NwY1H6D7kFu57S3cRXPvrJiYOmqmbIyqwef5+3tgzFiugAp8+MJn/Hfv4PD69y4shT2gtpTzpVWL8LYTYXUjbgj4oWUj5hd6TU6ArXCYBNGvWTHbo0KGQ4RVMeno6t9zSg0D/KFS3ghkfLIovHpx4NAcZruMoikKlgDbc1rMtlRZtZVtGGE0CE1mcWYYez3Wi95v5XUWTElPZsnUjFzKm80VKye+f/UOZimG0uKNJse7Z/N7/+GfWFso+3oxKVSvSqHtjNn70Lcf+Wkvn74fjFxnK6X6NAUl6ZDPKDRuPb4g/8/qMImGDbil27+5+ZKZk8lyN1wiJDuajLSMLfWZh49dUjR1LdrNuzgYO/r4e/7AAhm1+P7vN0qVLi/wsD249TtLpVG7oUvxgqpcLQ5Zc6whuaNaSn3+aTQCBKCiUkxU5YXOT6UrBR4QybuIbrBz6O0II2pkbMf7Pj0hJSiM0PCe+oMfpIeVkMvOPrSYlNZ2Vyzdxd++zU9JCw4Z1OXqiBJPB5OLEntPM+eAP7nuzB1HnsZ5f3Otldp02cTLdStyhOIIigzk0/z/WvjmFCl1upNXHehpZ6f3PwhFzaP9Kb/zD8yZR0FR9kbHr393MGvYTze9uyuOd2nA+BEYEMOHUOADSEtK54faGtLlfV5J4XB6WfbmImh3qUL5RyVv7Xw5KuzwplQoOgP79H+Krr6YSHlwBj0vFjzJoUgISqykEN4nMmfMtdruT7t274uvry5kTSURVCCc1Pp1Dm49Su3WOr+bQZ0Yybeochr/7HEOeL3jDXhJsWrubD9/6mjXLtzHt53fy1SuKgtXn/DSAitWEdHowmz2k7dpOYNu8PntaYhxoVsyBHu55/3Y+e24HrnQnLQfkZGv4ddAEjizZgYbk2b1fFeu5p76fQ+q6jYR3KTjrw3/TVyHQV5ESeH3Ri+zedITPnp6FEIL5qRN4rvFwUs6k8fnud/ELyhvEKDY2jufrvItPkJmph0ezf9NRRt4zEYvNzM/xY8/jEyppBFK9cC2tEMIHWAbY0L+Dc6SUb3t9wn8AKgOHgd5e02mEEK+h+5KrwLNSygXe8huAaYAveh72ITLLR8nggnjmmcEsX74Cf1s5pJT4EIIizJjNviiqCVW6qVw9msQTKtN+H87H9V7HrQkSrWl8MXAGtW6qRli5EAACwgPp8GRnOjzZufCHljBrftnMgQ1HSE/MICwmpOgb9qwj2OqmcpnDVG+rK32bvdmPPTMWUPWWyiS83ALFcYqf1vYABCfX7M2+tcvogXm6qtigfKGP2vvq27hiz9Bk3veYg/MGdc7adZqFruQ4uPkoJosJj9ODr7+NJl3rcnzXSep3qJ19zy+f/I3H6UGVYEKiCkHs/jNUqRVJ4qE4fHyv9p+561ueSClPev89I4SYix4PI1YIEe213ogGsiKCHwcq5Lq9PHDSW16+gPLc9xwXQpiBYCDRW97hrHuWltzMcggICKBl/R5ITTD/n8/p0eo5UtTTnIqNwyL86ffQQFq2bsjp07G88eZLJMamEhjmR1pcOsobc7kxl0Lhn0UrOXUylj597yI0rOig6CWFPc3B92/PJzQ6uNgKjoz/ltK2bCzxgY2o6T0wOfLHalxJacRt3EOl224i8In32Pn+xyxa5kNdOYc7Pu7Hnd++xrTWLxBeT49/5BfsxwMf3EN4hbALHr/HrfJC/TdRXR7cmS4e+fR+YurmKJydhWRWWDl3Pa3u0t1lhrb/CNWjMXnrcKKrRFzweC4NFydLoPTLk2sbfVNeq1Z1Dru3EW2qxl73Wuo0qMDpndFIIfG3+eHUwCwkVmEmfm88VZrkzaAUUCaQt7aOYlBSMiuWbyhQuXGp2bxwJ2t/2UKdVtWLreBwJiQSQhw3V8wktF5Uduwvza1bvGsePf6F5swgYtSPjO8wGqd7E6G1q9DyUX2fElG3Iu1+bEtkA92Stk67WvR6qyeNbq1/UfMJDA9gyIzH0FSNH9+eR1CoD8vG/MGRdQd5ZOaTF9X3laN0y5OrfeV3Tnrc3p0l8/Yy9LX+3NS6MT3bDyEgSJKcnkRIcDD2hGDuv28gbreDDz8cQUBGeaZ98Buj5w6hZdcGNOqUV/u+bt0GHJ4UUlMLTpNYUjRrWZf3xz3DTW0bllifMS+9yeG3RyBdNmKa5ddAho38BcfGX/Ht8hQmq5UXt+bv48jy3SgC5HlExa3y8nNk7juAf51acOZ0vvqsvzqrDzgc8N0bc+n89M15TMvTEzLwOD24HK5sBcf2pbsZ8+AkHHYVkwKuVDdv3jaOpyc+hAY4nR5cLhdWa9ER3C8JEtAu6kvvBG6WUqYLISzAf0KIP4G70QPrfSCEeBU9sN4rZwXWiwEWCSFqSilVcgLrrUb/wt8K/Hkxg7veqVK5MlXL3EivB7tQs0YNpnz4q/dvWRAVVpvHBt9JQlIs3bp1ISgwmMcWvk6NhhXYuXwfJ/fFEhqjm0PGxsZzR7cBPDqgNwMHP1ji40yMT+H3ecu5676bCQj0y1P36k+DSUsopnIDCLImIWygaiYUr9ll5I11ibyxLmcG1AVNQQQo2GxunM6837vdf65j0ZCpaFLy7L6ilaPlB/TDfuw4pqDAfHXh1cKIP5BIhfqR7N18mm/f/IVZJ0dnW6G82vETUtNdpOeKUfTC94OYOuQ7ug5qz5HtJ9i38QiNO9WjRrOKvNX2Q9LiM0hPsRMQfOmiwF8U17E8EUL4A4qUMs37vgswEpgP9AM+8P77i/eW+cB3Qogx3rHXANZKKVUhRJoQ4iZgDdAXmJDrnn7AKuAe4B8ppRRCLADezxVYtAuQk0+5hDm4/xiKMLNz525OxcaSaYrDozlQFJg+cwrTZwoECt079eCpTqO5rU8r3pz8KM9+nffApdcdA5EatL+5JeVzpWcvKVYt34oj00HHrnnNtf2CfHllzmACw/3PcWde7LGxBGoncWPCJD34en/fO3/7NnGb9hBy/Efin+mP2ZTB3zvuAAE7flrHHR/ryWz6r8ibEa7jo20Lfd6xydOwHzxMjXffRJwVGyTLMsyt6V+3p6Y9xkeDviEjxY5PgI3uD7dk0dTl3P1ZzmGNpmr88slfzPlgAYoCnz06g6f+1x9Nk0jgo/sn8umaN4r1WVw2Ll6WQCmWJ9ciJpOC6rU20BEMvP8dMkx29mgbsBPHhg1xlPNrCUDFqjG4HW5SMNMmMIH37/iMzo+3pe8H9+Tp1y/Unyqh/lSpms8rr8RwOFwgJT6+tnx1nR9vS/k60dRrV6OAOwvmzM/zCPFPxaMKTJ6cNUC1Xu2pcmcbZGYK8c/dgHSnYra4cXq6g4CVE/7KVnAIIbKVGwAWHwtdn74l37NyI6XEcfQYPuXL5ZMtufn21Tn8991qVIeb6FpR9Brdh4rNqhR7flcdpVyelFoFx8QvppOZ5uG1l95j856FVKwSzdGE3ajShT3ThVtLApe+ke52exfiDmRSuXY0URXDmDlzFrUDq9LvsUHsTjpIpUoV6Nq5Gxs3beahvnfmPOPz7xg/Zjo/zf+COvXyu5NcCCaTiQcf7XZe95yeOgnf+vUJbtGqwPqAJjfiXykCU0gEgU1b5Ks3x1QnIGZooc8YsGE0XzYeSlSHxsUelzUiHGvEuYP8TIwdh5SSH1+bwy+TlrN9xX6en/UE81P1dWfiqWTcQtC81w2ElM3xkVvw1b94nN4YJFI3k9q3+iDHd57CRwgUAUe2nqDGFRMcAu0itJpejWO699LifUn0YHgdvOXT0U8TXyFXYD3gkBAiK7DeYbyB9QCEEFmB9YwFxEXw2isjcWWY+N+Xc3j/o9c4euYYUjZD1dzEJh1k5LsjAYWtW3awY0EsP321hDHznuOmLvWp1y7HPWXyV9+xfft2PhyVcEkUHNMm/sL4D79HCMFDj92ep84vyDefRVRhSOFB08wopvzKcCU0AplyBsuNvXhh/GiSj53BLzIku371J3O9qRmLpxwN79ThnHXvrnwbgAWT/mXrxp+QQMKJJKKreUMwSA0BBIbkKHTCYoJ56cfBADTMpbiWUpLhASHg2Pbj1Gld/IXU5eW6lieRwFyv0tsMfCel/EsIsQ6YLYR4DDgK3Oud6w4hxGxgJ+ABnvIufAAGk3O682eucU8FvvHOMxF98YSUMlEI8Q6wzttupJTeqJ+XgFjHZkCQYU9j8g8jGHrPp6SLRGSZU6QdA9Bo1aoF5StHU6VODPVurMKhQ4coG1qWdh1vZev2bSxbthCHOxUfH1+iC/CZLwkG9B5ORrqd/Um/YTbnXcw3vLn2Oe7KT/q/i7FaPJjNbrRcYiWgXAR+4b7EPzkIhILmb0YxgaaCsOR8D7b/vJwlr36LNTSAQWs+KfJ5yStW4zhyDNXuwByQVwmTbRmmgFOFoztPIDUNIQRS0/AN0jdgiinn+WMfnsLmBTuypZoAJgyYgb8i8ADxB+OL/VlcPi5OlkCplyfXHHv2bOHmm7uRmWohM9OBGV8O7D+KyWRBUczYVX3TfjRtYfY9obUs2A47uG/tZOwv/chNd+UEvszMtHNg/xGOHf6Zh/vnT9hQknRsMgB7poNNh3/IFzPL6mOhUac659Wfe/tqTCYNTBqu9LyJGBSTiYTRA9BSnZgDPChm32zzcatf3kOZGbe+haKYeOiPt4v13KRlKzkw/H1i+j1Iuf598tU/W/F53E4VDfBoUK5ONE9NH8DgFu/hdnj4eu9IMhPt/DZuEbXuLdzCNYtXuozh2N5YpmwfgV+AT9E3XBJKtzwptQqOZSsWk253oEk3FSpF8s/GSTQL7kewUpn/LRpGyzZtUFV93aMogg49de3/D/XHAvByTH+C3PofjdPp5IuJHzJuwrt5rAKmTfmJuP+zd95RUlRbF//dquo0OSfSkKMEyYIIKiqgIk9UzAkFCUZQRBFFUAQBRYIBVFBQEJScREVAcs45T86pp1PV/f6oYYZxiAq+hx97rVnTXXVTV3eduvfcc/ZOyWT+3F/+loNDSsmvU9YSVz2K2mekxVwM0n+aRcasGcgfZhC85Ox5+orNRtXPvwfg5JCBuA4foupnU1HsZW+KpB5NQIfozzeQezSFuV0GE1G/Mp2+fZ2X9l9YG/pSkZ/l5PeFu4p3TnRfCXnqrpUHcea62PPHoVJ1+n71JJOf/54Gt9dmy+Ld7Fp1kLwsJ5UblifY3wpeHylH0v57Do6L82pGCCHOTF78vCiXG4AiacPNQDVgvJRyvRDichLrXcNfxPLflmERfvikmyd7dWbpvNXYhAO74ke+cZps1EfP554iPrwmR/YkYA0y+O67H3AcVbl30JMADBv6Lrr08OAjJc6Ho0dO4nZ5yxCN/hU88Lgp+NCx86XljZ4NfvUbkbNpP4osK3EWMXJlqfchFaJKvX98+TA+rtULJfzsZF9/BTPfX0SgBl4JFkvJIstmtWBRBP4hfuesm3oig6DwAOz+Nt779RVO7U36H3ZucDH25Ly2BK5eeyKlPAKUIWORUmYAZ91Wk1IOA4ad5fgmoEycsZTSRZGD5CznvgS+PNu5yw2rGoRH93D77bfSJOwxFAQhIpKZP4+jVi1zAbJl61ZiKpgZON/3HAPAgLgn2Zu0F0NKBgwYzNPdH6ZJ0wbFCibpaZlUiWvLNzNG0erGxn97nCMnvkRBfmEZ58alIuzOzqRN/RSv12buUpwBYfNDCQ+FglQCX57NgLHXU5jnxHFGJNpvr09DFeDNyv9z02dF7XEfYpzFuQFwa9+2LP9kBZWbVWDXHyeY9f5ivkn4ELfHTWBwIB8+OhmXLrEHlOw0N+lUn+3LdhMQZSM31Y2BwOFvpef4bnz25JSilOj/MVyGuQlcvfbk34js7BwST6bRpUtn7urciRWz9iD83cyasxAh4KH7u1P3umo0bNCKOzq05603BxDSuDEPjGxOaGwwL33bvVR7s2cuJjc3n9HDJ15xB0fNOpVwnSf161IR98obHH7uUXxeG2qes8x5/07PkjfpZZTIeIIH/cbAD8Hn9aJZSnjIfG4veUfMjMdT249fFD+Go3JF/GpWI/C6soqTAB63jkKRP0VCpYYViIwPx+sy51NfvTGH7CNpHN+RQGTr0vxkiQdTyM/MY0iHTwDJe6sHUK5mDHs3HEXXJYe3n+C6Vv8lkvSr3J5ctQ6Ok6cOEhwcw+mPMG/67+gYKAhat7mNpKTDREXFA7Bq1aoy9Q9Kg4paI975+n2qNq9KpeDbqFKtAiu2lMx15iz+jHk//kz3npcukeTz+Mg8lUlUlSiyknKY/NIMYqpGMnrTpYU0arHlTKKXszxLfWmpHOvXm0rvf4QouoHzt2xCen14U5OxVYwvVd6973dU8lBsXpASd24BUjcoSDI3rdwrpuBaOZXAvt+ghJ6fBDR/zuuw4Ut0qWC/cwS6J5b1k3+l8SM3op2hZe3Kd5OdkEWI1cwePHNX2ZVXiEVAl+dLz2OtdivPff4YADfc27TUOZfbh0VIvuz/A63vvzTG48uJiyDeSZdSNjnXyaJdx4ZCiBDMHczzJQD+LZK8a7g0rF+3muYtWgMWVFXlwJoU2nW8jmiq8MVPg+jS5UEAvv9+JvPnLwLg0+XvUskaR5ewm4rb6d3nKSpXrsTdnUs4cVo0vBfDkJxIW4nD8fdSJspViOLlNx+7qLLOA/tJGD2SCkOGYY+KLnO+wutDsX85jpBO9+E6cQxrVDSKvfT4pJSkD3sGNao8Yc++zbr3pnPoxz/oMPVVXrwE52j+m1FIAywtXiQ54l42T1tFh6Hd8AstefAPmPUcn/znE6xWjdAz0mzSj6WhKVCyaW9iyfB5bJm5jnrdbmD6+z9Tt011Bs3tQ7XGlajW+H+f4OsC9uS8tgSu2ZOrAYWeEjlXn6LjEzpIH3fe+Qjly1fg1KmTdO3amW+++b5UvWNOL7cH3cQadQt9erzIlnX7eOzxEsWlrKxc8nILWLp45WVxcHS85/ypIBcL1c8fW2QkelI2in/pSb0QgoiRpedljj+l2bX94AlWvPo1PmvZ8PazQQsIgICzkxvf+2YX7n2zC9+/O59Nq0wndV6Wk/Ai23J8pzlv1r0ldqXNwy1o83CJtK3X7UPVFPKzCvAYEl2aRInlal7+NKG/g787N4Fr9uR/CY0aNSDGryFrlhzju5n38GavL9AVFwYeNGzM+OE79JnmYj8mNpr9204w/+tVZKfncX2bkoirmjUb0b79zTRqeD0SgxvblebRSU3JICIytFiF8XLg69lleQb/DuwVKyEUFSEMQjuXVZ2zN70De9PSSt9nOjcAVKtW7JwMKX9xghKOihWo++nH5zz/9KTHmNx9KrVursHu5QdYNX0D9dvXpeEttTi89QT9Jj/JqpkbWDJ+BSHRJbxJmYlZvNbiPQyJSZKO4JUbhnNX35sRujnG8U9N4dP9Zfz5/xiuZnty1erZBAT4k5ubgtNpcj8IVcWHFy9edF3Sp/erKMLOgNf606XLPcX1WrZoxrY160nN9JJS6OPosG8Z/uIUpCE5su8Uw96aUFw2JiaCZ3s9+Jdu+Bmvz+LtlsM4tP4wobHB9Pr0EXqOf4iTYz4id/36CzdQhODmLfBv0pTwLmU9rYarENfBfRjeEg9plbFfUPGd98s4NwAM4Y+3wIE7Oxj9xH6iG1XjgZWj6br0fQBcv36BTDuOZ8vCCw9swyQUBTRFx/nTMPJSclg+9EeOri5NgB9ZMYwP171BRGwQt3cvPXFKPpyKzaYS36ACF4vYapG4dIiq9N8j95JSIHX1vH8X35bMxgzNuoMiYj2Ay0Csdw1/EU2aNiAp6SiFhaZt8eJFInEZ+VSsGI/VYkZGnXZunEaO18P+PEHXCncyffqX3Nr0Wb7/4jccjpJIqirVKhATG4HNdnGT9j/D0A1mvLuAzYt3XlK9oy/2wXP8KIe7P1m6Pa8HX042amAwMS+8gS83myPPPcWhZ8s6Tgq3LEBL+wV2fQ1A4upd+ArdpO88iu/wJrL71ce56NyTAAAjOwGBQFEEhT9/wubJc9i3aBvHl5SOMqzeOJ6xx0fx4cEPUM/YSS7ILEAAe1eVjvpaNWE5Ben5/DR8GUJKAv0tOHPK7vAc23KMma//QGGe67zj/CdxIXtyaW1dsydXBVygSIUjnvXccUc7EhPSqBxfncmTPy0uUqdOTd54dBgnC3U0Gc6Ye/vTv8cYvv1qPit/2VJcrmq1ikyY9A5vD33hLw9n54r9fPHCd7gK3JdUb1eHW9h1xy14CgvPer7yZ9OpNeUbLBFRJE38CL2w7D3pTTlFSr+7KfjDtKfLe41lXtch1L27GX0PfMpLu85vU86ENAzOxTknpWTeR8sJ1MChgl9giQ12OKxYFYHtT6HsZ8Ji01BUhaCIQISqIgBH4H8rdPzsuJxzE7O9a/bkfwG57gTyPAk0b96OH5aOpHaDilgMO6FhQeiykNO5GLfffjMNW1Xnwx+fp3xLlQoVavB8h+e5P7ILhw4dYeLESdx19+1ERUUwZOirxe3PmL6AulXv4I52T55zDP8E9j39GLvvugOv13vOMjW++p6aEycS/XhPfHk55yxnFORQuHlF8fuMfSdJ3rQfIQR9D35G34OfERB+eUiam97VmE9TPqbbkK7YYoJxGqDZLQz5qTfTjn2AlJKJfb/nwPZTpeYzjiAHihBoqkCX4DMkqhAc3nycAKtCqCaIKHf5ImMvFVe7PbnolbsQQhVCbBVCLCh6/7YQIkEIsa3o76zEEkKIO4QQ+4UQh4qIRC4b/P39ihcKP3yxHCs2VCscOLiew4dNiTGns5CAgAAqRjaiVuWW/PLLYvITCglSLYRbNKyKJOlUBoEyDCdZjB39LRUizIV48qkM0pKy/tLYat1Uk0qNKhJRMRwhBK0faEpo0g4yFi3myFuDyT94DHdWdnF5KSWyKKUm8fsf2HRzB3Z1fw4hBJWHDieuZ+8yfVjLV6T6tDmofiUhmRueHsiOoV+cdUyOmk3QImPMpPSi8FZHeFAxqaB/rynYOj6Ptd3TJeNy5lK4cBR62tHSjQmT9EgoEk0U4E8it7ZZQ9Tvbcv0G1sjmve2D+W+90pHCf/6xSqkz2DbktKLNcMw+Lb7F+xcuJVjO07xfteJHCvaYRm14U0GzenNsN/6nfUz/lOQhjjv3/kghIgs8mQihHAAtwL7KCHDg7LEet2EEDYhRGVKiPWSgDwhRAthJjg+dkada/gbiIqKwGq1kpyQjop5r5wwtvD0U73x+eCRRx5h2bJ5xeVTU4/Rtty95PokFX120vYUkpiQypb1e0u1u3bLbHYeXHxJTlPdq7Nl3lYKsgrISMhm7uifmfHuRTghz0RgsBkF5l+a2PPUu29w6OF78KaZzxZLVAzCYsFepWxKnkw9hjM9GFdmMHpOBnf+8Ba3TXqZmg+0xXtwHbid+HYuL13H9SfS5oDoYmUl1eblxsBxPHrPQsof7I5rYVkbdyZO7jxJ36lPcv87nenQq4QMMC8th8Dy4bh1cEvTvG1ZvJvBbYaz/sfNbP9lD0/GvcLs4YtY8cXvrPp6NUc3Hj1PT/88/qotgWv25GqClJJRI78ABAoKeYVHaNasMVIaxMZFsX7tdsIctahTpTWrfv4Fd4IPh6IRaRPk/LaJACMYqRt0vacXTz5oTqcUReG+bh0veSNm68LtbC9ylC4a/xu/TV3HyT1Jl/iBzH/ulNSSQ7pOxg/Tce7agWK1YYmOw5ucSNaCeaR9VZaEOG/MXVg8Oyn87kUATq3cSebeE3hynXh2/0beJ49g5J6f7yJn/N3kvx5DwZvROD97lPn9v2HcjW/hzi9xZAohGDSvDwEOlQrlg7GfkdfuznNid2ilFh8AHqeHvJQcCnKcTOw9jX1rDwPwTdoYpmeNvWgS538Sf2duAtfsyf8icn0nyfWdol69ejRpWZeUTV4qKrWJ0irwxx8/c1pdZdy4T9G0IG7s1IoX+71KYmISSRtOUtkaQ4gaSFxcDFnp+YQEh1CtekmKd1R0OIoiqFAp9m+Pdca78xnS8WM8rnM7Kc4FX0IC+LykTJla6riUEl+WGWmuRURjq1KDhA+HcaBbF9KmnT3DMOO11hRMeobcuZMBWHDfuyx5fCSyFGHr5cXQeyeSk5CNNCS5aSWpdVJKMAxsDgtCKbkHHQF2pqR/xJS0jxi36x36fPEYTTteR+8JD9P2oRZYVYWkA2lXbLwXg6vZnlxKisoLwF7gTJfXGCnlOdmfivJuxgPtMb0vG4UQ86SUey6h3wvi8OETHDto7gzGRsUQH1+RgQNfpmvXR2nRogn79hwhP7+Q/PxCFny4lEUfL+fFMfdxcPhUUjwa2Xl5aGjYRAAKKsLQuTn2OXbkbgQEyTlr0bRLy+ZpfHcjGt9dOgQsYfYi3F4NoRgc7fMEiqKihodT69uZHB70DrlbtlL/+29J+XY6QoDryLHiut7cLPImDSLwnp5YqhRF9wiBGlCyYMnavBO9wIVecPbdFIDoMUvOeU6LqYrW4flSx7x7fsXz8zg8P3+C9fZeODqYXl/R/xB8VBVpCHS3BUXRqRmeir2qF/fnDmzPnnsMp1GteWWObj3BrX+K7Fj07k/sXbaT3Ut2kuQUuCTUvbEG8UXyk/Xa1rxg21cURV7Nv4FYYErR/aEAM6WUC4QQa7l8xHpXHYpIhPIwpaF8fw57KzJqHwMdASfwhJRyy5/buVzw+XwMfe0zVFQEApc7gR49XmD79l1UrFCOhXPWEuaoRYuWDTi5MZEAiwWXqlHBrrN+xh8EGmGkyqNE+begfYdWTJs16sKdngVbF2zny55TuOmpG3ng/a689kNPArVC9j75FHE9exDcvCyx8J9RfcJnpE2ZTMQDpclOHbXqoefkoPibTlJb+YrUnL0I5SxM4X639iDn+6+RPomenoC1an3iWpqkno47+qDG1USrWUKE7N2/CufEx8Bmw//VZWjhFVE0DV36UG06siAYq3Bi8zOwBLgR+7+ETuPL9Pvb6AWs+2w5CVk+Kvp7sflZkc+1RRQt6IY0esvcvxICiURg/oAyE3PYv+YQjtAAPC4fu38/wItTn6J+x/qodgtetw+L7X8gS/OaPfl/gaHPT+DLKTPJ9GThJwMZM+5tNE2lS5dO7OzXh/sf6MKIt6agSis52fkMuvF9PE4PTUN1Kvn52BwSDqecuCnAIuzMn/crhmFw/HAivzk30q5j0wsPoghSSiY9/RWKReGTk6PpMe4hju9KQFs6jZNrAqjwwsVFg4jwKPTMTPzjShZGnlMnSJvyOfbqtYgfY0akaGER2CtXJrRz1zJtePNAzwlGsZg/wdsnv4I7Jx97SAA5Hw9Bpp/EteIr/O7uf85xKIlrUFQNELj3riZnl438JCv5G6dja1eiQlO7VXXGnhxTpn52Ui5CgNdTmoPondr9wIBcoZGWp+Pz+KjV8vIQzl8R/H1bAtfsyf8cXnqhHwsXLOPjj4cD4EPHh07GqSxatGhG5crxHD16jEce6cbQoR+UquuoU521m7N5oEo3Juz7kPjg23nl7XtJPJVKXHmT9qDdLS1Jyd3wl8bm8/jYOHsTtdvVJiQmmN2/H+TQ5uO48t3F6mcXC12oCF0nuFHDUsczZ39H2tefU/6t9whoZs4xtPBwEKCGnD3NRC/UMXx2LEkrgaeJaFCZwtQchKrg2b4M5+Q+WFrci/9D7593TPkn98KEdoBE2uKRT85m3uuzadmjPVVvKq3GecN/GrF64i8ECajZNL74+IndiQhdUr3JuaPVw8qF0Oq+JrS6z5z2pidn49IlvrxLi6q7rLjK7clFze6EEOWBTpjEXi9fwgdrBhwqIhJDCPE9JkPqZXFwSCl554VP+OSrSRg+hUrlKrJ4zxQAOt/TiWHvvY3VZqNLm5fxI5TmN9albttaHFx3hPq31KPWje/x1bvz4Kf1WFBRFQ2JxN8bSqYrE0XRkNIow/77V6HnOwHT6yWEQErwZZg7E1pgIFpQEEJVqPRGf4688Q7W8iU8GCnPd0STTtIP7iJ24oqzth/a+DpQBEK7sFGRug/vicNY4muU+nzT6j2Oqgh0Ax7e9TWWBh0o/OFV8HiQ6SW7nvaAALxWkznUKwVCkfhVTocckPrZQ0QNw2D6o+MgwMHaubu48eGm9Jv+LPbgktxbKSVVW9dk1Re/k+g0/dIKkkMr96H3aVtMrHYmfB4fmvWfXahcjOfynHWl3AE0Osvxy0asdxWjnZTyXNt1HTC9udWB5piSURde3f8FjH/3W8Z9NpmkjEzClVjiKpqKBe+8M5DgoGCe6/U07Zs8i0U6sEoLnzw6iQo1ommgZKBJyVGnr8hp6o8QCts27KFJ3EOcyDlCuxvaMOPnERc9llptanDj461o9YgpA9fg1trs7d2HwhMJnPhwFAG3diSsoZlra3i9uI4ex1G9Kvtf6k/+jt0ogQFcP/cHyr38apm2Ix96nMiHHi9+v63vILI37wYEbdfMLlVWWKxEj12KnmY6N/4Ma/32TK//BLLIdih+oYAEtwv3jJfQepntSRmIas3Cp+lI/0o4wnchFDBcZ7+n1oxfBoZBpEMSaAVF97Bv8SZqdzI5eE7nr+a4waEKgiIDeXVuHyw2C6FxIaiaQu1W1ah1Q1U0q4bL6WXck5/Q9K76PPfV02ft85/GNXvy78eySVspNNz4qWFIfDzQ/VYAMjOzGT16IgcPHmXTimSsih8/r/qcjV9uwuv20uHF9vz67Vp2fTgXCxp2JQiERMNKjYA76TvsLvo934e0gotPfRVC0OPrpxFFqiEh0UEEBGrseO93AAJatcMaEoB/tbJkyFvuvhd0g+sX/kTdad8hpSw1h7BWjCf2lTewVy5xBBgouKKvw1au7AQ/8KnRZI1+BQMzGje2eQlvgP+jo3CvnIr9tp7Fx3z7V+Pe+BPWuwZgCTbtsoyqC+l7AQNVM7ir2Vy4XsO6bSquhO+xP7KMc8Hj8tL6oaZkJeaUcXhKCR4dMgp9KMCJdYc4uP4I1ZpVRghBYb4LR4CdXyb8yvFtx3l8wmNlokD+afwdWwLX7Mn/Ij4cPZgPR5cofuj4kEiS2cPnn33N8WPJ1KpZl3feebPYwREQEEBOThJ3BPdGAFV9mexYvhGbz4FA4Y52T/H0M/fxwquPn6PXi8Ou5bv55sXvaNGtGY99/DBvzOuDK99F5mcfk5KeTvUxZR2K50LNTz/HdfAAAddfX+q4tUIlLDGxaBElylHRT/Yk+smef26iGIZuR/rAk23alU7fmgrgK1asQGYngTQw0k+cs35xO7P6ohWpy7kzEkn86SuOr00hJIwyDo6H3u5MtXqxeAo9xFQv4TpLP5GJzapQ/RL4wJ4c3pWXmwwlLPrsvEL/FK5me3KxMY0fAa9yOg6qBH2EEDuEEF+KEi35M1EOOHnG+8vKovzjl8tYMWk3hk/BTwklMSmleAGclZXNm28MpU/vV/HqHnx4yUsopFbr6rw6ry/hFcMoXzOGP5bsxJDgJ230f+0pOnZqQ53QeBw4sEk7IYSddVF9IRgeD4kTxpK7oWTScf2P31Bz9DBAJzvfD4lBhbeGABD/2ivU//4bVH9/wlreQJNfl1J/6lcl7XkVdJ+CYQk7b79tV8+i0bvPcrTXY3gST52zXO6CaSQPeJSClaV5BKrGH6dNi/VYLCavh3fT92gt7sP/xR/xe7SESFDVLHgrPEQhNQgcuQOpqEUUMAKMs1+v1eOWcXzNAY4u3U4lh4uM+av4tElp+doBlV/hy8c+RxdmThqYk4wDaw7Rq9Kr5KTk8vu0dQxo9T7pJzNYOnYZL1V6haObj533ulxOSAmGrpz37xquCDoDU6WJdUDI6Ry+y42Z768kJT0TPyWEfJlLSLj5kDly5Dhjxkzk+Z6DyMsrxCLs/LBsPJ1f68AD79xD9zWjSGnYFJEhsaCiCA0hFLT0EE7kHEEiWbFm9SWNJSA8gAdH3E/5uiWmM3f3Mby6hcK0HAp++oaTg9/AcLtJmjqNvc/1JXvlapwHDgJg5JWkiaS80onkZ5pjFOSetS9fwel83rNDDY7AWq0B0ufFfWAn0ij9SFAAVYE1I75BlKuD7Y5eKOER2B4cV/J53txOoayLds8IQt7ehHRLpFeUYVI+vHIP71w3ACPADywqOW7QDVPm0T+y5HHjHxeKS0Lju+sTHBXA0D8GEFcjhshK4WgWFSEE9drWLHaCqipYFdizZAcZJzPOf/H/AVzInlzDvwMGElVxIAQIobJ9k8lXJSVYNCs7th7GK9wY0iDQ6scjI+7j4Q/uI6ZyJL/M3YbwKgRKP/xtDgSCMCMCH24wWW0ueTz177iO69qXqAIceHMYXt2KV9dIePMFjvV9hgNPPYovJ5dtd3fl6HumU9bId2IUunAVpbWh+3Cu/Ak9MwUwnSfB7dpjiy9xjrhOJpK6eBU7X3uvzDj8GrcjcvBkokb+VOacVuV6/J/4CMVeEqnqXvkVvk0/4ny7CT6fGXER9MLvSEVH9fdi+FQUBezls1EUHZFWlmQeYM4rU/nohkG8WOkV0pas46aOpZUKXot/CY8ucLooduBkJ+cy/M6P2TBnKyPum0j3iq/x8+RVrJ+5nq3zt+HMvnDk6pXEtbnJvx9LZ6/Dig0rNlzek1SoWA4pJfn5ZkpEw1o3E+5fm82b1rFz+R7i4yMJt1gJtcKeP/aiYkXHR0pSJkPfMSMmE4+n8uWYeefkrzkfarWpye0vtOfW58y0UZufleCoIDJ//Z28HXvIWLOBtJ9/wziDp8eTZqZd+PLz2XRzBzbd0gEAe6V4Qm69rcymcmDzVlSd9B32KiVqaGvufpoVN9xL3hmR7mci9Ln3Ufwc+N9Qlj3BdtPjBL27Gv8+3xQfk1LinDWYwt8mlSqrPvEDCAmKgWrzEHvsUx6/fw5to98+a7/Nujaj9aOlle2+HTALw2ewcvraMuWn9ZjM510/5uSeBAbcNJJvB80BIKZqFNOzxvLpgbI285/C1W5PLrjtLYS4E0iVUm4WQrQ949RE4F3MLMx3gVHAU3+ufpYmz3oHCSGeBZ4FiI6OZsWKFQDk5+cXv/4zAsspPDSsFf/hNHO4LFV21Kgh6LqBKsyPWa6c2e7RXQkYukGV+uV56uObyUw1J/uRFfyo1fwGktum4y6SNoosF3pRYynzIT0e3BY7yoEDWJ2lH3rG6y/jSkzBHRtNhtsHF9Pm0++i52WjBoVy8ALjyT90DEvjGzi8cSNacBEZn+HDSN4HVn+UiMpIexR6596oHgvijDb0B7qyV0L4LX6sWLECIyEXiEY5mAZHS/flsrXHHdYU65zF6AFV+EOMBukC1a9Um54CN1mnMtGCNKq83BwJaEKiFK1pzvwM171sOvp0CXXP+KUEhvtTmFvI5p2bSMhJoeZ95Vm95g+0ciot3mzGobSDHF9x7LzX5fJBIOX/9o19lUICy4QQEvjsz1JTnNthWipx/Fy25FLw0LBWuGWTYguWl5fHihUrKChw8sGIQVg1G23aNQUEK1euxL+hlVOuk2TsSqV8K38evuFGBGAJUNF9BoZL4sWDjo5Ns/3t36fz4S5FkxGJKswbxetysT8uGu8TD5PrcSFf7I3r+AksoaYNk4aBr14nEKCtXX/2SK/H7sTweMHn5dcF81ECAsuWAfSsdPSsdLSDR1H8zaxF6consl8TJFAQE82K2V+Bx464fiBi+35gP/n5+azcsJWcsB6ww41f1iIsTZaC7gFFLbGFUpK06xQ1nq2LIU3PejwlVNq7kw9x5NcTSFcBN75UBelygsNO7cfas2nHpjLjzU3OQbVq+IX4kZCcQKs3zXEunruY8vVK69JfefvxZ1yzJ/8fkE8h2UY2AcKBLr3EVYrgxIlT3NP5MfysUcRGl+NgejKaVRBbOYphD37OhgU7GPj9s9RsEc+ePccRwJhR/Wnznyb8J+YF/LCgoXHL9ZeufHI6L1wUbeDYYqPJO2N6JiV4U5PPVhOQWBxm5GXi8x1RC1IR4eWJHn0+biBJZJuzB9xZa5jPfcPlBKGg2Er4MYqjSiU8vPNrHN2Gkze4rFqM7rZBUWQsfvkoGkjD/Dsbdv24AQFUsnsJVmDDB7O47nNTIcswDAyvgQBcisDQzdS3Bz/oym9friamahQBYf4gIDDUj76z+pJyOIWj205w3S21L1vU76Xjmi35N6OgwMm3038EQCu6b1u3bkG9ejVp374dAKdOJCGlZP3CLfw6bAUNbqtL5QDJ4eNetORCLFhQULDih1e66FD5eTanbkDHy7w5vzDn94sn9QWwB9jpPPDOUsdSly7Hq5vzi5OD+2HRLKSMgnpLfsGXk8PObo9ReeCr2E5HiEkwdB1FVZFSkvXhc2jlqhP00Cvn7NeTngUI9r71Ec2+/ajMeUfz23E0v73M8dNQQmLw+XwYhmFSELgL8K6eCki8v4whaOhuAPxDQ8nVJRY/L0ZOKIrmIcBpw1IzB/dXAcg2i7BXbXPea/TCN935+NHJPDHmfrIpzamxZ9F2EPB2mw8o0AWOM6Sq//u4uu3JxcT1twLuLiIRtQNBQohvpZSPnC4ghPgCWHCWuudiQy2DosXM5wBNmjSRbdu2BczF7+nXZ6lDk/88xlHjIDbNisdwkuHcRF5eHrExdQgLieLZZ55i+qRFVKlejkef6MynwxfhWe821QhSHmDd/G2MfWMBjnIW9iYf4M4uN/Hp1MFIKSnIdhIQWkLgeb6xnA35mzdhq1gRS2TUhQuf/ky6Tvba9QReVw8t+PwMv2cbz9oPZlJjz2gwLEjFTbkpZjZQ4dIJ+LYNRwo7QR8cOktrRWOeOgffzl8JeGMpWkgs7hW7MVL2Y7+lb5mH9trew0lbtxO/2pWR3W/lBkcBWPywtikJGyvMymdUowEYQL5PwYUgPMSOzMnDrpnCxvcdLVFseOmJV/C5fdhjQ8g4kc2tPW7irpdvIzC8JEzrZLkk/pixkTt7d0SzaKQcSWPH8j20erwVFpt2yd/TX4H8H/dcXqVoJaVMLNLD/lkIsU9KufKM8xflMD2XLbkUvNjpYQ7pewjUAvAZbn5YNILAwFCefrI/zlxo2qQhm9YcoEb1Sjz/0rM8Xm0g2Sm5DJr9HOmHjjHvy1WAwQuf3U/dylXpf9sodCFx42F55hdYbRefmyp1nYPPPIElIpLKI0abB4s+0x833o2CD7/qEWQ99tR5f/dS93HyYTNNpfy09Wfl2QDTru7tcjuq7qb6zMUoRQsZ51dPIZP34tfvVzxHD5I9cwXhne5CizYjS1y/TaFw/ccgDELHHaZw5kvoO2djf/xLtNrmuE7fm4uH9MCbk0/98a+jbh6ONWUO0jAIHmqqLGQcT2FT95n4dMj0WlAECCS5PvMn0L53W1pX2Yzrt+8oyAlACHC7NdQ+E9j0xVI6fvwMqt3K8a3Hia0Vy7CH30ZKiKoTR+LuBBTAqoLHgP/s+w9+QSVpcv+E/fgzrtmTfz8yOALo5OvmBDcyMoLYmNqkp2cQaYsnY4+BKi0889z91IvpShP/KgghcBd6uP3+ZsybshJ7hMozfQfzeejb3PZgSw5vPkGwXyDf/HLpu3wnh75N/sYN1Jj6HVpICFX7P0/V/s+zoW0HsvP9CPIvoMbnU9GCg2g4b1ZxvcbLFiB9PhS76YTwZeUiNDDOkyseUKsqreZ+Svq3k3BfV/WsKm/SMEjo2QnFL4ByE+YXH69Y7hQ1q5xkw3Yz2sT1fR+sTe7E8dCEUvUD397PobFjCWh7G2G1YzGmVQOpov9JUnr56AWsm7YOxd+ON9+FdvrWO+NJkp2YjecMx4hDFbw8syf1bq7NzU+ZzqRenz1Gr89K5i7jn5zMgbVH6PHZozS/97yqiVcU12zJvxPfT1rIx+O+YO/+o0h0cgp2ARAYGMiw9wazetVaOrTsiZ0QNFXj3u4d8Z1w06zL9VRvUZU96w/T9/YPsWNBKYq4DrSFkp1SAEKioIHwXWAUF4czHZS6YUGTcDoBQLFasZWLw1YuDv9KlRB+VpCymFMr44uheHeuxb1z7XkdHKHNG5K9dQ/1P7+w7fOcPIwWHo3iV7KO2DjhRw5/Og8JPLjja4Q9AO2G+/Gt/b7MTFMIBUWTIAyUlk9jPTYC4QTpA+OPkXAWB8eyoT+SvPcUG349TEikP2/+9DwR1WJKbZ6kHUlBVxVycw1cCBQkOUeSSTqUQmy16DJt/lfS8a9ie3LBKyWlfB14HaAogqOflPIRIURsEaspQBdg11mqbwSqFzGhJgDdgIfOUu4vQQiBSzrxUIjHl1l8/NOJU3C7XeSk5TNn5Hqs+LFzy0GGH/4SmeOmloimfLiNQ5uPM+TJSTiEBV+iQd9XH+LOLm1x5hby9VtzufnB5tRqXvncA7gAAhpf+kMuZ91GDr81lPAO7anc/6ULV/gT4prVhD0SoehIQyPj1dZYm7bHv9OLuJe9ixCFGIZxTsb1gMc+KvXe1vbcygYtxw8gdf0uIprW4bfFC/BtHQZI3CsHEfim+X1sm/EHdlWn0AdSKtilpDC7kHyfhvSCf4C50HNvXwGBEbx8TwpUvo5yffuTm5pHSExZiaQKtWPp9vbdxe+nvvw9e1cfQkFyy7NtL+l6/SXIv5+Xdg1lIaVMLPqfKoT4CZPD50wHx0U7TP8uMo0EQCfPl1J87NZb7iE/v4AK9nocWZ2DKizUqlODKoGdaBNUDc2iEFUxDD3dhQ2BXt6gX6+RTPh6EFP2DCMnLQ+/QPslOTdOQ7pcSE/ZBUT9z0fhSkoh8ubWF4w6EKpGxe/LRjf8GRs/nkP54CQEguxZIwh79G0AfLuWI1QDIycNW436RL85rlQ9e7vHEZHlUGPMUG/H/WPg/rPn33b4tURNwbl0Eb7CEFR/J9kf+BPyWgELek/CpmIuPrymMkqO53SouGTXou3cOfNBMHSwlce5eCJhjfNY/uFwUo6GsPSNaaRk+Tiy4SjPTOvJ09/0YMmYpVRpXpXE3QnYtSIxKYP/es78NXvy/wO7k36m5XXdSM/IxCfNCNGcnBxAUpG6+Os2HNLOwf0nKSxwkefKJdQqCIsJ4uU7RuOQpvSxf4ADh5+dFz9/HMOn88faP/7SpFcNDEQNDCyO4DiN66Z9yYkvv6Nyn6exhpZ9/gpNQ5xBuh7z7tdkfPsJMc+/c97+Dk76BnXNEtxuL/EDTD4BX+IeXJMextrpDSzX34u1ej0Uu1+pevVqHAdD0OqWVAxXPsahP8wTf3JwpG45wt4Ze2DGHu7ePA35Qh7SnY/NrySdbdHr09n6/RrcuqBQFwTHhpCdmEW2T6AKwXWYDt7QcqHc/2g0thrXUaFdc4QQRFWJ5HzQc53YVJgzeDZNu1x/yao2lwXXbMm/FuOf/4lDxikcalCZXZ1Bbw5j5849VAlrhk96UXwq9gAbj4/uVlxm26oD+KRRxONjo9sjHQnzBLP0u3VEEIUbFyPGn5vI93zIWrYEX2YGkd0eBiCibWvCls3h5OzZnBz/PUIpIO5xc09ccTioN3Vycd3GC/4khKE5zHR8ef7ncoMxb+FNS+XUa70J69KN4JvPHq3hPXWU5H4PYqvfnOg3Pik5cWQbbVqsZ//heAD05P0oegEBQzahBpa+1229VuCa/RL+A8djiaqK+6MPAAEeFfsjZxfy2DD5VwRgkzpRhS6mdxhMr90lJOpTn/2SXYu2Y0iTMf808jMKeLPle/Sc9ASVG8cz5uEv6NTnZirVjWX4LSO4pfct3PPm3WX6uyK4yu3J37HAI4QQO4UQO4B2wEsAQog4IcQiACmlD+gDLMVUYJkppdz9N8dcChOX9CcuNAaHEoZdhHD0yAly88yUk3CtPEH4EUUoVfXKDH79Kdrc0RKHpuDQYXCn0VhQsQoVzaLy2uDu1K1fjf2bjrPkyz+Y9+mKyzZOV4GblVNWk59ZcN5yAfXrEtHpDqLu6nTecoZh4Es+QfbM0qoDldo1wHHz/UgkLpcPIzML19IZKH7BCN2GdDvI7Veegh+HUzCrNIeLkZNG5mu3UjD3E86GvP2H8WRmlzrml7QA58IxyMxD+LKD8OUEItwlWvJrR8/FpoJ/0ZpOVc0cfUMWEXgVeNGzU8n9pDcZI/piJB7Et/InDt3b9qzODYCUg8mkHipZeOYlpONQYdXnK/5SDuGlQiIwdPW8f9dwaRBC+AshAk+/Bm6jrNN0HvCYMNECyDnDyXpZsTN5PjHBMfhrEdgV83focrkASbSMJ5pwyhvlCQkJRJMKyTkuQlUfnzz7FT/P34xFWHDk+tHrpW7cdEtTDm8/xaHtpyhf69IpQ4SqUmPaTCqPGVfmXGDt6kTe3LrMcV9eHvv7v0HGLysuub+cI8kIBNJQyFswh7zvBuLNz8aFimFA1qj2Z60nvW5kgQvFL6TMOW9uHoWnSr4qKSWZL1Qj86Wa6D4VpAI+FaXo9r357fvxGeA1IMhi4DPM5JTTNNxpx7JYNnUfEz/2oDS9m7huqYQ0zOemR/dQu0sLDv62m8xth2jYuRHHNxwmvkllXpz/Ene/eTetH2qKT5p8HqoCztzz2+QrjQvZk2v4d2Dku19xLHkveb5k3EaOKRk7eig1alTFwMAiVMJEIM0scQwd0YtIu0J5Pyvv3vkRihRoQhAREMH+pIW0a9+MtzqPo1v5VzHOQep9IZR7sR81p81EDSydhuYoF0vNQS+f1bmRv3cfBfsOlDpmq1abuLcnoIWd2wHgK/Tg2TiTwJA8tD0/FB93zRoCBWm4F3+EEILoNz4h8pXSKhD2e15FBAYQ0PNLFHsA1q4jsT1SVm42rEFNtAA/QhuYDtbcIcE4R1Yh652SXdtjq/dgEzoCH0hwJudSYCjkelVyPOZEPmvwPST3uYXyx+YStngYeW8+elbnxqE/DvLBjUP5beIv5Ofmk7w/GU2B3DQnswb9eM5rcSVxbW7y74WCQgWlOqqwoCoaD3cpcUY0uK4xdi0Ut1GIFAZBYWYExaevzKBzUF82LdvNnU+3wUCiI7E6NJ7s3ZlqtcsTICxUVSrR+fpbqVE3/i+NLeXLL0id8iWGq0SWWbFaqND1XkKa1CfqyeeIeeTJi2or4ql+hPQZSey4RRcse+CHpXhPHCT5+29LHS/49AHyhzVDegtRw6OwN2yJ/w23lSpTXVuIw+KjYV0zot31w0vo2+bgXVpWVcWwxvD7t5GseNpcG8k7f0YvBEMrvVmse73MfXMmX3QbhyXQgU9CoM3AqoBFAdVScv8l7E8y0wB1UBRRvHbp/vnjWB0WLHYLv3y5mmM7E5g1fBEWuwX/MH8zNe4fwtVuTy7J7S+lXAGsKHr96DnKJGLKOJ5+vwi48C/1L0IYFrIycykgE0XAzBkLeffdgTgcdtbMPUbGrjyChR+61Pl1yCKqd2xIQeBRXIZBgxAf6zKsIASx0SVe/gZtazDwu2eo1eyvR2/8GetnbmDGgFnkpuRy56tlSW9OQwsMJP6V5895/jRcm35GuvJJn/8tibNXUO2jsVhjY/Ee24d79VIyajzN5ul/cFebbQjFS1afqgirF8XixetSkL+aRDr2LgOKSVSlx4WRmYiRnlCmv+y169nd/z2UgABaLpkGgO714FlW5Im9+S2EvRAUiQgq0b+udFNdTvy2C68OARaDAq9Cjs/cPQUz7JzAcPy6vIASVYnkEYPQpUpQzUwmNHoJ3eOj9/YxZJ7KJic5myrNqzL6VnMC1OKJNuz9bRdZp7JRFEg9mcXGHzdD+IW/j78FCVJevV7N/1FEAz8VpUFpwHQp5RIhRE8AKeWnmHakI3AI0+l9cU/Mv4BJ42aTnHUMQ/hQhJkXOmnyWMaPm4R3uw+L4iAAO9qqdH5aOpKv7x+LXdVI2H0Sf2FBIKjeKJ6BQ54FYMJLM8hNz+eWh5pj87NeoPeyuNScbndSCnmbt6I6HITf0vac5fScDHxJJ7DVKiG5vmVMD5KfGo8B+IXl4/plLp6VM7H5u5FuPyyGk4LvBuHdtpiAQUvQAiLMPtfOI/+bwTg69sC/S4nMpNR1Nt/XHV+BG2OwGRHmTj0OXgUwUMJcKDYPwu7ltM+9QpPqPPHLEL65ZwQiJxc0BafPgl2VGBIKDcEfX69G9XjY/+tOGjV4BCVvDmH/WcVtjwSxYfZmCt2SPQu2sMuA3yYsZ/ixjwC4+/0H2DxjYxHZIywduYBuo0pCzf9xXLMn/y8QGK5h4C0iklFJTk7jueee4rnnnqK+/4MUSDeFONm3Yh+FG09QO0CnQFepFuBlW7Y5T+kz6r7i9iLLh5GRmMMlmoa/DCkl+/r2Q6gqjZeefdfyXBCKIDooH2lYUAWkvnorQfc+h619XwomrYSsI+esa2/XHXu77sUh7NamD561nMXfTsffvyh+r7hCMHQV1VKy6HInZWDTIBBw6qAo4JOmHdAleJweUFU0fxuulAKkoWANTWFs7d6oVo1e2z5i4XvzCasQhu71kX4kjXnvzmPp2KWoQqIpoArY/tMm7h9WVhL3iuOaLfnXIpsCLFjwSTdIwbJlvwBw+21d2bp1N489/gC6y8KWDbtZ8NsEXnx6JN7thQgg8XAa1RtVpFx8OIkn08nOz6XzLX05mLKIrq/cRmGuC5v/pc9LTiP+/RHoBQXFaWunoVgs1PtoyDnruZNTEBYL1vDS4gkBN9x6wT7Tdh8ne/4kKkcUgGdLqXP6wbVmtKnXjeoXQtTrZXlF/B4ZScHk3thv7wGArdObuJeOxNqurER23tFEpG5QmFSkehlZHaPdV1gadytVblTD1/A6PeR6FdwG3PxsOzZMXk62V+DTS8/j7KEBuIxUKjarzN41RykfH0afqd2peF15mt1jqsjUblMDj9ND28dvIKpKFO/tGMrWJTvJzyz4ZxwdV7k9+WeTea4AAgL9yJfmgtzAwry5S3nt9ecYOPBltrTby5O3DsEl3VSsEcitXW9h6oifaRhiUCXASVKhDYsiEEBGYomqgKIotOhUVgbx7+D6uxqRk5LLDQ+1uCztWSIiEeIQWG0UJBew/ZFnaPrLAvJ+GI50Owk/MpU2Iyai/n4X+CxIt8VUNxESiw18bgVFs5VSiFEjKxA+bjNYSpPceJNOkTnyZcJCbXgrlSj0qBYrwmI6MxRvOprVhxpciDSUYum4e7/ozYqR81g3cRkaBqZPUMMqTFZ5jxT8OnYJW6cd5/4JtxDbPQ0NHSklxgIfhk/nm0fHc/JIFlmnsnhr8xDa9rqFXyf+yuqvV6F7fNiFOVHxCtjy40ZqPVP7slzj8+Fqvun/F1EkJd3gLMc/PeO1BM6dM3UZUbNeRXRcxYsRp9PFww/fx8MP30c9/wfIkxYKyCM31cawzhNpGebFaxjY8ZHqtiGFYODkEgnSN797lvxs519ybvwZ62asZ+57C+g7oxdx54gI8a9RjbqTJ2CNKZvHeSZSXuyA9PjwVbuD6Kd6YK9UCSP1BNZqTdifWJFa6hSkrqNYfBhuO4rVaUZmrpmOQOD64X0CnhwFgLVBW+ynHsTesnOpPlLHvkuU/ylSfVF4ixYp9uh43A4zMFMYGmigOoxSEtOhlSJRnXn4WQRWxSDDU/R1CKjasDz3f9iNpO0nWDRwOj8DPRYvJcbP5C1yuiUSgShavBjekoR6q9VqPriFBAn7l+28pOt/JXDNnvz7UaV8VVTs6JjPTD8/R/G5cALIxUmdFpXoPfRpXr/9Y4xIhQr+Tg5l2bAqAh24tWsJSeeLn5oh35eDEPfE9pN889J0un1wP1Wbnn1jRwhBhee6mw/b88CbeIzcaWMIeuQVLLEVAVBtFvy69CZ/9qd4CgX+mYnkfTEIrU40wmNeh4y1P2JZ9wP2jn2x1rwBMJ0qWQNvB1UlbNiSUv240zLY/85oKjxxP6FNzEdH9hvNMbIzUMrXRFUkGBIRWMLBYQ8PxJWRh8cHCgZeXUFgulUNJDnJ2Ryu9jIxtcsRebILFpmNsOrwG0hdMqJ+f1IzvQTHBDNo0zvE1CrHxlkbqHFPTX54cCqaakam+gX+fTv/V3HNlvw74RSZ2GRgMYdPlSpmtu6vv/4OCNbPOorPZZAhMhjcbyJL566lU0hFyvnBLfddT4+mQ8hJzcOOhajocPoPMjUhNi/bg2pRaXRzrXN1fUGcKQl9sTC8XnY+8jRaSDANZ0275Pq2YH8qRmYCCkiFE0/dSFTvAdgbd8KlxWHxniQ3MYnQaiFnrW+tdzPWMXuL32tVbkB7rqySE0Bks7o0Hf0ygfFxABSOqYlqUXDN70nQOzmAaav0wkJzziFBkQprJ/1Onk8l26tgPR2eauj4ko/yRM+KZLbxUvXlF0k+lEJ4hfAyMtU2h5VHh99b/H7Loh1MePIr6t5Ug1dm/yNT4avanly97CFFaNSkNlbNwWlWmHJxMcXnatWLJ5pQIgim3zvPcNvLt1Oo60gUDuX749IVbMIMe+7Y44bieoZucGzbSQz9HPTbfwGBEQHcPaATYeXPL/N6PmRs3EnaatNTaalyPVrF2vhFnL5pzLFaazZGUb1YtXyC5j2GM9lKQUYgqF6kr+jrVjQMl4JSvV2ZPoTNUbxTchpqcCi22vWJfbYn9ceVTmtRrG40q88MMZcKKCA0A3dufnGZSo0rEWjxEmLR8dfAKiSaIrEWdbPhu/Xkp+Wx/ccNiOpDMTQLus2PXjs+pv4zd5C64QDBgRZueKw1PpeHDq/dyYBVb/D6yoHogKUoV98qoFzNK6IaWgpXe9jWNVwY5WLi0LAD5nepncHTEEMIBl6ub16LwVvexuUxyPZoWBWDfMOKVVWwCIiKK7nXazWvTJPb6/65m7+EjJOZ5CTn4sx2nreco3I8qsNx3jKCQtxuC+krN7HrmefxejzkThuK9+A2Ygp/J1etjBaYjUCAoWB4VRShIixeDEPBdu8bxW0pwZEEPDQINSa+VB/W+GpY4irSZPbkUvn+UqqoGgibFzDwFah4FQXvGXJysugPIVAUg9N2/u637mH73C0kHkjAIxU8UmHnwg3F9dr0aY8AQiqGgiKoe0dph3XPBS9iEaAJ0HNc/DdxLUXl/wdeee0thCp4+IFujJvwHsHBJakhIZqV8moIlctVYOHCdRToPgp9Ckfy/XEjsCmmEOyVUudI2JNAwu5ETu08t7Q8QPS99xDd5fz535kfPod7x+8c6t2DxM+LUkmkxLPpdwqq3Mkf+2siNB+qrRCOHgeLC9VeCNNewjiyEeeE0mJ8wj8Yxa804brhdnPq/cE4d27nyMclso4yP9mch6RuRQsoxBqZhdXuIm+kmaby3PoRVL2zGZoVImw+DCRWRWBTJAoCV76b+QNn8lW3T7A0m4jwA2mz8vze8VT/TytEQSG1m5YnrlY0Xz42keqtqvPQmIdpclMThAI+w7RXeQnZF3fhLzOuzU3+vVi+ZxIyLh0bIagEcN8DJfehKqw4XA4iCaaKUYk+fe+ncYs6HM6W+KsqfWoOID2tAE0oKAiiY8N5tk9XpJQMue9ThnX7s2Dd30Pq0TQKss6f+ik0jfD2NxN+2y0XbM+1Yx25878udSyofAShb00HJF6Php8llbyJr5I17HZsxkmE14H6aXt8Liee3SvKtFkwbxx5375z1rR2aRhIX2ly4pg21+OIKOIHcvnjywpCESX30+8jfsRfBT8LSKFgUU1fsCIFhhT4DIHb6UZPOUbWm3eSM3k46tofOHD3DcRUiy7j3ADTaeLKK5mfFKbnYVPhxLqDeN2XhxD2fLja7clV7+A4dSoJUAnQIrj/vs70H/Bc8Tm/QAchFpVIm4Uvxy6kQdSDuKMEFrUAP9XAaxhoqoJVVen9YQn36YopfzDk1g/57es/Lvt4czPzcDnPzTZ+Nqz6Zg37/zjI9v4j2PbKcGSR48WXl4XVm0RocBbhoVnkrf2VgLv7Ev3VbijyutnCdLSQdFB1hCqROhjX30Po8F8JfGZkqX5mdn2fyTf0R9dL39iKnz/lhk0k5K77yw5OtyAUEJqOElCIt1BQkK/iPlmSp3vkl23Fr+2KgblWNMd316sdeH5hP24f2Jmd01cysu1qfI13YG+3H0VRiG1QkSyPQtL+ZDZ8s4oRrd8lYc9JwiuEE1Epgic/eRC9KJ8eAQ3uuryRN2dFEfHO+f6u4epG776vgyq46Yab+HD0YGy2kh25YLuVOC2IwnQ3D3ccRJbuRpGCdLeVAq/Argi0Mx6aUkp2r9hHTmru2bq6ZHR85Q5GHfqAai0ufdcEwJuTX2xDwp8fQUTXuzFQkV4fJ0Z+jBoUjKL6CLYlEehKIudUMLouQDHzTQ1dokQ3gdBqaGewkqfsPMa2r5eX6S+0yyNUGPcdWkhp565BANIQqP5etCAXik2H1AB8n5Y4qes/2g4JFBabJPO6fnrfOH6b8CurJ61GwQApufnle/B4PPwycDJRFUNpfl9jNIsGhmT30h2Mv2dUcbtT7/vIfCEECNg598Lkq1cMF7An1/DvQKPr6yMQOPwt7Nt3GJfLnAckJ6ZzRCRRIJ0s/XUdn338I544A4vqxU81SHGpqIpCbGwJJ0ZmQhbv3DySDT9tOVd3l4QW3ZozeM0btHmyLJ/PpcIaHQDCwJmtk/DdPE5+MQXpdeE7vg//Iwto/HpvLP7ZKFafGVUqVUBFsxlICWrNEslbIQShg2YR8sbMUn249mxDHNtKeCUb1V8r2clUwvxRHQUI1QU+DWGVKDYDzVEyp4muEk6gKvG3SCxFaSVCmBslFqtGRLVoompFMqrFN/yxcxS2Ww4DUKdLU7K8Coc3n+Dg7/s5uGIfu5eXRH/p0pzVKP/NW/ba3OSKQQhxrIh3cJsQoswDQwjRVgiRU3R+mxDircvZf1xcNHVqNECoEp1CJn8xA4CXXupF92cexCVdqELBIjQ+u2c8r/XuRu1AgU1VqBWsoyBQhILtjEW5EIJXJj/Oy19cvhTNvLQ83m4xlI/vHX/eckIIKr/2MhWefeq85cB0muZ+P5bDL79AwS6Tmk1Kib5qDtaOvVi3rw5C0RGKD1L2IX0KwuJFCoP8AY1xftqdgu8GlWrT9fsM3L/PBN1bpr8N93bnj5u74s3NKz6W9XxVcvo3IXv0vUhFB9WHtIji9VLc9VUxMPkFrcLAkGY6rY5ACPBJSfqRNERACNbrb0VqNnRdQbUbrP1kAZ827Ufa3pMAFOaamzw/DviBQbVeY8F78/F5fMwcOAtNAa9P8v2rMy543f42rnJ7ctU7OJISUzGkDlYfPXs/Snp6VvG5PTuPsNE4wA79JGqg+UUkZCbTOHIzFW0ZXOeXir/iIiw2iAFN32XjvG0AVGtameotqlDtHKGafxXZabk8WOl17o0+t/TRn5G4P5lvXpnBR/dPoFI9QaXyaRiGTnqvypCVCEhUVSKERDpLoiaEfzaKIx8lPA+rasMQoFh0hEUit29FDY9D/CkV5eSW4+Sm5JF9JIWzQU/ciWf91FIeT5+uIjWTEV7YdIQisOYFYl1aIpvUtNddpicQgds4YwcXwJBs/G4twqJSiEYhGlu/W1FcJispB4lAFjlEhICfRy8uPt+gSzMk5qRCVSD5wBXhnCwDw1DO+3cNVzda3dgEEFhsCps37cTrNb3lWVm57DKOcsxIJaEgg6OHEkm3ZxOo5mJXfRQU5VmGhAeQm27ej0e2HGdU14l82Xf6ZRmbEAJHoP3CBf8EKSX5R06x4ran2D10IgDWRh1w/zqF4JAsQoKy8fd3EvzsKELHruK0E9K/fDpebzJC9QIC3XAT9NqPhA1dhNBKHD+z7v+A1e/PYt/cdWX7NgycM3oh80psi+X+t7HGZCCNovtJB3wKisXAXVhI4aznaP16VzpOfBY/FYIUA6sisSqmNRDADY+35t0T4xl2chyqqvJ1/d4cnbOODW9PZfecjWQdSkE3TPtwctPxkvHoBjoSXUoU4MeXplzy9bycuGZL/v24vlE9dOll9uxFjB87hQfueQld13n6oYEkeZI46UinxS3XITFofmtdWkQcoE5QCjdEn0IoEFspnDkfmM++9JOZHN9xin1/nFvy/VIghCC6atRfjhBJWrySrK2mJH1I/+/x6/UeqsW0malzFiBUDUX1YfNzEvFbTwrzHBRmO4ojS6UBwhaE7rZiveHsHBtnwnFdYyKee434kZ8QVK8ktN72xAxUTaDYFYTDjeEBQ1U5lFyygMs8mmxGhkmwq6ejdM1FSEytWLpNfIrEbQkUSI3fx/5aXC+0WqRZDoE0s19K7a5iAZAIacadeV2ev3Qt/y6uzU2uKNpJKRtKKc8lkbiq6HxDKeW5ySf+AtwuD0t+WUiBNwVDusnJMdc6I0a+w7gJI3EJD9mykERSiKgcwTfvLiTLLagSUECE1YsqwCLgz6Q9N93XhBs6N7xs43QEO2jQ4TqadLn+srWpaB58XpXsbXvY+8qbeAsK8OXm4PxtNp6FE6n93EMojlxUv1zQrUifFcMnEVIF6TUdp+XrlGoz5I2ZhA5dWGoOA5D8/muEyCNgGBi+kigJoZiODJG0CoufB2t4DlabG+coMxKvRvuG3PLeY3gMBYcFbEi8hkAtihQFwYqJy8nPV8lo2JsKk+dS/rFEKjyRyIEfl+LOKWDj5F9ZNGweb9YewM7F24moEoHFYWH5uOW803IwGhINiV2R7Fiw9bJd3/PharYn/9ujuwg0bdaACnEVcbryubdzDx64txeDB5iEMu++NZYcXxoZ3lQ+n/0mXR+7me8WD6P9+j1UjUomPjaN1m3KE56TQmR6Agc3m576iteV5/UFL1CpfvnLOlaf99JTXqKqRlDhunK0vL8ZmbvTyEgL5HCfh7HYJEIBS0AhflGJhFZIQK4ezK5O7dnVqT224BysoTnouQrCXkj+qTiE1YPQPPjS0ijYtLhUP/sWbMCLhluq2MP8zjoW5/hbcC94jZzxJSSpAVXysYblgRRIj4qimNsYin/JTyuoXBi9903EZwgCLSYPBxgo/gq/jFnKog8Wsvj9OYC5aGnZo0Nx3RaPtkEIUFSBYlUxgP8Mf6D4fAmHiMSQkpSdZQlSLzvk+T2a/+tezWu4MG6/vR2G9LJm3Ua+nz6Xg/uPcWj/cd7oP4p0dxKJeirvfdEHi03lyb530bRcAu0q7uXxGntp1rkhNhX6N3wbwzAoXyuW1g83p33PtpdtfNt+38894S/y2auzLqr8/j8O0iP6RT7uPo2IWInd7sS19w8yX6qGEBKrpqNpBu7dmwGwBoYi7PkojgK0UBdqsB3V4UJoPqz+Cllv3lSmjzy3Qr5XZcPXv5U558k8ibF3LrIgBbfb3LkObHEfQjFAKAhNgCKwxmcjIhT0kXEoh6bjHBLD5rELsagSDyYrqASaPdySoNggbu9/brUpj26qNvlrpt1VRclkpetnz3DageOVoPuuvPrSOXEBe3INVz8eu78/E8bM4KEH7qdCXEX8tXDWrNrM0MGfsmbDOrwUkJp/ko+n9GfGrGF0uqklJ7IdVI49RXl7AZX83PgdOMDKzxcAUKNFVYZvGsRD7997gZ4vHpnJOfRqOpTff9h40XV+HDqfjT+sY9fb49g12FR5EoqK98uXCQ/PIDw0k7DQLFAtZmSpoZrRElYFzT+/aNdVYhiCwGG7CBv5O7aGNxe3v/Ld7xlXsycrh5WO4BCaRlD7u7FEx5U6bq90HbpXIOweFIcH1aHjS/KnalBJ/VvefcicgUhRtPCA05Fhp3acZGS79zGKjp0pUBMQGEij+5pRuVV1AiMDUFRBxYaVis+PPDYWSxEfmPVPign/GK7NTf61CAj0I7JYDEEiROnlWwVbFBYk19epw1trBnHseDo5XpWjBX4cL/THIiSKEKhlRGYvLzSrRo+vu3Nb3wsThZ4L0jBwZ2QXvw9/YyrRrw3GkBrS4+XgG0MQ0oOielEdGcRteQlXto38tAiExQNCR6jmWsNAQXdbsbUsbSvVsFjU6Pgyffsy07H6W2j202RsYSXiE6q/juZfgFS9oGsIi0Rx+LCcwfVZr2sLYiuHEKR5CbXrSMCuYm7KCMG2JbvJT8/j+56T0fxCEX4CoQo6T7ibdoO7sX32OrZM/Y2g6CACI4O4qcfNPL+4H53f6kzDBxpiU8wUGLsG6j+gGHm125OrnmQ0JTmddu1u4NffPcRGxbJz6xEmfDIdXTdYstT0vrvIw+P2cU/HNozoOJEnR3bF1/Jxjvy+F10JIciRAAiSvl0G79yLz+1FtWqXPd81Ii6E8esG4hd04d3XPW+PwRIcSPWXujPol1cB2HLHNHxOieP6xvi2m947b54/FosXgcTIOUrVlkcxDIPClDhyk2JxhGaz6xTUi8/GnRmCUHwo1kK0mCql+qt8a30oipXwDw8565isVVW0aCjcX5LrToevYd69CE0i7BKi/LCFZmME+eN8JwzFquPzhrIvfBwOzSDPq2ApssvxjatxcOVBBIInvnqOco0qIRAoisL0ewaTuzeRqk/cTov7mhBSLYZF7y1ASNi9dCctHy4JpQ2MsOLNcoOEyq2rkc7lSQU4FyRgGP/buWfX8NcxZ/Zyej7xNi0at6JcxQiWz9+E1+vlyYcHsmuPGZLsIpPWNzfko5EvsnL6enLaPk3eT3NJ9gicp9ZQxaqCzdwZtfnbeOrjhy7Q66Xhm7fn4/X4WDx5FT1GXJit/3TUVag1C0+2k/RFKwg9/imaTUeqKkHlEvDkBWANTGBf1w548r1UaZkBUsOZZUVxeMk5EklgxWwKM/1RSDxnX4qjrH0TmgN7QwNFQP675bANTS8aF6jBIITEmykxCgQ4PRg+fxTNwPCo3DLiKU6t38/sgbPwIVGF5L4R3cr0AfDI6g9Z8PBQ9u53oghzlxUgwuJDCNg1dy05B1PIzC48o5bgymeznhvX7Mm/H0sWrUYgmDPrF+x2G5qwolkUOv/nZj4abfJUOEQIXVr0IyJFoyC7kK8T57H3972s6T+TcGsGIChHSapFVHzEZR3jB49P5vi+ZEb3+Jab7mt6wfIH1x1mydjlaFaVF1qkI2Umub98hWf2O4CKUKS5WXxmCLgjC0XYwF4I+YEYIh9Ns4FikD38bkJfn1+qj41TVuIzFLZ+t5I2b5RNkc0d3hiRm4i1/yZsoeUAsJfLANVAelXQdPAqCI+C1+NCTzsAodXouX0s4697AYcqKSzyYvgsp3dyBQ9NehZnlpMGXRrjdruZ0qAPXh3yVX88XoP8oizjkTcO5d2DI7E5bGydsx5zzSlASN6r1583946+tC/hb+KaLbmikMAyIYQEPpNSno24oqUQYjuQCPSTUu6+nAOoGleb/BRJaDl/6tSrVupcZIQ/tmRJ7olc+nf/CBFjITuhEFtRdJJDU5FS8NjIEiUmZ24h77YfRYP2dek2tMvlHOrfwv6PpnJyxiKaThpKyHU1sFRtTPazNQgJC0F32whrWAktJIrQ178md9QjCMBitaOGFmJ4fCiqBSE1dFlAQK8fweUsFamRm5jB5s+WcOPA+9BspSM4yg3/HKREaKWXx0bIdWgZO811js2NXqgg/ARbDvTlNIOjEIL8U+koQmBRDEzqYnMdGRYXyG3P30aKnkS9exoyodUAHvtpK/6RIYQIgV8FF/PfmInX5aXZk0347D8fcd/HD3N9l2bEVDfTdjeMXWU6XSVUqHt+AvnLgavdnlz1Do761UyinfLxkSSezMamBqDj4sa2TViw+BeOHzmBn4ikVmRnbmrYnOCoQELjQqjX7UGWTB2APHaISv6nA569HFm2hWk9v6JB1xbcPeLhyz7e+Lpx5z2/YMJvfPn6j9xRPpMawYXIVreQcCiNtg82pfydrcj/dQFy8yoKckLRfZopb+ZWsfjnYQ3TMXICEFYv0nARWukkhi7JMm4F1oGUhE8okWMbVrkPAL3/eJvg2HCeXfEOoRXOrbFq6F6kV8WbVbKAUSu3xyjyYCr+EtcBJ9gF5DhB2s0JjqeAgNgw7GEBpJ8qRAhT8/mO1+8ked8kGna+nqqta5bqq2B/IpoKB79aSrbPhtsHuqGgCJjz2sxiB0d2cjreLBcmu6lkVo+vaDvl8u1qnfNaXMXMwtdwfvR6+m2kNNi5/SC79+xCEyEIodDv9ad4oc/b5OTkECCiqBzYkQeatuXE1gSeHfsgJ2pVZVW/76nk78b8PRq4s/NJ2Z9MULlQQitcvgXJq988wet3jOWJIZ3PWy5v/2EMj49arWvyeerHuLMy2NL5CQCEIpG6glAlhtMfR6AXDEHFRmsBcCbFkZsYiyM0i+TjkrhwiTcrBKH6MAIiARh341u0eakT9f/TnOe3DSc/NZeoauXKjENVffjSPMgwicw9MzVOwfAYCA0s9/yMZ3pnk6Dr8V/I+vIdCircRdXqcRxbtpFwmw8nCr3XlBAd6z4d9QwC2LXd38GRloy/I4yCQkzpRmGAAANY9soUVEXQ5s37UZAYgILA6n/pKT+XE9fsyb8T6//YydefzcFut+Aq9JDnScEjLBg+hYp6XSrExZHl3EHt6HsodLrZums3Hwx5gcrVYzF0g2/7TsOd7yb89BxFGhxfsYOfRy+hde/bqXV7GeGpv4wHB3birXvG0/7Ri1N6q9ykErXb1KDGDVXJnHMQEET++C5WO+heA0tANronF1XTOXD0INveG0blZjmomgXdEEh/nbyjlQipnISQCr4jZdNtvIb5uV3Os0e/qiShVlJwj70O2+BM86A0TFLiADDyFaxVs0EVFL4fjtWqIX0Ke+NnY1MNCgyF0y3Xutmcg9S8uTZ1bivh8vq09jPFJOa624fUMTnOhEARkLw3iUrXx5O255Sp/oYpFet1/pdSVK7ZkiuFVlLKRCFEFPCzEGKflHLlGee3AJWklPlCiI7AHKD6nxsRQjwLPAsQHR19SSpInR5oSsf7m1KnbnVsNmupuu361cdd4MbuZyff6aRS3TrUa1SVtF3HkAjK6SbZZWFgDp4cwYoVK9B9BrUeqoQSpF8WNaYzkXAoFVeBh0p1YtHOiGbKz88/Z18Je5PQPT6iKoViPNuRLcknEAkHMbITofXz6D4NJJyQKtaiNvTWvZFSQSgGUlcRfnZwF4A05zhKUhEZe1H5/Px8ls1bjIwyWPj9HIIrRZ39A0gzuvQ09PhuENcRxeKlOEdWV6BZaSWrqOdbAabuQ9gZ92L5+hXQMbDl+ZHnzCakW13mz5hP7HUVi8vEv2La3myZS73+Tdh7aj+5K0rI5Ou/2tT0n2I6Hy71OzvftT8XrmZ7ctU7OE7LkR48eAipulAMG3GWeCL8I9i2ywznjA/oAAJSj25n5IMNST2SxA9zNyKkxBZgQ5U5CCyEOcywwsCoYIKig1n/xXJSdp/izlGPoaj/TDZP4qFUAA7m2Amz6iy450Mi7ZLQMDu1OvyHwj3bCLqzKwXzv0YLjyag72S0Wi1RVZW8r2/BIjchVR/Br/+EteKNfFSjJ0jw5dWm3R1/niRIQPB9j09p9vAtzHttOncN70bjB1uVGZdvw1hEqo4vzYsn8FbyXo9FtOxOwN3v4naatqAwJwR7r924P4tH96+JqHsvhSu+xL/XV9SqewMV29RjfLMBeHzmBKRi/Xje2jr0rNfhdPRVvhc8ZnGswsCHgqDkc+xfttO82aU8HXF+xSGlwNCv+uyua/gTcrLzGf72JGrVrsyuHQdx63m4PTk4rIVggN3jz7GkVXz75ULefGEcUkoa3hBJzzH3k3k4mblvn5YYK2K8lQYbP/ieFTN2EFkjlp5LB162sUaXj+DLXedO8c3NLKBv43dp43+cqkFuWiz9BlehTkhUONE1bOjpSeRnRYNPx+LIwWIDXXNiteciC0JASKQvj7B4Nz6PiuaNB0zbFDHBTOUbdf1ruLIKmP/KN9S9qwlTu00gvHIU941/ssx4jN8GIVMNZKDE5m9Q8EYkhuJH4LtO8v9YAj6dgPgboc9JfntiKAVzxyLcDhzqYvKPZ7Bv0W5yfKbQ9OhmA+kwtBvr3vkWiyJRizg5ntn7BdlJuaQ7HQThQhdWVEWiKQJDGphsGxIVg32LtxCgGThRMHzg8/hIPZBEVI0rr8L0Z1yzJ/9ezPx2CQt++h27HowfVrwWJxbDD1WzkSOysTksAFgsFgpxowiIn/sJebYw3n0xAp9TxxHoACMXBQvBmo+Mg4kk7TzJ8XUH8Qv1x/DqFxjFxaHhTTWZlzX2vGX2bThCxqgxqIaPFj9M5KVZJsHnxoVj0X0Cn27FKJAomgdZ4MDicAMqFkcBNW7aSH5CJPnJlbD6OTmZV0D1mEK82SEITTdDy/+EyNrlSN97itb9z67cYqnkQw1S8TktJQeFBTXIi1ABVWLkFk0MDMUkzZMQf0tDMvafYt20teYmjIR733+A9Vs20q5XaXW5liMfZ0P/KUhpqqQYgEMDl2GgIHE4zMVbu1fu5vdPVwACXUo0IONEOuEVL2+kzflwzZZcOUgpE4v+pwohfgKaASvPOJ97xutFQogJQogIKWX6n9r5HPgcoEmTJrJt27YXPYZpXy9mxoy5NGpYn63bdvHjvC+4tb05Xy/X8WYEgk2HZ/Kf1v1QNUGf/U/z+8Bb8bcbOAt9xH08ifc6jqfdO825u7N5T7lburHYLZd9jdPpLnMD9YH+t/PYW3cVH1+xYgXn+sz9+w4iJyWXl9vsITvNSkCITlz5Ayiqgc8nkSgUZgUT1L4dRm4w2csWExUxHSXAjq/Ag54XSPaxykTUOAZeC163jhLXnJABc0r1v3vEIiQCzaHQb/cnZcaRv+Q9WPEJxDcjoOdcAPTUQ+jTrkOq5oLE8EmMtDAUPw+OBzKK6x5Xd/FT93EYPoVEl4IoYoLYoW7B0A0avdaEvR9uMPtH58ETJfxAAx993txqL1r/hFQM5+G+j5acf/j5075VdAkPnyo5dzE437U/G652e3LVjnz+7BW0qPMQEWFhWO0aHiMfqav4aWFkywKOHz0jhLro+fZ4rIv8jRs5/ukUDvy6m7sG3snrK15HKA6k0DDKV2Tx5ytITshhyUdL2TFzLXvmbcKd62TeoB/IOJ6OYVw+6diz4dnRDzDqj9docEcLjtlrYimSU03cl4S9ak0qTZhBSMf7KDdxIUpQGLa6rYt5KAKf+AX7gBwc/QuwVryRL2s/SZDmBXwkZETz7bQIhlXuU/ynFvFWZOxKZtGAaegSfhu37KzjMsrfigGkpkfjl7MKzb8QsaGIqPClAgisRcBzJ7CEhJN/4xp27n+QLQtcbNzQiFVPj8WVk8fSbu8QavMQEiQYfHjMea/DDU/fSOt+d+OStiJWcoFFBVXohGolE7rr7m6GT4KOGY4upTyr7NPlhpTivH/XcPVh07pdfDt5AUd3pBMlK6EIC/5aJA5iQUBIrKkYUim+SOVDQPyq2SQ/34vpz31FWEwgNW6ogqpoOFQfQVadOo/fhi3YQVClMKZ0GcmkO4b9I7/PVTM3kZdZwNrUIHQJ/av3Z1Tj10k8kExAwyaodhu2Ok0QVhuB3V4n4OnRhH2Ygu2Fnagh+agh+QS/NpOQ0Ql8u7QDy9bWZfpvN5Ha9ZviPure3RiQSAyG13iBhF0n2TH/7KoOetO3yMnxx5nvh2Jzo/p7EBTgWjgSv/qNCbjJ5NI4sXgd2YeTkC4vEhW3rhHRqjFauTgMrJzeOln7eQn532nSPwCfYkERCooisCpeVGHGcyoClCLRWYtikLV5H5oCQYpO6z43Y3h1Dvy254p8FxeDa7bk34nBw59D0VV0xcBHIaHB4fipIfiLIDTFSkCwyXc1f+VYWrVpxNcNQKLg78nCHuig5/fPMWjdIDTFjhAKSoVy/DRmMQU++G3S70zv9hFZJ8x5ScKOE5dV2v7PWP7NWga2H8PcNU5cCSlM7vc9Y7t/jWEYRFW1ExWejTs/gsLsYDz5pq30UoAWmA2GQBY4EFoOYfHH8Y9IJ9fWltP3c/j4Q0RMOMymaauL5ycA7V6/l7sn9qDVc3eUGY9ekIZx0o33iBvXMRVffoZpW2s/hpEPhk/iVuvjVmvgc1mwPLESp7MxBRX6ERAbSvMX7sahGdiEQfUbqhAYGYxm00pFhAFUva4qlas4aNXXHIN5R0rCVIMIm2TmfR/w84Cp7Jp9JrmywCsF7rx/XoL62tzk8kMI4S+ECDz9GrgN2PWnMjGiKK9dCNEMc32V8ee2/g5uu+MmdOklOzcbRag8eM/LPPHg67zYZwhO0ikgDatNY/XByTzb9S5Wfr+BbVmVWX+qIqfKdWTuA6OoG+LGKkuSMm3+tiuygdvttQ5UrB3DA6/eftF1RuwYwsTE0XjcVqRUKczXUCwGigYYGkJXCI7OQez4CWNlL0ID5pFxvCLJa+qRuas+PsMNtgLcGUG482zohSHoCQfK9HOaplzKc3zuTR+hVVcQ+WuKD6lR1TB3ixXwqSAVtOg8tCgnhckHKBwSRv6HDYhpWJXyDeJRhMSmSKyqJK5aeLFtVq0qnYbcS1SNaN48+FFx+4Zu8MLy1+g+63nim1RGEXDXoHtKDavmHXWxKBJNSCz2f2b5fjXbk6s2guPIoVMknExF0QUBRFBoKQBF4EcIBjrtOpeQHP+y6QuklKT36AlIbhzanQ41axJTOw7d4+OWN++l3A11CK0Wx4AKz3M6AGjv7jRA4Y26bxATH0b5qCroHh3lCv+wKtcrT+VJzwCwbu5WNszZym29TK3onBNp5CdnUa5ZjTL1Fg6cTtr+JB774SU2ffcb5haGQBrgQ6AI8+sWoij3vUhuqIRVWZBzMqtMuwBKSBXmzLgH1Wblzo4/YLisCIuX/OE3Y72lN8IejijKYV372kQ8uflFBF42ghQXnoxsnMmZJBQ6AMnQ6i/Q5eMn+aXfJGyKxJAG4fHhPLhsOOmbdnPou6UoUiIJNXk5MBAYRNjMwR9cspkDCzcTXKcypydJEkxnh+fy7GidD//rN/Y1XDratm9Kixb12bR2H7kynRqVapCako3qs6Gg0rCFec+1bnc9U38chv+Mb/AePAhA04dacuuLdxAcG8rJTQf58eHR1HzoJkbeNgqQZC7eTWzFICxCITc5h4/bD6dR16bc9faVSafq1PMmjm4/Sebmg6xMshFp9xFkkexfuZ92fQYQ1WfAWetZIqthebVEGu3L2k8RZFFw+3wUGlaW9ZrMT76pRWdNRRNPEZP26bDJs8EaXYEN+x6FukFIr4rPbQfFh+eX8XDkLWS2AxHionKPHBJ+30rKHztQgKgObSh/dzvuv7sd49oPIeNgKkh4bvnrjK39AoaUaEpJnmtBng9FSHw6KKpqOnEx5dr8NQOEPIObw4xga/1ce6q2qEl882rnGP2VxzV78u9EUHAAiqqgYsHAy+dT3uHJe4ZgUax43C6OHkikco04KlaOof8jHbHqN1L443RqfzWeFsFBAOQnZtDw3qY0eKYDIVViGVChL6fvtlSXoHyBh03freWnATPoNLgLrbu3O++Y/irK1zBzvgu8GodzAjn1w0qCLHBgTUsq9OhHzsIf8W/WnMKVCwl7+X1UPz9Uv2CkOw8xZxJqaB5Bj/+ArWYHPqreE4BTjubc9HQlTsc4ZJ5M5bQVGVa5D7qm4XPrvHVoDJr1T9PVnOPgFeAzsPmDe2RNDI9C4PupeBNfxb1vG/5t7wShsH7ABDL7fosnMRa7sh3/+X3JcPoRZvGQ7VU5vv4QB37bTWFuAZ/U6AHSoGLzqnT+dgD7P/+RnIQs8ib9hCQYRZhy96qQ6FLgdfnY8+Naaup6UYyYYe7aCkFc3ctLVH8xuGZLrgiigZ+K/BcaMF1KuUQI0RNASvkp0BV4TgjhAwqBbvIy7mZ8+9Vc+vUdwV0d7qJajQp8PWEhHqOQdX9so1XbklS1hzoMoP2Nrdg8eSOx1SIZtfcLZr05m5WTVxal45vP6+yDpzi+PQFXrpPmT11+m/Hom5149M1zk4ADjOs1jaCNP1PRkkvdDwYQeWMzVE2l1rfTOPDQffjHBpOXGoai6lgd+SaxqupBKG4cdgWkwOFIRFesqBYvW/URXB8wGtCQikAJiSbwtekk7znBD90/5+nlZhRt743vsnv+Vlo8cctZx6VGGFhiDBRb2a9PDQcw8CYZqDWCMPJd+D69EatdR7iPk7brGOk7jpqp+JhjzDiWYXI6SoiuGUvLdm1p+URbACbWegZNgK5Dps+GV4cCn4IQ8E33yby5dQhBUSEApO09VjwO7TJF7l0IV7M9uWodHM+/+jCzpvxM0olsXNLJ6I8Gs2PbHn6ashqBwqiB0xn66XMAlIsJY3bPz6jXayC1bqsDQmALCWH5oGmcWrMPb2IylW5pQIMXuqIDQsLpjRBVmAQ9z8zsy9Z927DYLece1BVAi86NaNG5UfH7Bc9NJPNgEg///DYpe04xddyHPDarHwDbZ65D6gZDKj+PwKCCvw4oFBpmzrummDfraZOb4QENBbs5RwDgjf0fnHUcmp+d+zd9gaKAc/A8c0fGEoiRegTf2seRkcNwfXg39n651O3Rma0jp5l9Iag/4lWCqlQgvG1TDi3YQ7EDack2VEAREosC+Scz0H06B39cTXKBDVVRCRAePNKK3WIO0MB0yCx/7wc8yTl07NwcinZmFRSwKWUnQpcZUgp0/eol3rmGs0NVVSKjQ9GEFRTo3f8h3n1rLDLHgUTy0eDveO2DxxFC4JeQw96c8nSdPwx7kLkL68zMY9NnS9n+yWyqNK3KLYO6seyzNUVkxZLjR/NQgCGN38JhV/EWltVfv5zoM/GR4tffDPiB3ct38ez9zQFI23MS1WYhrGpMqTq75mxk0cDvuH3IfSwZOodIoQCCfF3DDL02H3amk1SQ65FY1aI7WlJGgu40FEXhrnnvs2LFChRXM4xjW7Dc/SFCVzE29DBzWT0aqtVCiwFdyfhJote4gfK3twTgj1Fz0bLzeGbOK8TWr4RQFF45NIHFr35B4oINOILtJKzZgzBMB4ZXQO/d4xlfuy+nhxVavxKZ+07idXup3Kkp7Yc/iVpkK6q1qX05L/0l4Zo9+fdizHtTKJR5WKSb8molOt/5BJW0RkgEodZI9s7eyCFVoVX3dix98zuC4kJpYUtmf9euNPp5GZ/UfR7DMPAXbgIrRGKpXBFDiiJ3vhm9BDDz1RlUb1GFys2qXrHPUqt5FX7M+YRN363l6LoD5M9ajyoAIfBvfAP+jU2qveA77itVT9gCEdGNsD9gymZPrv0kQRaVQq8kr9CPBeOSKfioT3F5FYle9Ll0t88M5T7LM12Na8KvK1pRkOvHrbf9iqJJUH04p/bFetNTBNxs8hM5kzI4vmQjqjBQhIpTFwQH+IEI4IgzD1AByXdPfkrtfk2xKCaHRurmw6TuP0nKrpNkuO0IIFT14MGCphTFcUjTtmvoJG08SKDmw4VCkao4SXsSiK1TlpPoSuGaLbkykFIeAcoQ3hQ5Nk6/HgeMu1JjePWlkUgkvy5bx6IlC/BTogkMtPL1lA9o0a4+N97UlLdf/Jx9e46xb9dxfpj1AeWqRZFxIp11005HIuicnn9v++RHNqw4hTuvkOsfbEXmsVSiapW77OIK50Lq8Qx+nbYOq+JPz9q5zHl/Idvu/4Z73r2Ptl1q47A5IU837y7DAv4+CAxDRFuwVa+PvuVbkAI1UEcRhYBCgcuDYYCiGGi3Pkvof14BYPL1pn0Zc91rtJp0L78MX0zlG8puEhcjw4vPq5N71J/IkmmUOccxzHR4y0O/4Jl6N0gNI/ou9NSf8BVaKNeiFh0/78uPL36N4nYhi5waj3zVE2+hlz2n9pbqSsWcn6gq4Dvt3jU3XxQF1n+7hvYvm8qVuQl5RbwgJoHziU1HqNiktGDE5cTVbk+uWgeHEIJGLWuSfHIDSEhIPMVXX39NOLVQhMr+HcdYPORHYutVoFzdcpzacAirvxU56R0AGv68jF3frwYEte9qQbM+HRn34GfouunQOO23O62XHlIuFOXQfz+jp2mvjqRsP8raiT8jy0sStxwrPnf/58+SdTKDhW/NwiMFWYUaDgt4ioi6dAmDjo3j3fg+RdMHFR2BSzeJsd47ef7829OTDNvrO9FXjMbS4V1EQQaeaUVSaT7z+lR/+DbKNYhm5ZBZhNarTvRNJiN7qze6cfDQRDL3JQEKD0zszqiqm5ASHEV6baqm4pUqqmLKyflbQehG0brJ5DUAgTMxE5sCW6b8TpBdkO8y69tstn+Ei+Nq9mpew9mRmpzB0qUrKTS8RMgIXn91CEEF8aApKCjUiAjlw+aDePCL7hz8eQcJW46w6a6uBFh9EBnDym3BGF4dvyA/wmpVYEqPL/Eap6cT5u9FUcx0iiGHRqEo/5w9eXT4fYC58NA9Pr6/5z3sIf5UvbcVGz77hbYDOtPi2fYcXrEHb6GHhW/MwOPS8dp1LKrAZVigKJvUJ80Hh0nLrGLo5oLAB7x/4vw2BMCvx8JS7ws3PIdQJbiKdpaW/ETe8gVEV4hAKGZ+sTvXiTuvEP+wQNL2nMSdU0CFVnVIWrAemwoy30nkdfEo6EipEFUxFE3TqHhTXdL3JxBzXUXumvDcZbuelxvX7Mm/E1PHLyCUIGwykPpNqpG9Pg9NWPDhA0Ow9ds/8Djd7P7hD/yjg2nRpRpi8UZA4vP50D1epITWI57AXiGGsZ3HFpF0m+2f5rqTCHrMfvEf+UxNHmxJkwdb0qJHe07tT6ZWqxpIKdn21S+EVYulUpu6pcpvmbaK5OxT7MrdxO/jl+EoiiwtNNQiu1gUAVYUWSoNkEUbSwpgnOeBHv9sP5wpWZC8Et2pgupD3zYfkTMJb7YfItCN44U8yt18PQm/bjJb8g+k5dQR6LrO/gav4sp3A5K466sgAa9h2mkAi58Fa4U4xAEz00BVQDvNsYQsIiqWWFSJKykNVbHgj8RRNZSkw1ms/nQ59419/PJ+ARfANVvy74KUkt+WbaBl64as+m0THj0ft1FI1SqBJB7J5sN+3zJr8wieePpe3n5xEoAZFT18AHscUSzfHYg9wEGNltVwbd+N9HpRBFz/8v1s2PAJ3uxCNkz6hVVjFnL3R09QrX19EnedolKTylfU2RFVKZxKdeLwpGezIiEW54kMqgcYrPpwHu27t6HSVwtQbA6M/GzQNLSQ0lw2LpkJuofwe78H4OMazyLlbo5jyky/+NkrZ5QuumcNg6RdJ9k7YwNH1uynQZezq0UJIZC5Euvzi8kfaEauBbyXguieRM7Yu9DqPk1wxdaoPfeiOwuwR8SRNPd2MrYepZ7XS0jFCGweJwEaBFWOoeeSAcXzvT87OG6f9gpLHh5FplfBDMoQ+GkSlwEgaff8bcVlTcEn87MoQGGukyuNq9meXLUOjsz0HGbPWoJhGFSQVVg+fzXl5fV4FS8Sib+/jbWTVxBeOZKCxAxsAX7cPuIRjjxgEsasGTOLSm3qcnzNfnYu3slNbz9IxwGdmP/CVwghyfGCJdAfT55JfLX4g4XkRzjx3eC74hEC50ONTk2o0akJHo+HnybNJK5RfPG5ajfXAyCoUgRTH/uUTK8NzTAwivPMzB/qK3tGMLz2AFq9dgt/fPALPiRRkQ48ThdWvwurCaiKFe22txCqCkFR0OB9OE6xg8O1bzenBr7AdU2bU/4t8+Gem5DBl20HUb5FDfos/qTYcHab9So/Pv4xwluIsFkxDIND89aZLOQGeKXAphhFO8eySPdAYFckQoFTa/ehIQlQBU5hxZ3nQvdcYdFHaSq6XMO/C78t2QxO8MdGCKH4OergLDTwSR8giAhwsDU5h3kvf0PSwWTufPMerDNHAuBOSCG0cjXS9yejRkbQ9OV7WXfPxwhkkbPU9LrrRSR3PpcPi8Pyj+2WnAnVqtGk5x3YQwNY9t4cAFaNXkiLZ9tz16hHqNmhAZt+XMvexXs4VWjBT4AXM5JDQfL28XEMqtineNmhI9ClQdR1kRfVv+vnifiOb8P/yXEI1YKlVyqFQ+PJzYghxukk2PEFoV2Pg3MTYBKWtnu7G20H3U9+SjbfdRmOXfHR8KGWKLjxV6FQB2ugHyZZu0F8+8YAdJnU55zj+J/BNXvyr0X53ChURUEXBm9P7Un16i0pr9TDImwY+Ogxvx+FOQV8cc8YNE1Q4bE7Ob7gOwxDoGkaLV68kxWjFrH2q9U8MvMlat9cjcRV+3DrksqdGrB3/h4kEBofxpH1h6ncrMo/ZlMq1ImjQh1TFc6Zlsvq4bMJrhiJz+4gdU8CbV69ixt63s7hVfugrp25L3+D16tTzqGjKgpuw4yGVUWJ0xQgx1CxYEZ1eiUM3Pn+OcdQ/T4ztN691YdvzmtoD0xCVfzRl3fE0AW4VYQQtHj7MbKahXAqQaXWUybhYcq2Y9RtV5OohtWIb12LqJpx/LxkGScNBZuig4CguEiO/7oDTYBHB59QsQqJT0oMKfDTDEQRx48h4PTOa8NuLWkZHkbV1ufZJb4SuGZL/nVY98cOHu/6Bpq0ECPjOaUcIECJIe2EF4vqjyegZJE76L1neH/QV3xU24dEIcCVSlT16nSf3pugmGAKcnKY3GIg9tBA5n2wiMwEkxd1/ohFRMUEUuD1sHjYXNZNWcWjk5+hzm3XXdHPNmbt6/jcXvb/uoctv+1j+7SVVOtQBwAtOBQAxR5z1rr6jRPwDze5fr6s/RSBmgLoZHvMVPnTPD4AFgXcBigoxQ7hrHOk4wOsWnUzil5A+fx3qBRUiDRATzmEpmiEv7m6uNypP/az4a1JCEBVDPxUD55eQzh5uIAAo5BUw0Ha4VQyT6QRER/Njhm/4w1yl+rr0DufUT6wkOS00CInr+n2jbKaNujn16dy4yv/QQuwU+LSNtAl/DH5N2oWrfuuCK5ye3LVjvzQvpME+gKIJQZ/4aBFo1bkGmmoUsWCld3bj/LUDy/wwMSncHsM3G6doLBgDqaFcDgjCKna6DK5D1U7NMEvPBChKNTvUJ9gmyTIKomwgSvPw+jEjxmd+DG/jFuOx+lmzy//PSK6M2G1WomuU57HZvcrc65m27oM3PkeXgQ+w9wtARh8zIye8/PzY8jxsdzVpzPDT47lxvbxBLmymX7jK6Xa8WTl4MsvKHVMup3kvtmEvDFdio/Zb3gRQ6rkpEehu1yonrWE1jtBcMSkkjIh/pRrWo34NnWQhuTU2n34XB6sNgv+3nysQsfiLeTAzFUICUpRFE3L9x7GJ03XhhQCmyrw1wwsGkXkowACTYUbe7UnKCYYoVzZCZ7k/KQ7V7PH8/8zCk85uU6tRV21OjGRIbiUXE4YO4ofio0fa83rO4YTUycORVGIqFGOHUlhZOaprE+N59GFbxHdrCZpB5Jxpufx1BdPUt7PR0U/H1a8xTuvkTWiGFCtP58+MP6/9llbvtyZRk/ewl0fPYnF38a9k82ceEVVqXV7Qx757DnKNamIV9pwSmvR7xr0ImfpuyfGMeTEOIaf/IThJ8dSu5xK0LFTLO3xcXEfvoJCkuYtw5ubX6pv38rBcOxHZKE5udKsdpL150g9ae78KgWHUdw6ilPHs+ZzwNxRSdx4gBm3vo5d0bGoBmnzfiHYaoZ2+hdlDgbG+GHBjV+0/xW9fpcTF7In13D1QorTsaAGkbEh9On9FBGV/HBLJ5EVA4ioEkWFRpXpvXQAfVe8RUREBKsTq7EmxVSXvP7JW6nYsib172+JxWFFHk8i2CqJskt2z99DtZuqo2gKVquVcV3Gsvrr1ecezBWEf1QwHcf14I6Pu5O6JwGAzVNMgYl7xz1JaHwk1ogAvFKQ5FTJKVTxGgpeQ8GjKww+Ng6fAafTyr0ouAwFHQW/kAvfy7ZG9+P/zlFsdTqi1boJGdzCjArzmvYqZ/lCMqdPpkJ0Do4wk9tk75z1HFqyjfD4CCJrxCINA4vdSqjVh1XRseLD63QjisLBbXaVFw58hsdQMKSCEILgelUIrVsZry6IalKdF/d8wiuHJnBDjzto1LUZQTEhl/9inwfX5ib/PlzXoDoPPt4Br+EikyQqBVYnNjYam3RgF34YZxCGPt33P+w4PJ06A15BsVmo99UEXv51IEExwQD80nMClRqUIzAujIMr93F6beDRISGhgJnPz+DQukPUvLkO5etXPNtwLjs0m4W6HRrw6IgH+DBhPD0nPQVA0tYjfN/lfdL2nCxT54ceX/BRkwH8/vFC3q7UtzhqO8utoktRFOlQkjHr8RbxDWKuK8yE93PfC5Ue74MsfzMxYafw5QagF9opGHEb+R/djWt8CK5xpg3JO5FqJscLAAWfAeW73o4IDuaI046ZgALj2w5ldLWerBk8newjyXxR+xlWv2dGnmQezyCjQFCldTQSk1PMT9ExMJDSYP+8jUxu8zpbJv3M6XR8UNCloFLzMirElxVXuz25ah0cTW6oQy21ChXVWGwoPNDjVlI5QoHIwYcPR4RKfLOqxNQuxxt7RvLqdpNbouMvn9Piq5G0et704p86lE6+V2BxWNHsVmKb1UA3IM1Nqd9/3dvqoagKVZpfuXynywn/4EBOM3mfTrg5185OXLNaAIRUji4+Zrg9rO/8NFue6ofh9eHKNBcjhT90xxqYiZq/sVQbPiOUhP21QTcQ+4cRUjUJu9WJd8dnAFj97dw3/WWaPHMbPz42mjmPj2HGzf3RHBYQFEk96lS7pwWqqYlC094daNK1LaqfwwwGlVDlrhbcPuVlvLrAUK08s2ooEbXL8cyaIdzarxP9N7yLol35nDHdUM77dw1XHyLKhxW9EoRFBzF31QSe6H4vhSIHAx1FKDiC/egy9inePjqWKjfV4YFNX2O5rwfP7zV/52pIEOVuqmeGKAbYTzdn7uvZNUYnfkzjzmZ0wbHNx/7xz/hn1Ol0Pa/sHEWVVrXKnOv1Y396//xyMYloye5BWfhHBgMSR0RQ8bGURb9w8IOJJMxexI5xP5G0xiSdV1QD1SJxbRxHzu79bHj4BeKeeYqGc2eg+vnBTfNLGt7/MrozGYD0XcfNUQjTuRncpA6WCH+kpFjdKifZiRs7Gz+Y+fcuzD+Ma7bk34k7+96Cbhe8s+B5NE1l+KgBfPLpIOKIplePh4rLRdeKI7RCOAAv7BvPC3vNzYhdC7exe9UhMlNM4t+7xz+DISWFRY6AXt/1Ia5OOdwF5q6gM6u0M/GfRNXbGhJVtyIPTn+ByJpx9PhtEACKpmELtNN/3TBUq0q+4SDLsBYtREQx38bg4+N4+8Q43jv+Mfe8/wBVqgVRLcxL2o4jF+zb+d0AcofegnSbu9mWh5bh9jjITonCl59PgG8aFe/aRvD/sXfe8VEUbxj/zu5eS+8JSSD03qUJUkQE5Ac2LChgF7EBImBHsCJYABUVFUXsgogIIk1QqdJ775De25Xdnd8fe0mIgA0Q0Dx8jtzN7s7O7N2+O/PO+z4PI0qPuWTENVz74SCqtq/H1M5P8E6DezE8PqQ00RSJokicwQFomKgYuJxWO2/+9nHaPnw1N81+nD7TH+X6GY9z787JXPvxiFJOn3OJirHJvwtBwQE89eJAXGooTiWMhMQYpk1/CZ/0IqTCml+3cuxwOobfOzil5wt8OeJbAmvEs3vAAArS05hxy3jG17qXY9uPUZSei6fAQ0GBF68BXsN6rgt/WljyzhRumzqw1ClyrpC6cT/pWw+RseMIY6o/wJjqD5Cy4wgAIfFhIGD5O4sAKPRZuW1FporbFHhNwSO7x5em8hVJBR8aXsPv4JCSZ38nnbZ2n850mfIIru6PAhIC47B3uht7+zuQGRoy3YF77Uc0fKA3bV+5H12CbkCLd58lvnt7rprxFELVKHFIuKKCkdKK4PWzmLH908X4CorIcKt4cVK85iABqkmAKrFp1neBUDAMiSPISWzDKoRHBaL4Be9VIbj0ga6n7MOZwoVsT/60NRZCqMAa4KiUsqcQYhzQC/ACe4HbpZQ5JznuAJCPxW6jSylb/HafvwMrn8kKB9QUhcYt6rD/0Cp++XYDowa/zRXtO5Tuaw9wlL4PjAwjMDKsrB5VII6TSLrxkyEnPd8dU+5iyZIlBEUEnYnm/yMYe+SP8+EBmg3sSbOBPcuVCZtGWKumOCtFs2zEWxxZtI6es19E2b8IRSnLy9rzxkfkbtyK4+buNJ39FYqmIdt/jZh1MUgwfx6EbHgXQrGcDu82uAdpWCGdwcUZFGzbTYTDGpwV+kBzOrD8E5K611rf4QMbx5/Q5nt3Ti59f+vsJ/7ilTl9nO+eywr8dXS4sjnvj5xJzSZVGDf7IQDGvzGaiNx3CQkIxvabwavu9uBwOmn/8NWlZXuW7UL36kgpCYgMZvCuN3mmzdN4ivMYv/cVAC4bdDn56fk06dmM8x2V61ZDAh5T4FDg2UMnasYDXDf7mRPKoju3w5ORRWCjhqy4Yxzh9ZJw3tMeNCuNUJXFrBn8LLKokE0PPcfFM99BmiZZB2yEmdZDnCwTqViOoqZ3dye4SjRFx1LZPeFTbKpC5SsvZ/v7FqfHvm9+QUpLT8kn/1ky6NNFhT35d2Lg870Z+Hx5paRmHetQu1MSzz/+IUfSMxj63E0A/HjFXZi5eXSY9yE2P3FxtYtrUb97Yxp0bwxAXONqDN3z1gnnGb7oUfau3EODy89iuPKfRFKbWtz5/eMn3fbMnvGMSByExwC7Yi2+mL+RalQUhTb92rH1pY+QhsmKFz/nys+s+vK27mLvhPep/ch9BNZIKj1GbnsPFYE0fFa4uKqSrgwkb996oqRE5C7CJhTwgDdlJ/a4OjiCXcQ2q8anlz5KYVo+qmpSsO8IIaoHu62MjL1K58YcW7qJ9hMeBCCmXmVi6lU+49ftTKHClvz7sHPbforNXAQKoQEhXNL6aqpoTS2lnsBEFj45nQMr9nDbR/cQVjmSyq1q4d36OUIIdtzYnyxvc0CghIRyzcwnmD9vAdInS6NKq16cxIEVB5FA5+FdyE3JJfQcOzia3HIpVS6pT3iNOGYNs0QLitLyoS50e/p6uj19Pcs/+pE5T35NiseOU1dKI9YFBpqm4ZEgzDIeH4+0xOJv/ezP8XHZG12N/cWry5W5NzxtycTu+hFx0S04j22gw30tCex+AyFJ1iLx3vkb6Dr0CgrzvdS7ohnxTZKYO+JDts9YBVi2pdGA/5GzPxWbqlncQ4BdMUv5HzUBhvRHbBQWsODRDyHXjcOu4LGYEyjKKiQoKvhvX+M/gwvZnvwVd/NgYDtQskS3AHhMSqkLIV4CHgMeOcWxl0opM/5+M0+OFr2bc2x/Om8strzyMTFR9LqlE8EBwbwx9iumT1nEdXdYMkBbXniH1G8X4EyKp90XZRP/e2YOPdPNuiBg+AwOr95N5ZY1T1h1MLw6ik2l0ctPAuCbMpeCw2nYQ4MwlGKkYUM6LH33w5/MRBGg57dH0ax6lIiGGA5/aky+iZG3Gy3MWiGWlj4jdsVERxBczWIYFwJsikHmzgPY8YJDQ/sTfCDnAlKK895zWYG/jpCIIGYeeu2E8pHT7mbSax9wUegtbCi0HrTrnpxA9sKfQVW5bNkXpfs+tPRJLKGfElJRhVGrny1Xn6qq9H6hvNLA+Yzfc5RmH0wnJD4C1VYWNSWlJHntHqLqVqb6vbcA0H7Cg4RUi2fNxoXgdYAwsV/6Io7PRpK9cTfuo1kc/noe3mOpHPlsFmEXPUKNvi1RNJ0AZ1hp3TW6XYTp08n6bj75GzcRmhiIwEAIH6mrt+MzLRvU7tU7Trvfe1fvZdeS7VwxoieGbiAUcVaIYSvsyb8X+VkF5BUXkJBQPo981ZKtqKh89Np3DH3uJnxFHozsHBQBx75fTNKN1oKDqRtc/eKNBEb+/iDWGew8L5wbfwbP7BnLyJojME2J8jtO004v3cmGt76jyxtlufR5m3eQv3UXmWu28NOj71Pj2g7UuK49wr8o4t79LYW5tdn35jQajR9JjbhohBB4G4yFzf7ojfktMG5KQ7W5WD32S9xZ+dhUsKvW2ERTTUuO0o/kpesAhU3jphA/45WzdFXODCpsyb8T1/UYgk94SDSrEh0eQZLWzE9WbOBxmwRFBRMUFcznd0+mIM9L33cuI2/jF9hsJoczg7lj3XPMGTqVbbPXsW3Wr4RUDqFm1QA8aTl4TNi34qDFEibBm+ljdPORdB3aje7DepyzPgtFIaJmJQDuX/EcRVkFxNYrL7vc9pZLkYpgzmMz/JEoJe4Ba/z1zIEyURspJdsWbmb7no3sfHMWdS+p/4dt0A9swDi8CXu7foiSZ78OSAERlmJV9qwvkLpO7N33lx730/MzKEjNYeDal0tV9nqMvY3KTauyM/sgzqhALh50FVPq34WKtfrvNlU0VWKa1vcghIldgOa3S4U5BQhhw4VJ24d78eMrc1n+3hK6Ptrrr13Yv4AL3Z78qZYLIRKB/wGlpApSyvlSliZ/rQT+ccHvJz+4k0lLHi036LTZNV4e/TGHd6fy3INTSssPLliDEFB4KJXigmKKC4rJPJDO691eYvuCzQCk7U3lwJr9/3Q3zgk2fv4LX9zyOmumLilXnnckg7ebPMj8oe+XltW/owdXTH8WR1iQJUtnqqj+AYBXOijW7RSnZlK47yApcxfzc+c+ZDhHIz3BYI9CDa1TWteVnz3CJSP7EGT3ERwfSVj96rgBjw69107j+96jcOPA7VHI2fbHoannChdyXloFTg7dZ7Bn6wHSUjPLlScfTfUnZwh8PkvaNWOv5a/VTdi9Yjepe9M4sGov026fTFG2xVuTn5aHfrYJb88hDq/ezeTOo1j4zFflynfPXcvXfV9h0WNTS8sSL21OSNU4lJAEhNONcHoxD6+mcN9BVAwkkt3j3uHIZ7NIvPkqQi5qxq9DPmT14E8BKD58lCXterOk7TV4fT48h48idJ30OYupFFxApaBiWo2+nbZ9GtCoiZ2alzY/rb5JKXnz6gksGL+Aua/M4aHKQ3mi0ZOnVefvn6/ClvzbsGvVPjon9aFhra4sWbyytNw0TYopxouXbjdZLP6a00aaL5ysYgdff7qDp5Pu5+NbXufVDs8yqZc1qd67cg9LJi0qTce6UOF0Ohl7ZCLPH3n9lM4NgBo9WtF79jMERJalvSVc/z+af/gqwc0ak7PzMBkb9uBZ/xmoOti8aEExbHnyVdyHj7L1kTH+FWpJobMzpiowFSBd95OVQ+vh1xEQHUZQbDCaMHBEhNJy/DC8OkiHE8Prw/AnqaRuzzxFS88vVIxN/n2o6qtMS9GUSIIY88UDJJs7cRvFqKhIJNe+0o+hy0fR8pYOxNaIIuniOqzzNmXJgZp46rRBVVVa3dOVml2bUKubpXYr3V6EENj806cSvsEjGw4BsOvnXeequycgODbsBOdGCdr168RzByfgLTWLZcpMx0MIQUx8CJgm6Rv3IktCtIC8LTs4/PHXSN0od0zR1BvwzB6Omba3tCwzdhy7VzakwGyFeXgmVbqvpMaNazCmlzlMrpx8L9dMeQB7oIPFj3/E2ne+B2DVM9Msvo7sXH9LDX/KrWTwrncwNQemVJBCYKKQ0Kompj+6o8aVJYovgja3tufSoVfQqn+7v3IZ/xYuZHvyZyM4xgMjgFMtI9wBfHGKbRKYL4SQwDtSysmn2O8vw9ANjhxJJiExDk0r60oumZgIfHhLy+o+cg/Lh71OSPXKjKk/jGJDoWazBDK3H2Hm3W9z6P6uLHlrKYbX4KkNzxF8lsN+zjWS2tWl1uWNqd6xvBfz0PKdmIYka1/qSY/TQ7qj5sxHafUkRYf2I0zDyjIzDNb0f4iAalXQgoMQEa3YtPAWEm/oSdxx3B9xTWsQ27gauUuWYXq9SCmRhg0DmHf9KHymwKZITAkxbRufxSvw9yG5sJmFK3ByvHPvx4z6dDz2ADtHM1aVlndvfT8DHu5BLtnYbFbqQ7Mn7mTW9c8RUi+JD2+YgMcU1GmZROqGA7x96Wi6v9yfLx/6jMQmVRg05+FTnfKCRmhiJHGNqlDl4vJKAXnJ2ZgSFMdJ0kQML960SIRDgQ/+h15wKapCadpa3aeHRJ6nnwABAABJREFUoJsKm556E0VouALtuDOzWX/zvXh9dkBjZf+HME0BisTUTYQmsMdFodo0ts9cBQjqHTpGUK1q5U5tGga/3vcsAQmxNBp5L4c/n409IozYru1PaObSyT+iCqtNi16Zi1Bs2E7WnzOACnvy78SOlfsIt4VSKTyGxMplERyP3DqRcBFEAR6ifz3ImOr3E9e2PrFdO2KkpJG9aC85Po3VC3Zhx8RITmdU0v24hR1TN6nWugZJF1U9dx07izi28QA/vjiTbs/2IapWpdLy7P2prH79O9oMuZJQ/3199aLXcIQF4X69GvjsoBrYa3RDjZpD0ZE03DsOk7F8LYW79nHg3c+IvWIsNboZgIFms4hL7YEu+v40loKDyfzS/ymkaZK5eT86NnyFButf/RLDsPLhTZvjZE0+r1BhS/6dCCUQIQSaJvB5DG66+SrWrN5C5v58jpv6cOnwK7l0+JUA3LP8pXJ1LJ/yE+vnbqbBtW3ADvf+Oo7Fr87ku9cWYwsue7bd/uFdLJwwn8sevPwf6duZgKIofolna/5wKsdpdIOq2FavpNrlzctxEu57Yyp5m3cQ1KAeKZsOUrVHG2zhQWgyCwLAjKxKSYxqeOcuuI9lENysCbh/RFVMyDOQWtnieEz9yhRn5zOz38scXnOQMLuHqMQQFOFBYALWQplDBSkNFIdVe5/pI5h+ywQUJA1uvIRLHr6axU9/jDsjnx6vDoBXy/rSecgVZ/ISnhQXuj35QweHEKInkCalXCuE6HSS7U9gBe18cooq2kkpjwkhYoAFQogdUsqfTlLPAGAAQGxsLEuWLAGgoKCg9P3xkKZk35ZD5BuFREdHkJBYNoDoP/AyBAITk6/e+RTNacOUEPpoLxRNpXaXAkqcfTW6JmATkEkeDYdYOfFrNq05qRLHqdpyrnC67YnoU4etx3bBsTJPrRlhUOWpLgREhZy0bjO2GzK8PSLdwH1wEcYd1k0mI0Mouvd6vMFBSFPy68H90LIOqUf2E7jExCgqpvjQMVAEQbWrk9/cSk2ZM/l9Au+7xKojKIQwbwPMYssxtXTp0r/Vr7P+PckLOy+tAidCSsmBrUdJdFaiced6peVFBW6CswKxoWJD49Wa95LvUzEVlaSaCTgjw/GYaXhNhc2rDqEgiHXC9IesyIOcY6eWIrvQERIfwa3fnJiV2KRvR1xhQdTochIHpeYgcPB0zOQ1CG8O5py1lhSZVIjo2pHYrh1YdtdoizgUiSjOZ9e4d3DrdvBL1boPpqFLJxhQaKq4KsXTdNxQDs7+GYu1XJCy9QA1f+PgyN28m9z128lZt53K13dl78QPEHZ7OQdHcXYeGduPUDR7Dy7/09GlwKhD48/UZTsRFfbkX4mD244RZkaiZYVxcG0aNWtVBWDHzF0kqGH4pIG9uBgpFPb9vJNDNoUI1c1FvVuy/KsNFBsCLxqFhsWMZ0oDhCCu7sllE/8NOLxqN0d+3cOxjQfKOTiWv/IN+xesJzg+grbDLAU3V3QYAI7+P+OZ3BipujAO/4rnWAqKpbvGpqHPoaqCqE4XE9q0AcsGT8JRKYaLZ1j1piz8GYQg9tK2qJ4c3Ll55H/xDeEOO3aXJKFDEw5vPUT2pgPcsfGdf/py/HVU2JJ/JbQoG0aGD9OE4LAAJk15Dp9X59qk4cRXP1GePWXRClwxEYQ2KouebtW/HUIVJLWqTuqGTBRVocvw3nQZXp4jKCgiiKtHX3vW+3Sm8Wc5B0OrxdHp9j7lymqNuJf8HXvI2JXMhle+wJdfRIMbGyClB0yQ26aybbab9O8XkdjvWmo8XcIx1AdTucMvbKLi2zgGW5NHAfik4wikzyBQNQlQfex+6yvCHRZBepBmRY80vP9qtk6eTef3rHFUdN1E7l09rlzbOo/u9/cvyuniArcnfyaCox1wpRCiB+AEQoQQH0sp+wkhbgV6ApfJ4+N9joOU8pj/b5oQYibQCjjBweGP7JgM0KJFC9mpUycAlixZQsn745Gbls+7/Wfwq3czz40fXrrPnm1HeHHkZziFRo5ewPWVXWS6NQwUAl0KgdJNwyHXsPTlOWQWAQiCFROfkAQH2qjcvDqXDup/0gtxqracK5yL9kizPTLnMMa2b1n00A9oQiCR+O68gu4DbkcIwdxWN6NJic0mCUxKoHadOqwd9RoO7Ahh0mbOeywd/iaqAnbNh0RBYNJh2TfsnfQROas30PSdF1Gdf4+D4+xfF4F5Ad/0FTgR0pSkHMqitqhFytxiMpNziKwUxrIfNhGlBaMKherEW3naPok0JdmHs9FMneh68SRvTcb0++YLDajUpBLpO9K56ulr/vDc/zbYXHYaXHfxKbdr1S6CapaSjM+4CUv1XefIdyuoM/ROwhvVImv9VlyaD5+pkrFkNfaqSbj3HLN04sMiMbJK5Ks1PIfSWHLdI5QpvEjUwAC+aXU71XpfSpNHLB6QsCZ1iLq0Nb58N4W79wMC6S2L8ju0eB0LBk8m+J625O1LxY6CKQR25aSPtjOICnvyb4KqBoOU3HXrfdTvU58ZnywlJc1Kb+iWMAhhGmiKgs+UFPlAwST6oqq0690Ks6CAGa8vpVAXqEIigWKfglAgSDOp1bEujsDzk5vqTKDlHZ1JurgOsQ3Kh6OH16jEnh82UKXDiTwjZsZBfOmRKA4P3s/7g9kIVQFd11FsgtqP3U9RRgHrR7+LXVGwFXvwZmWzvPedGMUCgSToi2pWVBhgouCymyhSEndxA6IeG0VUqOUEP5US3Z/F0PjBAIxY+hhT7v6A7kO70fzK00unK48KW/JvxHurnmHhF6u49t5LS8tsdo2Zh16mZfitNAnsy0Y/P1jGum1sfcJPaL5yeun+UdVi+N+o3thd9n+28ecYpm7w40vfkNi8GnWuKH+vZew4gregmPgWtQisXoWIvCJ8hW6q9rwYz3s1ENIFdh/2JneRPuwWDFPh2Jwl1LjXmiNmrVyH02OgaQLyTMjcXFp3SFIMuXuSEQIModJ8zIMs6fuUX1fFWmLf8ubXAKT+vJbY5mdX8vXv4cK2J38YeyKlfExKmSilrAr0ARb7nRvdsUhFr5RSFp3sWCFEoBAiuOQ90BXYciYafnR3KnqhQlPZjG9GList/+bdpbiEDVUoOHGhm2AXOnUvb8T179zNlVMGMfPZuWQUglOADROfECAV3B6DiJg/1lz/L0MoKkpEVWyXDMJnKngMzZJsNQX7P7HUDExDYpgGmnSjH95L7q5DmFJDomBKFWlKdKnhNVSKUFBUQf1XR2KaJpve/Z5Dm5LJ3bzzHPf01LBkppTffVXgwsD69RtQlSBs9lAq31AJd6LKMZGF2+MjJyOPp/tPptiwVFGkAqnFkt35xdw9ZzgPrh1Ljf6Xk7I1BZsCdiGxIfGasH99MgHSQ1SV8HPdxfMSUjdY+b/+fucGgEA3Bb/c9jR7PpqDJktCOQUIQc7uYxhSRTdVfFmFlERzWPvI0ldscC5xwbkYKZlIn07mht2l5xRC0PylobSe9Dgxl7YFRaCFWfn9S/o9xbphr6AabhQhsWGiqQZOxeQ05zR/fC34fXtSgbMHIUR3IcROIcQeIcSjZ6RSiyGOqR99yUdffYmUkoRaMQCYpiQPg94je/DV4ZdZZgtgYSrMmb+HJn0upnKXpviyinAIiUsTuFSJplq/dmdsOE2ubXVGmni+QtFU4hpVKSP086PtQ1dy/5aJJLY6cRJgq9eRoCcW47j2WZRuL2EiMEyBFCo1Hx9MpZ6XsWfaXJACnynwZWeT/tOveAvBMDV0U8NZKQZdWmoGRVJgCwui5YLP2DNjERl5TjLyT56eUnAwmSW97mf3O19ien0c+OAr8neenDtsbMdnEH479cu0ZaTsTOH7l+ed9jU7HhVjk38nwqODuf6BLqiqWq5cUS0NehWF5Ys2AVCQ68OQVrrG9iXbmXD5C2QcTuWF5k/w5hVjAfAWeZnc581/dYRpCfJTclgzZTHL3ih/r0kpmd5nLF/3fQWfP2rcHhJA/Tt6EBATDkFxoBqgWLwcSkQ0XsNGUVo+e6d9zb53PmHzw8+xbfl9KN0XImr2Rms3qbT+G2aP5u7tk6nRJJYg1YvmtGMGhWNKQaUrOrF9zkpMVEwU9GIv5yMudHtyOq17A4uTY4EQYoMQ4m0AIUS8EGKuf59Y4BchxEZgNTBHSnlaFv3QoUOoajC3Dr6Nvq9dSXaQl335yXjcXnKzC/j6nR/J1QvI9/l4ZNrtfHrUw4/pgunfbaN6xwY44iKwC3AooKigqaAKiapIIupX4YqXykdvPFVlEE9VGcSigePI2ptCUda505k/n7DutiFIVOsG8P89umQ9qx56GVtUBHbVwETFZ6jsn/wpEg1DgiEFC654EN0UeA2F4qIAsgpcpG3Yx9IHxmKFmGuEX9TohHNKKVn/6GtsfckiQNWLitELCk/YrwSHNh5iRLWH+fzhzwAwDOOU+/5VmFL87qsCFwZ69+5LyQz29TffJ9fIJr5KNEGhLgJDA7A7NESYg5rNqvB93iQ26A4OuBVua/Us9kAn3z7zLZpiSZNqKtg0UIVlV7q82J+E5tVLz/Xpfe/yVJVBZO5LZte8tRi+fy8B6R+h8OARfDl5fvJWkFgSb/mH0pBSoAYEYj2eDJCmf2JgIbp7K/A7NoLjQrCrJiE14lE0hZxCFwVuF1Wvv4yOH4+m49SRmEWFFK1fRdacWWzpfhk7rr0cRZF0+mU6l8z9EIDcbfsRCIIDVSLqJHL7mvEEqCXqTpLsPcfO6vWosCX/PIQQKvAmcAVQH7hJCPHH1Pp/XDEg8JGN4Sxgc/5ndLrCilhakPw6vxRMRs/zMe/9Xxj60k3k4iXbdDPuinG82P5FdAlGiXtPCISw1vtyCrzU69Wi9DQLJs3hqSqDSN56hBWvfk3ypgOn3fTzGdrvcOCo0dWwt76TRU8vxGtoeAwNU6psffEDpGmiBgVgSgOH5sWUgp0vTcKQmuW4lrDkysGAwETgLg4k7ZjJD50HsuX5D6HUSoEnO7/ceY9+uxhvagZ73ptB5rrNHHj3M3a/9l65fYoy85jR91UKDqYSaLPC03s92pOOd3fk7g/uOrMXiYqxyb8R6YcyefP5j1i0YFm58vffmoEHD0UUcHFna8yc1Kkx2cE1SfNE8Hn/N9i7JYWXWj2LUejBcyiZ0Un3k3kwgz2/7GLJW4vORXf+UYQmRtJn2iCufWtAuXK92Iun0IvicmI7SVSLUvNufNkhSFdjfKvfw73/IJowAJODk6Zx+KMZJPTpRZU7b2TFHe+wapId4ThRWrfqlRfjcEHupm3YXZaD6sCcFez9bCmmCaYJzR+95az0/UzgQrYnf0UmFinlEmCJ/33NU+xzDOjhf78PaHJaLfwNqlVrAMC69Rvpf+8gLqnXBTzWykhIWCCJ1WMICnfx/k8W4/206rHc0u4ZcvM8fPTgVNbNWGflFQG129XG5rIREuxg2fR1pGw8xDPtn+TyPu0JjgslyyjyD6xNDv60i5BGMax+Zz6dHrvw8tPOJKSUFO3ZDwQiAMM/+cjecRBZVIywaUTYfXiNkgGJwGcqKCiglOjLW6ktJbfH7ne+wZQmJT63vP3H2PvJPBoN7YstyAVA8dE00hevREpIvPoytj36Ir68AtrP/wjxG882wIQrxiFRWP3ZCo5uT+bg+oMM/OQe6nc+vTHshS6dVIEyrFz5I5Uq1QAUiowU6raL5e13xpRu/zHrLQ5vPMiin5ex6atPyc4rwoeJD5Mh8YP9P2ZBSGwISY0SadCtIV8/+iVCwpcPfUpc1UgOLNtBuweuYPt31grL1z1GogjY1LI+13300Lnp+DmC9PrY99rbVL3vDoq91j0k/C4OXSrYDB+KMPEVgy40inQ7ltPTR7BNR2BS86oupM/7FaGAOy0TiUqTJ+4iomldjsxahF5YjOZ0ENHAci5lfDiBvHkzcXXoBQikx4vv2EHUWmV2oMXYQez/YgGtX3uIZWtWYw9y0f7xa1k/8Vv0Yi+FaTmE14w/O9ekwp6cK7QC9vjHKQghPgeuAradTqVRUdFkZKSjaXaWrfqmXFpD4bEM5t81lhk/WY75x78ZWLotZUuy9UZAcLADe3gQbrdOQKggZ08Oem4xP02az+5vf6Xb8zfx05h5CECVBtvf+571k+dz3463T6fpFzRyt+xAP3QEsMYLhlTxFflYfO0wPJm5OFQvoIBfAc5nChRUQOJOy6HEEoE/FcXtQ0GCsKIuVgx6hdRfNtLo4Zup2c/iHqt5zw3k7jxASIPa7H3lPUCQt6WM0yzl1x3MumU8XkNgkwo+JEJIvrprEv0+PfO2v8KW/Dsx4db3eXPVxwQGBnAkvUyR6YOX5qIJDS8m4+o8gPRJvA4XcbXjUINNwpwa2YcK8CDwoGJ4DZwKSL8SU93LTt+feyEgqW2dE8psAQ6u/3IEDv/84rfQarfDt3URImcVxq6FfmczaBiowQE0enYY7uxi1g4bj6YY+PnnOfrxl+yeZC2qVh12N3ve/BihG+wZ9yahikq+2oQaA3rRaOCVTG31II7woLPW79PFhW5PLriWx8WVEGwJPHouUfVh2eH3cQU4EELw5ZYXePm9W+kdOYQbYoeSdiyr9Nh1M9aVHIrLLti5fC/r5m0jLaMYuwKqAu5jhSx/cx6/TJjLkie/8wcUCvK9CqYUNOvf8R/v8/mCzKXL2fPSRKSU6EbJmoZAQSAlePL9mUqGQYHbYRlRaWJIizFYAlIcr1VtaT2XhJc7VIO44FziYnXWPDaJgzOXsvX1MnGegMRYIto2x1WtMu70dDyp6ZjFbvhNOGtRei5Ln/mcAFUSqJm4MFBtlgNE0U50hPwdnI50khCishDiRyHEdiHEViHEYH95hBBigRBit/9v+HHHPOYPo94phOh2XPlFQojN/m0TxekmCf/HEBMTg2UGTapVq8LE158pt33fzJ/5rPezGLrBTzPW8OA4i5yqfomKgRAgTLScAjYs3MEnw6ejSNAUK5Jj4XNfs/yNH1j6dlngmtcUFOsKlZqf1Ef8r0bhvoMc+uoHNjz4BG7DgW4KfCZ0mveGxeVjWtdNVUFKlZJUFNDwmDY8po2Y1g2pflUbQh3FWM4PlZSllm1PvOoyqt7cs9w5gzp2J7DdZUTfNoCak9+lyqjncNaqz+q+97FhyChMr5eELq245N0n0AuK8Wbn82Wre8hctp5bV73GTYtfILHt2R0Ino4MW4U9+dtIAA4f9/mIv+y0kJlpSUgbhpfExHg+/3QWdWt1YsOGbez8eC7uw0eRwlo6WTtzI4tS3mBZ3rtgL3k2GkQEKqQdzCQvNY+MXVmo/vHJwdV7ydybSvLWgwCl45MCn4pxioH6fwW7n5sAqKXxFrq0YZgqRRm5GG4fdlX6pSFlqWPaWmgpS5MDEP5VWuu9JDKgkKgoFVdsBAiBI6JslVaxabQYP4K6915PwrXdAQht2gApJfN7DuGXu59DkQY2YeLUdIJUg0BVUpCSc9auw+nKOlbYk/MPuZmFtA5tygO334FhlMlER2S5qKlGUU1E48RAU018xT7S9qRRlJ7HJfddjlBLxscSr6lQaICqCEJsOtVbVj/5Cf8jiG9WncjjyIyPh1ajFcHDvsM5dC1Lv43FZyp4DYEaEU6dp4cR0boZ2yZ+gpVeq2DoBpnrtrP3rU/x6ja8uo1dY97F0MGUcNzXRpMHr+XIpzOpEZBCu1tanvT85wsuZHvylyI4zgccPbobVQ3Fomlx8+LYx9COm7Rm7zzE972fxucLwOsTJNWIY8CTV1GtXjwb3/uZg+sPAJLYxHD27csGFLYv2UGAvwohoMU9XQiOCuG70TMpeej5pD8d4z8cVr75sbGAIKB2TfI9LgxpDQ+qPnQD+wpy/d4yAw2QSLI9DsAOmITY3CAETd97hhW3P4uQkpjW9chbuxWhKDiqVqboaBpFXgNHdAwNHryB7e98Tc3+Pcq1ocV4i2348BezS8tKfuNHlqxnyZMfY+/ThL0fr0BRVCQChw2GzBp8xq6DxFJ9OA3owMNSynV+jpq1QogFwG3AIinlGH8++KPAI/6w6T5AAyAeWCiEqC2lNIC3sNSHVgJzge7A96fTuP8erCdPRkYadrud/jcN4vvvl7B81TfsGDOZ6kGSXATuAi/bvt/BqqIpALx100R2Lt1FmCqJqBFL+rY0qzrFT6qtSFzRITS+qS0/TVxISTJGkaGhCgiMPjGc8d+MzLXbKdGoz968DxOLLFECwZHhGKblyNClDyEtZ4d1q2hY1H9lqSpxnVqRtXAJVtKZSebOQ6c8r7NOQ5x1LHJCLSwCqlSzHCwHjuI+kMzaO4bT8uMJAOyY9CXFlZx4itwkr9zJp83vof+WKWfjcpSiwp6cM5xscHQCo+ypFN5OhZdeGl36fsmSJeTmZXDPvdezdfNGgoN1Au+/jGuKNf/E2uTXNasQiuDqD68mdcshJOBUDKJ0zd/IMnJLRUD1dm1JDy6i3nCLj8MeE0Ds4LZWqsV5pPJ2PM6mspkv07+I1ecKZHJGmcNCWhEZprC+0hz/FsMfQar45ehRFFS7DcPthegQxN1dAXBWisYocpOVl4+iafhqViH8kursxcueed8jTRNfRjrS40VxOrBXToIXHiQX+HHBQor/1wQbECVUQmsmkHswHa8/114o4qxcjzNgS6DCnpx3UOw2wolm/qQ1dP9fR5p2rMOT/d8ujZ5GQo4X7AqEdm/EfWP7oqqCJxo9iWJInJrl0ytxiPp0SbPrWp80NaMC5SFCK+PZm0zpdDmjmK3Pv0fc3DeRKBimQYDduq83jn4RUy+bVpuo6IaCQMEnVS6e/Tqrt1o0lGvHzwQCUJeuI+m2G067nSU6H2fSh3ih25MLzsEBEBwcSH5+Pq1aNyUhoRLLfvmVO28bzivjn8IxbQGhjiIEdsDGfS2e57uCNwHofE1LnksaiFODuJx9BAdp7CwKoGlYHptzLeeRXcCKtxfhn6IAEkNCukehkikIrxZ7rrp9TrFt4qeUrKbumbMC3e/wAYUmt1zDvkkf4jHBoVkBFbqhYf28rAmN27QjgNAq8UQ0r0fxtm3krdmIIe04Y8O59IuXKE7JYNNTE6l+x7VEX9yUuPZNkVKSt3A2tth4jr41Cc/+A8Tc0o/KN92OMz6OoLqWFOTsNrdjeLx43S4cQmITJi5//jLiTKsgnF7umZQyGUj2v88XQmzHWjm8Cujk320qVjrYI/7yz6WUHmC/EGIP0EoIcQAIkVKuABBCfARcTcUA4q9BWmSW+Xm5AKxevQGPx8PGMVOJUIqw21VysR4c23/ZwdZfdtPgklpEySJksA+BTkDyXmoHaTg1gxQ9gEK39cDZ8+M2QGIYfoZ+Kcn2KrhUSeM+7c5Zl88Fdr/3NbJJHCDx2CNRvGXc1IqiWHyifu+QbgpMFKpd3Z5j3/4MgE0pifaC9S9OxV3oQFNNFCHJXrkBUzdOiNAyiopw79xGQJPm5YgLY7p2Im/dFhTFQOaVRfnZw4OxBds4+dz3bKHCnpwjHAEqH/c5ETiBbOVUCm+nwmOPvMCG9dt58ukH6dSpE5UrV+WTad/Q++KGHBr+FIYpeHdzLKDhUgyiqu1l0obRfNlxEJkpXsBEFVDkA49UqRaUwYZs674J0ASy1Pln/WbqDmvFnldWUagqjN13fuZyny1ls9xjyay/7j5A0uqbKczrdh8CDTCIat+KY0vXY1cMHKoVcqpIHwV6ICAw8OBQFewuhbrD7mLbi5PRb78M8d5CALqutcLMi1MzcUSEotjKhssH+nXDLCrAjK2De/9B7IGS2jMWl2vbot4jUAOcdJpmRQVm7U/lk+4jUQC7Jrhh69lIJzr9vPgKe3L+QFWDARg+aCQxKZXYPPsoR5LTaUodls5ah9f0kVAlitc/G8brT09ny/wdiGlriE2Mpd9TV2J4dDTFcmpIQPGPhaWUxLVtUO6Z+FSVBwEItXkJsZskXdORbi+cQ4nS8wRr+gzk+GQH3QRPSg7fd74HoWnYFR2kP/UtrQCf5kJ6DIvfJygEI98NgCk1FnQbghjQhVmP3ELJfCpt89GTnnfV3U+Tu2U3LSaPJiA6jKzVG4nr0QlFO3Ha7vF4eKzaCBAw9sAr/PjOElrf0IqQmJDT7P2FbU8uuBQVgPy8PJCwcoWVi/b+e19w9Ggy777zGb69ewmw+bi8kjV4FgKGdRxLVrI1eYlwSgI0KDbsuKWDYJvC/qIQqjSqjE0RqIqVbmEY1sqJAtgEWLmbMCJx0Lnp9DmE6dPZ/9F3mEiwKWSv24eqgCZAkdbqtwSE0NBNBZ8hcOslpSagl7KHO8JCafbYLTjwoCpWiKhe4AHAFRdF63efIfripqXnNnKzyZg0hvQ3X8SXnIyUkDvrcwCi27fEFR2FYRiYXi9CCAJC7ETWTqD2dW1RFdM/aTqzkxXLqyl+9/VnIYSoCjQDVgGxfmNQYhRi/LudKpQ6wf/+t+UV+AtIiK+BXYtg0SIrjeTDj19l5uz3iIqIwaGZKH6ZUJfq4f56B1k46HkAcjftpsSBV2zayfY5SHEHEhQZhE0IHA4VKS0SKbCMrU0RGFKh0FB5NOm/xb/ReOQAnAmV6LhsBp1/eB3DNEv9CNIwSerRBkVAoW4nz+ukSLcRXq0SoQmBBNiK0VSThCssp5A7Mw+BoNirUujV0E1J3q6DJ5wzfepkkl94gOI5jyPNsui7+F6Xc8mPX2FTTWSexSSftWk3uz76AU9eMV5TxW0I3IYga/fZJRj9I3vyV1BhT/4SfgVqCSGqCSHsWKtG355upTu3HUJVnBg65OcX0Lzppfz44494cnUO5oaxPy+MGLvKdUnpXJVUQG/nBgACi44CEruwUjrzDTs+qbEjPw5NVQiJCrZWYf3kbgpWOhdAsamC978V/W/qBpsfehHLsiosvnY4ilCRSIsAXUoMU6CXiDFRshpZorpkTfy8bp2kqzsRFucqJTw2jxszuGIjyzk3AKLuf4yo+x+j5ltTqPHqK1Sb9DFFR1NYe9fD5OzYA8BlM8bSadozFKdlkbvvGAe+/pEHdrxN01s6ccmovmflmpzJsQlU2JNzDv+q/ISJ7/LN/Fm06tiAJq0tJaGJcx7mxoFdeGP2cHauOsD4mUMpwCAfH9NemcuQ+MEY0lJ16/Xc9bTo15aBsx7Ca1h3zGf3T2XBM9N5vfXjFKbnlZ4yWDNRgCM/bT5Jg/578BxN4Xh+Hp+pYUiBr6AYo9iDy25wvJKbz61jShUT1e/cKFF8O05mWjfRhA8waTp6AHM638eWiV+UO2/+zv1gGBz6aj47XpjErjGTyFq14YT2SdPkiWrDLL4gKfn2udnMfn42b/U9fQfqhW5PLkgHR81a1RBCsVb9gNcmPM3wR+7l/Q/GggJ2zSTfH641oM4RrvT9zIH1O/EUFaH68ysNaWBiYHmoVJKaVMJtSLRAO7q0HpEGEh0w/lvjhhOg2DTafz6G1p9PotPSr0jo1d7v0SijvxBCIFD8gwrQHHZq3/Y/HIqJQxHYFRO7Ys30cnYdxgwMxm2oSEy8Xt8pz62FRRA9eCQxg0dS+5PpRF3ZlYQnXii3j6qq1LrrWmr0v4I+qyah2DQa9r8Mh2piU0wC7OYpav+bkH8qLy1KCLHmuNeA31YjhAgCZgBDpJR5v91+/K4nb8WfC7GuwO8jJ9ONqjg4fDiFAwcO06nDlYwaOYbwFo3ZlhFFekwDXKrkhqr5rEpOoLpiEQTWCEknwllA7ZoKqqr7v3sITYqmSAe3x/TbEiuhTgf/yut/EwGVorEFByCEwOl0EhSoIKWJRLL4+mEkXnoRmvBZYeNYD6dKXdsSUrUSqmoVejJKoi1KVCYUFCHQpYqrUtQJ5wztdDlx7QuxH3kNeXQJAN6FI/C8Go6etYNKN15Lwu03A+CqHItHVzAlfnUFFWGzExwfcXYvzB/YE/6ELYEKe/JXIaXUgQeAH4DtwJdSyq2nU6dhGEQZdamk1mPKSwtZNWM9Dp+TyJBIcNjZmx9IUKf2VAk28JoudueGcSDPih51dOhI5dB0QlvWY8D2dxAOG4YJzfu1Jd8rSU8txGv6p++KREf40y3+m/Bk5pC7NwOQ2KPCMYrcKKJk4UXS4J6rEcKyuboh8BqCYsOFXTVxqgYOReBQdOzCRBomuiMYQyoowkAgOfjD8lOeO+jiToRcZnH9uOo3xRYbz7ob76Fw+1423jkMd6blNDWKPSzqMYgl1w1n6wc/8HGjO1G8bupd3/7sXJQzNDaBCntyXsCvyOQlFdNWzJQ5T1HZH0XerH0drutemxEdx/LusOks+GhF6WH1aob7D7eimL957At+mrqCl/83AZuf1kpTJPmpuRRnFfDtU2WT6xyvRp7Phjcm8J/s6XmFtHkLWdnlGlJmfY+IS0T4/wHopoJuKqDrmEWF5LodFPlANyS5xVbaofT/K8kCsIiLTaBEyVESFuAmNrgAs8iDNzufw9+VV8i55OsJJN1xHfWG9CNnzUZKvbR+mKbJzH6v8Ea9+wnUTAL8Ck0te7cgtFIoHe/ocPoX4gK3Jxekg6N2rUY4bTEkJlgkfa++8iZvvvk2efkFHPZVYmtmNBmuWBICVHbnxLEsuTKeKZNxBASQEJZHmDOP63+ayKA972ELC0CrFMbqz1fhkwpF+V40JFKo2P2/pyuevNq6imX//ecQUrMKgVUsMp7ESxoDVgiWScnytPXbKzIcFOguiooFlVrXJyAYXFoxtgCVGoMtgsb1I9+hIMOHpoBNleB2Y+qnlnAN7tgNZ73GqAEBxN33CK5GF/Fzu6v4qd3V7Jho5cfXv683DR/qiyfTitSJqZvIvRsmEOqC0KiAM349DKn87gvIkFK2OO41+fjjhRA2rJv9Eynl1/7iVCFEJf/2SoCf1OGUodRH/O9/W16BPwmfz0cl0YAEtSFPDnyXldPWkqAl0Ll1B0KqxJDsdlG568VoiiS1OIAiw0ae1+KOeGNvVWYcCGNhThL9V75BemAQ+/IFG1ccosSnr2JioqAJ6/HYrHcLK67pP2xLStDx20n+AZig+FAqB6d8hVMz/UMJiYkXoSo0fX009Z64D4fNS0hVy4kRUqcKQlUwjgvXt4WeyEbuqtcApWA/ep4Nz4Zvyfh+DoWLpyFMH+bUNsRU3kXirX4HR3gIOV6HRdro1SjQNWwJ8dgCnWf9WpyOLYEKe/J3IaWcK6WsLaWsIaV8/nTr27RxG8XkoQobBWY2r73xFvXt9Xn20cep0aEevd+8kyQO0zwyiwBVJ9pRRJMh16PrOi++vZ2JW2NZvjydBc/NZEeayd4ChS/fWIZLlThVk4BQJyaKf7BtUKN9XeC/aU9csZG0+/AZWs98l7bfvk9sh2Zlw2AhiWxY3YqvExoFPjuFPjuaalD3wRsBE4fDRFFNWn82jqwtu8naY90eQoCCZPPTJ18BzV+1jKItG08otxLoJJpiULT3gFWoKkS2qIeOWtIw9s46tePkTOB0xyZQYU/OF3TqVDZJXf7rLAA8Hi+mPyx01dNTUIry0U2TyY/MYFneu6wqmsJrv5YsAhqEaCZBYS5KI6pLp4mS7fM2ogS7KMwsLD2P21SQEpLXpPFfxbZn3sBdJNj58rtk7s/EZwq8psAwBYrTSr03pIkqJAIFt6GQ5w3CIAiXXcGu6kRUjySkXlVAYosIwaaY2BRJQOVYKl/ZgUK3kwJvADWu70LzZwbQ8eNRpec3fT58e7ZRa0Bvi9RYsRwlwbVrYni8bBz/FdOa3cux1btAgsOv9KQJk8qNK/Psumdoc1ObM3ItLmR7ckE6OJo3aI6dAPS0MKSU/DJzDXm5BRiGAQkJpBQ76RyfTZTDgy4FuhTUn/QS3035mfGbI/lifwTv95nIz2/MY9thN9t35XEw3yTKrhOiGricYFcMXKpOvNNNsxvKfiiVL0o6hz0/PxBzWRuiW9ZBCIEiBKZpoqkC3XSXBn5qmiCyZUPsqoGigvT4cO+0QsiltMKein02Cr02dBMKDyWfcB7v0cOkfzoVo6johG1+Oh1SjyMbzdq4iwVd7yN7236mNbydebeP5c7Nb9H/l1fOaP8lv68L/Uc5a37m3/eB7VLKV4/b9C1wq//9rcCs48r7CCEcQohqQC1gtT+sK18I0cZf5y3HHVOBP4FNG7dRILOQQpJnpvPkxBdwKHYG3HML1dvV4b5ZD+D9+G2cqsGRIjc+I4cb137AlpV7yCnykaUbuJJTGNd4BLmphRgIsgpM4hw6EZqBXTFxKgaBqk6Cy033p3tT8uuNbRr3+437l8MeEUqzZ+/DFmSny4/voDgcgEBTJDZFgvSV5vckfz0HAWQssPg4On38PBe99ghe04Zualyz/P3SiD7j0AYKRtbCPdc/X/U4MfICkVs+JnXiKxxbXw/dMFDsEmX3BDxvxeNeNBKAYqFhSktSr//sx+n94YNn/Tr8kT35I1TYk/MHLVq2JVs/ykHvGrxmEQs3LmFF8Qqiaoey4OrhHHhhAvrG5WxMD+TNvU4+OQItBvyPlP1WZJKJJNwoYtWURSjCv3ggVIJtBsE2iVZUSJDqJUT1UiXATeu+bY87+wU5nDsthDWsiSs2EoBKreoi0JGyhHHASovXpfRTFKt4TRvVrutCsNONKg0UwMjKQfrTZU0JHt1GsWErL3vgh+n1cPTZx8n/sC/m4YXltnX4ZRZRLeqjqZL0Wd8B8EOvh0hZtQMlJhK3YeXvV72m41m7Hqc7NoEKe3I+oU6d2ljL6CaVKydw9GgK0eGNaVj3MuZfN4JgPYPO8fnWIkGBm4kDPsI0TYQQJEVCrSAflV35VBcZ1AkuokVELjUaWeTmQoBpSoqyCjm4am/pOQsNlVSPhvsClgc9HWx9+SNKnJG6oViRnIAVhwuGW8fw+4mUEpG342xvsUfBY9jQ7cFcNOoewqPtOAvTrLQVqWALCqD5qHto9c5I2kwbA0BSr/YExESQ9dl7HH1sIEfGjObgqKfZdXUXTF2n0y/T6bT8axxRYcy9dCAHPpqFwyzCrkrsiuWoDVJNHOqZdXJf6PbkgvwFT3nze+K1egSpkeheg8CjQdxaoy81a1bj1s8GcePjl0B2Ji2istiQU0RYq+qExkTy2cs/IIECw6T4QApLX/2utE6vaSOpa1N6TboboZsEazp2FTQh0Rwqw5Y8TkBEIPd9/d/Kmz8ZFEWhxfjHKVmzUBQF06cjsaP6PYnV21ZH0TTazv2IpL49CUqKovYjd1sVmCa6KUvl3EwJQdVOTKXK/PoLCr+fgGfeMKT8zWDDacOm+nAGlN1gisOGKzGGEuOUs+0Qv4799KxcA1P+/usP0A7oD3QWQmzwv3oAY4DLhRC7gcv9n/GHTX8JbAPmAff7GYUB7gXeA/YAe6kg8PpLaNX6EvKMFI54N6CbRRzOOcI+7372p+1jerNb+OnW5wh0esn2KCzNDODHLDuaTaNGI+v3aqCTWmiiChPT/8UbUqE4IpoWw67FpggCbQZ2zbIlzmAnAz6/n3pd6jNk1qPnsuvnBSr3uIQrln6AMziIdlOfxVEzCSlNTNPkf/NexxkXDUC9l0YS3KA2dcc+VXpsRL0qRDSvS/PH+5eLsvD8PBl8hegrPwL87OJSIgMroygmimJiHBfsYRRmUjTjc4reCEf6v0O7gOh6iQTFhp39i8Bp2RKosCfnBfbvPwBS4jZykJi4zQxqOyvhFDY86/eSeyiDwgKJz3AxN6OEDNd6fiXWiqH2JZWxC52N2QqKAEMoYFok5ynFKtEdGyOwiLw1TUFIQWzjRGLrVqJelwaM3jHmXHX9vEDSzT0JqZtkRYX5I0qDNK8/jFoCBs0e6o0tKIBqD9xGeJPahNarSniLRmSv30VJerzfXKAEOE44h2J3UOm+O4issRtz2bDScu/ERLyfXEaVu/rjql6V+JuvByAvOQ9DQt7hXKTULHL2sxxoc5pjE6iwJ+cNfD6vfz3EGv/6vD6LZNjnw7P/IEEOH9FOK8VbEYJfZqzl8+fnAOD0FiGEwMRGoWEny+vkUFEobrdF+B8WE2JxhEnLsWexifn//pfT8qVJMTaie3bG1bwlQlhcR5qAxi8PRglw+q+riltX8RgCzR6ClX5ioAgTFRNZkE9IrcooptevYCM4fhYTcVEDQmqVXzB3b12HZ+dmAhs0QggTIXWLEPI4qHYbACFJMfT7ZRz9lo4hyGZJWitCkHM4/YxejgvZnlyQKirp3h241Xw8Zh7XXXcbP+QvRuQLXk0ZwYLej+LwZREZ5GPEmigM4MB323kQeHvF4/SuMQyHx2Bzto2L4gRKoIov3yCyUgg75qxn+9yN2BWIcJZ59O1OJ8EhDgKD7WdekOM0kL71EJPuGYjisjFww+t43V4erT4cgEse6si1w689a+e2uRxc6WcZB0v2TBUlpGfS0owHVKedlC8sJ1vG94uIv/5Kkq7rQta+ZDJXbwMgqkmdk0obRd10C2bA+6ip70POgxBezyIUNbx0WDSdVZ16gs+LlJLCY+ks7vOU5SENcFkGW0hqXnvmc10t4p2/7xuUUv7CqWUaLjvFMc8DJ4RQSynXAA3/dmP+wzhy5ChISZGRhU11oJvFdI+8iK1Fh2lSpRrzTOsr8ul23KWeauuvK9DFM3Pu4eWr3iXFrRDlMOnYvy1Lpq0kMNiGJzWT+WO+xYkgKsBEWhRQaJpGRJidjlfWLY04ONeYcfM4UtdaKzj37Xwb3aczIulha6MCrx6Z8I+0QwhBl89fPOk2R1QEjd8eV67MFRnCFVMfOXHf68fjURTsHQZaBaaG0CRSjcDmLAZTYIu/EY5Y9kuVoAYVo4TZsDmsR+I/+dVU2JMLH4ZhULNGAwCkLMAwA6kVXYcbnE1pfeelxHdphSPkAwIqRcLRrZTkUsjj0kqe/Wgg99R+GgBXVDDdbmjJ/Mk/EehQcComu+ZvxSkUYgJ8GH7S84jEaMQWk07X1Mf5D6RSne9o//EYvm/XH0dMGW+OIsCmSHQTCtZtglt6UeWmqzg86X1A4E3Poma/HrjTstlrt0LPJYJOn7900nNo+yagF9iROXvQc3LIeKEfUZG5iGOrsKVeQ+MpO0v3LTQdmD6L6DSkdmVStx+mao/WZ63/p2tLoMKenE94660JTP1weunUuHKVeD75YiIdOrRh9qVDcek62R4nwTa4sXoyPsNB1NzJ8FQvkkIzSS4IJy5OcDTZg5TWxDi8ahSmhLTkAlyaQBMmmgK6VFBKLNJ5NM/5p9Fg+G00GH5b6edZzfsghAoSanS4CM8dKWx9YyY+QyBRAZPm9/dgx6QZ/qVVA02Bmnf35tjCVWRnGUhpR1UMTFMgzRMjw0oQ99RrmEUFaOGRhHX7H9LQkapK1rpNRDRvDEC3ea+Tt+8IYfWqlc6bQqvGIPanIgTk7UshrHL0GbkWF7o9OT9G2H8RPiOPIjMTAy8rV/2K6r8tVw2biKfAS74nAN2wHUfnYt2twaEBjJ03GLviQJcQlBBJz4GXIQToOfn40NBR8ZgWWaYiffRZbK2KbJr4FYVHM0j+5cTcy38apmmybvIPZZ+LLQ/uqAaPl5b98trSf7RNIXWqogiL0VcKaDDygdJtrsQ4UAThHS4GoMljt5Of7sFr2tDiKtHpo2dK9zXcBRgp1gBBz9mJTD+MnmeDsLqYpon+aijmhGi826fT4O3XqP/2awghSN+0F4lANwV6oRuvqeExNMxT85f+fciyVZ5TvSrw9yCEUIUQ64UQ351kWychRO5xXuCRp3OupCq1rTeyCN3w0CCuCU2dNRh3+1BCqsZT/84eNBlxM7t9dhQgWGjYjju+SbPaKFgrsYldm3BpvzbY7CrhNhNTWmshPgSmad2zd221UhPXPPMBa0Z/QP7BlNNp/hnB0TW7S50bALrHw0ttny3b4TwhRf31lal8Wr8fqbv2lZb5CouZ0WU4vzz2LkDpwEG12wm46Q20BP9zsFJzTBxoN39OVGIqUVVSsHd4HCkEslgBh8DV2sQIt9F1zK1IoGG/Tsx7ZgbeIvfZ71yFLbngMX78m1gkcNaQKitjP9c3vIYjBLAy4zAvPzuFrnPGo/a7liEbQohSnSTYA4hU7KV1eAp1P7eGoM1DV9Fr0GU0696AWkmB/roFBhKvqWCYMGDHewAUHsvg15HvkX/gxDTPcwF3QSGT6gxkUp2BpWVSSobGD+aLJ89ORGUJFEXhfys+ocusNwBIurUXFl8YgFluXCLsNhBgCwlCKAqNhvVHGuA27NR/8CYCjiMtLni6LgWPV8YoLkDkHsIocCLdDvb2u5G8LYUcXlsXYfehiEO4JzrwLbei89qNv5ciXaHYUGgz9Gqa33Y5cY3OYppzxdjkX4WtW3ZgV0PQFEvu84vPv+H63rfz0piJRHW/lC0Z0YRe24toh8LR/DC2ZEWSWmztu7NKezZla2wOb8qA7R/S4IFu7MsXrFxppYqriiQkKdyvGCRQ8dDspospmzFV/FgAXE5rPiiRbHnzcwJiIpBSoksVXaoYUkN6vFRuXY1gpxunDUJrxlO556Xsem8mUmogrWsshMSdnn3KcykOB1q4lXKnBgahhYSxolNvtjw4kqXtrsb0elGddsLrVyflxzXs/mwe3131ODfOfJQ2Q3pSqWFlKrWsfeY6f4HbkwsuguOFF8aCNPHoBWiqDeGx8VjiNXR7/nrqX1qfhdc9RuUebcn+7hs0wKVo6MfJAyZUKklhgFrXtqPjHR2IiA9Dycrh+1fmISVowsSQKj5TJcTPoF/nlu5kbVhLTMt656DX5bHzm1WsfGUm0YNK8m+tX1loQhjsT0UAxedA+qXPpo9OWt78s3dOKGszsh97Zi2nxfAbypUXP9sQTC+O/lORqVsx8wNAwOFXXyZvwffYg+qT1HoTcn5fNDMc50PWJDGySQ0y3U5AEKFYk8rIxlWJqHPmVcnOhFezAqfEYCxFg1MJeP8spex5uifZuXO39UYIkBLdSOfFa95ky9JdpB7ay1u1b+Gem6+mYce6fL4zmD4ohNjsOIwyk+kMdBDsEJiGpMewnlSqFctz391PRPVoXmrxBF6fxCVMdFPFANz5RQSEBXHRk7eRveMgwUnnloPDNAxm9T2en0aCopDUohqFyWvRFCjQz49Y1cWTVqIQwsdXjOOyx3rR9K4emLqJJycfT04ha1/6hCOff0uQU0cJDCSydgINxz+DYrcReH9ZFKMnUAGzGCP5Z5RQBVM18LVpg7LxKOJIEdXvrssBM52fx1lhvpu/XcPwNSePKjlTqLAnFz7em/wJJaPBzh0vp3PTu7k4ug6OICcffPAtVwc24Ml3NtHslktoExRGpsfEY5rY1bLvPaF6DC0vrYn0GVzcpw25hzNp1TKeVm/1Y/mUH1g6YTFBisQwFQygOLcQV2ggAZUiqTui7zm3JwC+Yi/zH36/9PPuH9ai21wc3WKp+62asoobn7v5H2tPwwdvJumqznhzC4hoWKNcpGjbRTNO2D+0eiU6fDmKyPq/cUJ4861Ut+JcpBqMNItAMVE0ELrEEHEgNwMCRUL+x19jW/Q+sfdsRyJQhBXN2unJ689qfytsydmDEOIAkI+Vi6BLKVv8ZrsAJgA9gCLgNinlutM5Z6PG9YlWqqEKB/feNoq4whAStAQ6tWlHzYhK7Fmxl2ZXtSD369m4fQqhNjeNnnsQwzD47vtdgELwpn08X3sIOzIMEAq5qW40IYm0G6hZ2QSrXlQgQDM4OHs5lw3pzo8T5hMUfaoh2H8LnRdOYW77OwA4NnMxYfWrE2z3ku12grD0Nmvf14ejM74nd9MOoCxKw5tfhAR0qWEYYJg6QScJD/WmJHPosSFE9L6RiJ7lI++t9BZrjld0NI2gaomYusHa4eOREnK8dr5o9QA1e7fnmhlPntG+X+j25IJqua7rPPXkaECA9BKtVua1Ic9THBBIenEhP63exlW/TMbT6iKe2BxKuOokRLMTqJaFbkbFh9GweQLVKofQ6a5O+Ao95CzfQrU2NRl79HXGHZ1IuNMKKfSi8HGf8QCE1a6CKyYcW6Dr3HT+OCR1akho1ZgTym+dcieKtdDDy4fH//MN+wuIaV6LtqNvxR70m+sZGGkNCMITkHvnWp5P1Ufx2hVomomvKBDsIEwVReRQNLEKvvwcQuJjKDY03IaKGuCk0LRRtXsrxFmJNT994p0KnAghRCLwP6wcu7OKtyZ9YL2RJk2bNqduxNVs2r+fWq2qcig5jQYFYax8dwmrJi+ltisIh2JlUEZqZS5rTVOZfGAck3a9QGyNKOZ37ceS259lZsfBPLP/dcYceZ3optF4ERgoLBg9HYDIxjWoeUPnk6Zl/ZNQVJWIWpUoW6kR5GRl0e+t2xCKNYq7c+rd57CFx6PsWu372iL3c4QGUrNbU2pd25aihZ/jsrvRFImeX0TOxh2kL152Qi3O3s/hVRMp/H4kQgE1UIGApijp6Wi+PEj+Fc1hQxMSlyoJiwll1/yNHFi246z2rcKWXNjYtWebFb0hVJL3FbPx8AK+3bKE61++mqoBCUgEQkBYRACKgHiXQpxLJT7QRkpKGqNHjaW4uJhHvhnEo3MeYvc91/Fdjwc4+P4Mpre7j84PXcPoA69z8ZNXWVFhKKx4ewEAmstB7b5dz9Kz7q9havtHOLJkW+nnBYPe5dhWy7nhUMxS8s9/EsFV4ohsVPPP2VsBhtt7QrHr0bUEDFmMGpGAdJsomkQaKo7oIOzOYkJat7UcIKph9VA1UFWTopQyNcSqF9c5c536nQ5UjE3OKi6VUjb9rXPDjyuwCBFrAQOAt073ZPO+X4JdBGETTj7/fCYzfplFiC2Yth1aU6NDPa66rxnbBt6HNCVTDql8dcygfs82mGaZVKm32AOlXB4gTRBOB/aGtTGKdRyqRNUUDBSiE8PoNqwnYw5P5Ml1py0qdUYxtdOjrHxz9h/veIahBTipdHkrNLtK5wVvk7V+BzkegaZY3GuaLMabmUPidT2oduvVODQvlTo3B8D0WYvrJXwVEgUt4MRUQrOwAJu5i6DDd2Eeml9uW5sl03EG23DaDNx7rIW5I3N/JqxpbfSAEM6uOtOFbU8uqAiODz+cRkmoppReDhevYHCT0WQkF/PdqLdp50tk0b3T6fxwd1oEhaP6dI7pBpHH9VIIwegfrbztjN172HznEIqyovl5+Soy7+zORQ/dwNA9k9izeAtf3TOZmDqVzk1nfwcBEcH0/eEZZn35NWW6aJC86TAWdadEUc/9YAfg9Rq3UYwTFz5uWfgsodXiAVh83wSydx7mqjkvoDnLwnSDHl9bdvCxPQhNYvps2GOicOdmEdSyFYjlIExQJO4dTvSX6mN77pifdwMQCg/teuOsTSAtr+b5fWNfoBgPjACCf2efi4UQG7HkoYb5CYnKwa/DPQAgNjaWJUuWnFBJ5SrRjB33HABRETFkZKWjohEVGUMVTzQ2j3UnxdSKpV3D1jijnPQc3RqhCKZN+4T09EyCg4OoVas6AO49O/H07kygP4ml5Jz1Hu6Mt9BDXnI2gZUjT9qWM4WCgoK/XH/csI7EYfH5AGzZvh22b6fB8FYApGkZpJ/BNv+dNgLUHtrCyhEWAkWVLPz+BzxZeXgTnBzdvRXnDVcCkKsrKKrADLSxrXg722dugJD6oFo2xiwKRq9xB6rTQAgvIjQekRyLrFHNUtDblUaxEUitYSV58oJ1uzaiKAoHfGcnpajCnvwLIAGhoAiNXUfXY6JzzLuNtORsmnZozNElh3j4vdtp3asZTbo0IPtYDl8/+y19J/QlqXJTAL78YhZbt1tOOe+hLKASlGXFA3DJHd1JqF2V1VN+pM2ALv94N/8IQZUiyMo/elyJ5LIHu/Lp69PQFAhIOFHK+VzgjRr9KSIQGwYX3dyCDs/eA0DB4XR+GPIpV377HPkHkrG5VMJqJ+GIjINQK0LGcddsPO9fi9blYSLmTkEEZqAkeDEOg+pTQEgCm+dCpIvYOpUxJaiOf2aoXWFLzimuAj6SUkpgpRAiTAhRya/+8LfQ68prcKnRGOjYCWRnhjXBzSnI5IdLByKBuCAb3x22cfx6tc1m481lI7in3Wj25odSNcDg2Z8e4fEOFo+VXuwhee0+VCGoFGCpDilIbpz9NIXJmSx7aAJ17+hJla6tTuNynDl82PFRilJyWDdxDi0H9iAvJZdnW44u3f7qsbPLE9ZyzJDS960mPcGCW0eXLrm0euhG7JFhAKTP/xEhIH3+UqrecyuXfzeB5F828fPgV9EUaHDXlaSdZJHcWaMWMd0TMY/uhGKLJNS7+WPkwocQvb8mom1rspb+giPeskG/jnwfRYAnMAS3YRGgthx6wwn1ni4udHtyQTk4VixbR0kY6CMPP07N4F5EBYXx9Kt3M+u7H3Esz8JEEhDoRLMpBNoEUV4VBZg9+weuu/Z2wsNDSUnbDkDW8L6E2cM44veAHV26nosesn4kNTs35LHdE89ZX/8MQmMiSPaTeh5es4tm17aiICOfpObVznXTSlGECwWBVzj4+n9PcPs2a+Xc8PrQ3V5ydh3m5wdeI0jNp1rfHlTu1RlHrEWQY+s7De/UG1Bb30LIL4sJr5kGjftiHATVJkEHNcCNFmjlyZf4M4JjQ8766vh5Qk3wr4EQoieQJqVcK4TodIrd1gFJUsoCPwvzN1irJeXg1+GeDNCiRQvZqdOJ1V1++VWYpkQRNhQ0DGmt2t30v7u48formTD0U2o0TuDtFf0xDJNFCxZxzaBrEELgsMWX1uPxWTLceycOo7AgjI3HqgCSazZP+ccjNJYsWcLJ+vpn8PZAa4CfaVvJwM2TyG+Qh2nohMZF/MGRfw1/t42TB36IQGBTVXRTgtONboIQCgJJfHQqABn5Ntq+cAmsHIMt3msxDBpBaNeVMYvr2Zm4hUnhsxcRkpiDFmZgZIFWuwNK58/5acV6ilbv5cCyndTo1JCYBgls/nARibe4aHJLFwJjQs/U5ShFhT25sKEbedSO6ciR7D2E2eJJ9+7FxMu6XT+TsdlHdoGPKc/PoXWvZqz4aQ8blu7kyUUjCAhy+cUHBQUFhaX1BQTl0TRRsv5IksUVcRyqXVKXapfU/Yd7+OfQZ7alcjSpjmVPlO7VS7eZCBp3bXZO2vVbFBOIQMEUCju/Wl3q4HBGhhB1zSUUp2WxfMjLRAe5MU2BwyGpOexe4npdji2xMban9wAgDyzDuzEVZ7wKhQLTK0GX6FWTELuz8O2bQ+dRfdjwza+MSnoQ1aHx1K7XzmrfKmzJWYME5gshJPCOf5xxPBKAw8d9PuIvK+fg+DMLMCUYO3YUQvinaVISoDrwSZ29e/ei3mPxM+YqBp2LtVI36PH13fZ8F4vcXIH96bvpOrolqqrginbS5JGWAGiKdWRswyosW7EMvchNYYfqbMk6zL4lRX/y0vx5/NVFjuy9KQTeUJ9A/+c5n8/E65E0f7QsiOav1Pd3F1mOR8y4O8g/nIot0MWh+CgOLbU4D817bsKbko49Lrr0HN6CIuwDu6LYVNJqx5ad31uImXUYJTwRHEFIcRkyoQtsyERf9ymKno0a/zisWAPtmiI6tGRteiosSUXcfRlSgE1CuN/VciTYQ8Yf9Ovv9P1CticXlIPjw48+LCXx8umSA0W/cKhIZfKblbi4W0OWLTlM12su5tKBnWnbry2Gz0CxKdgDHIQEVQUgOzu3tD716htxTv+GcEcyOUYiLV4oI6AyvT4+G/IR+7ak8tjiEWyYvRHC/8ne/jWsHPMllac/SfsBJyWlPWew4cOHDRsGobFlkRpxTarQ5MEr2fvlIuyFqdidBgfe+5JjH3xGw1dGEtGmOfYa7bA/Y60GeVc3RnohsFoI+iHAo4ImcbXRka5ACjPyrJUSBTSH/RStOTOQEoz/qEb4WUQ74Eq/48IJhAghPpZS9ivZQUqZd9z7uUKISUKIKCllxl89mc+Xy8vPv8szo8YQpESTplvEtj+smMG13a4A4PDuNAC+em0++WoaL86bTMNO1f0TEqhSpYzfpcbXa0ie9jbOVQprZ21h7/Ld1GxnkT2tfmkaH766BoDWN7QgeXcaI+Y+dN6oqJSDz6JmDj7P8m8LfC50CaF2izDQaTMo8ipoqokpIbswCJtqUvfeq1EcRZgeOwgvIHCn68hfV+IMzcD87gakIwZPsoqeEkVOdghRF+9Dqx6A17uRAIflvLjho8Fk7U0hLCmaj7s9jenxsOm9+Rz9eRvXz3rq9xv7F1FhTy58CCF46+2XGXn3O7S/tj6vffgyCHjk0Yc4cnUG4x/4hEfevx2An79Zx45fD1Alph2de7T01yDZvPWn0vqqT7ciGWe3Gklucg5F2YUEhAciDYMJ7Z9g195iXKFOaretRUzXqN8255wjsl482TuOEbA1B4Cg6GDi6sfTc9TZU3b7K3A6DYrcChomwfYyIuHi5Azy5y4hcM2n1I41ycwPtUKxdZOUOYuI63V5uXocV43Bc+xG8lZsIDROoDkVzLCOiB2b0Qqz0RcPoun9h/jmiS+xK6B7vJi6ge7xYT8LqjcVtuSsop2U8pgQIgZYIITYIaX86bjtJ1vROCEn688swADExlYlI91yzGtqCJiSJypfT3yTKnR66FJyEg4igfv6vI57Rw6qzYXXNBiYf2tpHR/cPJSiQp3mbaty66D+FDTOR7NrzPtuLpvHrsKGQbhT4DEh+p4QOj9yNQAFR9IIiI1AsZ35KeJfXeSYNPDeE9gsb1nxMi80fgybAkWGoN/R/mft/KcLKSX5h9IIrhyNUJTS8xe+2hmZvgMRUZ3A4b9QNOoaEOAOTCJlcRhSCmpetgKhAclgH1Jmp94aMABVgWJdYiBwBgVw3Ybxf9iWv9r3C92e/OmW/1bdQAgRIYRYIITY7f970um/EKK7EGKnEGKPEOLR02mspvkl/ISdCa9bIUkmBhuP/shNt3ajqNjGN59aE4n0lDxuu+gZvnxjASuWr0M3dP/EpOxGqXHbUOp99xOVRz7HlkwXa75YWbpt33tfsWzGRpJ3pjK46jCmDPyIlF2pp9P8s4KSfK6e7wxi04cL8OQW/sER/yzqhudTLTCfMIeJO6OYLW/NZNlD49n5/hx+vnUUjlVfkRCeQ7FPwzStSBp3ctoJ9QRedxfOejoYGdhiVJRY8LVpis8WjZ7uwhboIOmS+lTv0ZLUHcfYuXjLWe2X/INXBf4apJSPSSkTpZRVgT7A4uOdGwBCiDg/kRdCiFZY9ivz757zgaG30qVebwbeeheq4kJVXNx77920uqoeDW5I5PVlIwBocHENHAF2Jk5+n3vuKlMqSk5OY+qHn5d+rtR/IHmZHsLiQoirW5ba9sN7ZbmRq75cw6H1h9i/9uDfbfZZQcdX7wBVoc/S55j/wJts/eTHc92kcjD8vANuHXDasUdHkNilJbpUCEhKQCTUJGHQfYSlvIU+bzRKtMciEfGZGIUaR0c/grnpIxRVosQUEtIkD0eVAgJq5kCQikeoqHqZ3vwbdQbyaY9RrHx9Nj3eupeAyCAialWi3o1nXnYaKmzJvwFderdiedb79B3UHSEEilC4uFUv2nToxcwtcyjw5QMwZtYgnp0zkMBwJx5PmcxXVGQdpk+fVfo5OzkLb0YOCfUqERBurV/qhcXs2lsAQHGum43fbyY/Pf8f7OWfQ/YOK7Kt6EgWACFxYTw471FUVT2XzSpF7eA8agZnE+7Q8ZoOfhn0KvNveBLTMJEGoANoRAXnYFMNaveOpGaH1eifB6P/0K60HqmFkrPWxL0/Dc9BBU9eOLYec9GCvUibihZpOUyDg+3YFHCq8OUdkxjfdBhFmWfne6sYm5wdSCmP+f+mATOB3+ZvHAEqH/c5ESuV9m8hIz3dv6ArGP/M68x6+3N25inkVQnloqRrmfL4LHRnIIX78zAVgSnht1O68euf5s7nejF0+v14cvOY1nEQ09veiyvQwZgjb/DskbcwTYsbYuXkhaXHBSXGnBXnxt/BdTMeg8pW6j1IcEFQRBBCAR1Bp/s7n+smluLjBv2Y3qE8b5k7K5/UX3diePVy5c4bJyJiG+C48Q2K87MwfXZrYaZ2XxQFFEUiHBKkAlKQ82goOU/EAlCESqGu4BV22o+4jk5P33TW+nQh25O/4popUTcowaPAIillLWCR/3M5CCFU4E0s8p36wE1CiPp/t7EeTza//voTQSKKKKUkDUPhSPp+4qtHERweQFI9a2LhLvCQnZrHpx/MpkfX2zD9rLYSyTXX3FKu3vVfLcelSqo0q1JaFtWuOSUOWWHz/1XPv1yku9ZNYOCOd9j+5U+seukrdn+78o8P+ofgK3azNzeU9GInhgn5Xjv73vuKY4t/xbo1fJRwqjg1DzWvqU2T6/KJ9t5sDSQKy6JtijOqkLIwgZxPnwddIgwJUZeh7jyALeMY4vBS2j9+HWtnrsP0Gcy4/4Oz2rcLmXjnQoIQYqAQokRv8Dpgi5+DYyLQx5/v+rfgdNn5etNYRk6+i6goKxVj3Zpt1K7Zno+/nMlN1w8BoFG7WlSpE8fUGeNo274pIJDSxOv1cNddg8nMtHwseek5pK/ajszIxjzO9A//5VlcwQ7qdKiJzWVD0RSqXZTE8U03jLLJ9blAvR6tGbj1LVRd4eCijeyZXWZHhsYPZmj8YB7t/Sirpq/kiXqP4PWeSMR3NmFTTJyKzsCNExm48Q06z5lEq5cf4tp10+g6cywdvxpH1eu7URjUmWPHGmJ0noGvZn90w0HyT7VIzQ5GvWIKqZvqY2oaSoBGWIsMAmrkIxx2hN2G0E78KZleH1G1Ewh1Cdz7DrP2+Y85OH/tSVp4eqiwJf8ePD3yBUzpZcLE5ziw/wgGbnTTTVGRB4DAUBdtOjXh4NHlfD9vHkiBlAZS+ripz4DSet7u8hw2qZO760hpmS0kiCfmDcLm1Oj2sBVNcL7wbR2PiAbWPC+iXiJHV+44YXB/rrErM4QjhSH4THDrKnvmr8Wzdy9CSDTFQAgDIXQKi6H12/cT6v4Kp2cluH2QtbG0HjUwmMrvf0/sq/PI9/wPPAX4pgRgHCtCCXGiNR0KQI2O9Sx7LyCyRhxBMSFnTYK6Ymxy5iGECBRCBJe8B7oCv11F+xa4RVhoA+T+Xf6N9HR/UKq0ppFpmRnM+mIpNqeNbE8xrT1xHF6+h8k3vkllh4v64Q5iXIL4AJW9a/bx4QefMW7cG4THhtL9wctxBDrYcd21BAmQqBQeLQt6HbZvEpcMuoKuo848h8OZQEyDKty38C06vHkHqILbF1s8Io4gJwjocM/5EbU+ocatHHWHcOCoxnt17ygt3zrle1aOmsrBH34lZ88RTJ+OqRuoCQ0JHLIArUpTNG8hQpEIRYInisDQHLQgDdMlQDVANTGFgcwLwr1oAqoERREI06TlgK7Uv6b177Ts9HAh25M/5aI7Tt3geWCov/gqoJP//VRgCfDIbw5tBeyRUu7z1/O5/7ht/E00b96MPl1upyjfzdztn5GXl09UVASPPfICy/J+pmVdK8ezZtPKzE6fwMJFP1NtdgzvfzAFkEgp+W72D3S4pBc//WIx8h77ZTt2Ad8M/YimV1sho2FN6jIp1YoS8RR52PnzbrIcGex/6F58KYd5fVM9itKsQf5rm0fjCHKiOFTuTxh2Qpsnp/11ApxZQ98k7XvrQXr7irEcfuMNEgYOxB518nDUute1R9FUava0fujTXpzG+tfXlG4voQN45ejZJeM5Hl/eOo5Cw46Cgaaa6BLsqonXULGrBoa04/XpgKDKbTeSELEQc98alGI3UhWw8jq4zGKKd13UjqDLryYg9Bf0tK1oNy0kKLoG3og3kG4VNTyWACUIpyJRhKT+/5qw76dtxDWsQkDEmSU2k4gLmnjnfIeUcgmWPUFK+fZx5W8Ab5zp8y1cuITUtBQcDhtr12wGJG4jn0ZNyuuJd7uiI1deeRMCAahIrPv/gymfM2z4/Rxdsw+PqaIKE2eQo/Q4Z2wUr+wZW66ujOmfkzl1EiI0kpd+KHOsPjDpZrbvOsiSCScqgNTrX4OHXhn0l/v3br2ySVOnXhGoQYFUH3nyNIvghEh6zx6FK/LEFBXvimK+XPkZAI9VG/6P2pIhu9/+w31+uGY4tpQ9FHuiyPlgCy3Hvcv8YZkIIfAZNtzLPyfyxiyMLImSV2StjAgf0mbD5vOBw4HvoOW8eGDn2xTnFTD/svuZ9fX3tH55CEeWbuLA979iCw7gu1teJjAunEvH3nnafauwJ/8uLFiwGBC89db7KMIGSAzhpU3bJifs6w9HQ0qBle1c5giISAgnZVcav11ITWhWmwkHLXnnq0b0ZMmSJRx67imKVy8l8vYHeGSAZTuG/3QfNapVw+a08+7AD/j16w08umAIYy4fD/y9ccmfxQ1+ucLCtBw+7TiCqIc7nbVz/R34TA2vVNEEqAKLvLiEDUVIjmVHEujwEt/rEtizACFUsOkIU6B7TDKnvkvMlZfh/aAJqHY8qgNjfxzZB6oS03YHaqyBIRzY6lppSVe9cTebPvuZqDoJHFyyCTMjk88uf5JqXZrS/Y17z1i/KmzJWUMsMNMfQKoBn0op55UsvvjHKXOxJGL3YMnE3v53T1Zc7AZhRTtlZBykRmx7dOmmc9OruaJNPb6ftR07gvZ3tMfnNdk1fyNyRxo+QxJePYx7Ln4YgDvv7EtEhBVcLxQQGJYQwW/4wToM+d/fbeo/hl8emIICTG07jIE73mHktnHnuknlYKJZbI5C+MUeLNS+sROKTSW6SXXm9HqEoPs78eNTNxDZrAbV7rud0Eb1sEVWRvT/EhEUiTn3TUKicwkOC0OrNQxj9cuggCvRQHgyEOoWJBpIiKgaeVb7dKHbkz8bgzSeE9UNYku8k1LKZH9e2m9xMtKdk7qaTkW8czJSlBsfaQPAFSn1ST6WSlylWFKS03h01C0oQiu3f1Cwyo03X06tulZoz/G5XCX7VRt2MUgIiAg8NQGLw2rLrgZNoUFTWrQJKN303Vez8fmZWNo9caJ61N8htPHVCCL8ASsUcuHXXyNjY9nxzSxsCYloLmvydPy1kYZJQUARGSuXo7lsiMDyJDwl+OH7H3C4HCeUny5O9j1F3NwMWwcrRNUR7MQREoCek4vLZsOXX4hqt5Hi82ILdFLgLOKgvAiSGiM0E4TAzI9AWbIE6S0ATw6iTht8hyMQ4Veg/jgLVCBsNEIosCUTRDbVHm6NPTYQw+Vj9aY1OA9uI6zymc9RvpCJdypQHtlZ2QB4vB769O7Nux98CsBFLRsBoPt5KebMWVB6jJSyVN1g2PD7AajdpTF1L2tA9Y51sTt+/x7zZVorKGZREdZjxBJQ/PrhT0h1lxdTLHm8bJ+2F145jY5i4N64Filh2wffk9i5GSFJcSfstWj4+xRn5tNn0kXw813A7agCDIl/Inb+IWv3MQoPHEEVLpyqm+hWDQFo88UEjoy4AWe4DUU+j83wIUNVpBkNkcHILYdQdB8yIgKhqnjX9cMovJfcDRqBdVogdQMTg0qt65HYvjFtnuyH4dVJ27SfwLScM9b+Cnvy78GTTw3niSee4c67+vPJqB/YXrQLO8FMff8bHBkOKteJo84llamS0LL0GCl1QHLFFWUcD7d89TBrp/1Eqzsu/cNzFm1YgwLs+WoxYNmecR0mUSVM42iuXqq19uLl409KFPBXUOIwDezRmPbVBK5aNYjq1v2k+wZEhdDk7u7kxJTxTQyNH1z63ubS0N06NTvV4t5PHjhZFWcFijCwA24Dbp33FJrXgzRNlm/aQEzPTlRqVZeAxDhc217D+HUmWpyJ9OiWUxRIn/ExjmCDAEVHRmi47G70mnno2SqE25CqgqKVkcN+ffM4ktfto/VDvYhrYkUfCwFpmw6c8b5V2JIzD/8i7Qkeyt8swEjg/jNxvmnTPsGKclaoFFcX3bAWU1Zt/IlJXR7h85HfcyzHw9AO9alSJ46Q2vG0sSk061SXrVu2lfKEBQeXLe4FVlO5OHwrU1Z3oLFaNj7x5eYzosGTeHwQlhBKfmo+SS2SGDZryJnoypmHIpCmNUf4p4ncfw/Nayts3VVIoF0QZC+LcF1w9QikaaIueJ/6lbwcQqIoktxNu9k5ejytpr8DgFa7EwDOJk0o2jUbZ8ME5O5XIABrpp4QjrQ70Bs+SXj1qWTtTeGGz4ef9X5dyPbkDx0cf1Ld4JSHn6TspCHlpyLe+T1SlODgRIqL3Iwf/wJPPj4eEAQ6g0nLWVduv3VrN/HYI2OQUmJKK0y0a9fLGPqw9aBNj08mdfsRGl5lDThy91lpc6HV48vVs2TJEuroPtx79/DlhwaKUJBSEuWALC/lvHbHd7zriq5UqhF70j6cCu/eW7bq2qxfLfJ/nE+hGsnBYy56zRlDcJXYctdm3/x1zH/2C+r36UAr50CeeL0xqrgILFLv0lZdckdbuj13419qy5/Bqb6nrTOWExwfQZWLy7O+e/OLsAdbTiIz+whFY1uhJsSgKDtQbQKkybYZ7QismkBi7RmW7nyMi4wfE5AeG4FVUgmsn4ssUrHfU5bK8vHrY+HSODp27MiCkZ8RWT+BTv1PbNfpQAKGef4Y1gqcHq65thfxCVEkJsZzc6+rmPvhT2SJQiaM+4jA7EC+enk+D355FddfOwCBiil1EIbfkkk2btxMeHg4VaokcuP7A0vr3fbebLa8OYNmj/aj1o1lko4vVH8AFBiy4EM8zjBE41EIAUIaFBsKx0s/H4/TD/JW8QknEsGWV78kZ/dh2r4w4IS9bC4HeqAPY/YAzPxAbIo1GJcGxNaLIXl7KiHRASep/9yhIC0Hm2IxwpshkVS+ypoUqj8MJTHpKNIEoUswdYSiIt3FkKsidB39WCiiKBM1xgVrvSgNJOpX16LfNJfO34xj/8czKSwsJMQehpSSgr2H6f76AKKaniDg87dQYU/+XRgxYgg9e3anfv26dLnoMp4e8QZbj+yhaeN6PNn5dWKqRLBRWWk55tEwzGJr1U9K0tPTqV3rIj744C3aXdKKSx4ocxx822Uw3pwCrvr5TWyu8gSV1d6aSuZn0xj33CEUYTlgI+xQWOBPA+XM5EvPHvxm6fvCuWvIqXKUbAneoARiW9RFdZRXfBGKQkBsBFm6xRti6uXTMnzFOkLA7h93n4HW/Xncv2kiB3/eRs1uzcuVB2YepWXf60s/H13ThKObd1GpyUDiuzWg8MOOJC+rSkZuKNVa9iJj0VQCgg4QHAEhzXORxR6Ew4EpBGphWV+T1+0DYNOHP3LnypdpctVF7P9+NZWbJ5Gz5xhhNcuPNf8uKmzJvwNPPPEII0c+i4oDw9BxiBA8Mo90YzfxVaIpLvAipWTf5iMk1orh8atfx+ZQORy7i4zMMpnmxYt/pls3i6Oixts/YOgGYZ2fx+4qu0/dqRl4fCagkHPUGkvvW7n/H+3vn8HAHZYjoDAthynNHqBG9xZ0eumOPzjqn8Pu/V4Um4oUCnlela9b3GaJfpqWowqvjkRDUwwMAyKbJRDdpSP60htQO3xR6qxRGvbD9800vDuKCK8MWoCKaYSh5wShHTuGmd6L3lN/4pP+b/ByiydBCEYdODuKnxe6PfkzyZsl6gYHgM+BzkKIj4FUIUQlAP/fE5khzzDpzm9h6NaQf9OmLajCjipsSI/KmlVbWPzpKjYu2cn7733CxW16lh5j/Ygk1WtUYedO66EaXbtSqXMD4IdrHuOHax4rd64Xqj9AypbDfDB2B9XGjUcRVm6cEJCvW+SYUDYtKR1MSHioxQt/uW9XL3wWADU2hBpPDKfpwgXEPziYar3aEnAS6cakzk244q37aT30Goy8QBQaofgj0VQBlWrH4AzQuHJU77/cltNBg95tT3BuAKXODYC936zm58WtWflDS+z35JOTEUVuciy6qWIER2HYq6C7NRSHSszV6diT8nA1yAMkSnh50rJqrWsQUz+RuEZJ5G47wK7pv/DFlaPPOPnqhUy8U4Hy0DSNQ4d2sHz5Ylr0aMyS7Z/y0Ihb+Xj6OGwBNlzBdgpSrCgPRbEhpYmUVlRHjZrVuKh5B6pXa8T7k78sV2/+wRTC7fnsf/Ud9k+bAcDXL79vbTRhxQ9bWHjfGwSqPhQM7KqgwHeiLSlBsQ/G9f+tMt0fo1K3RogQJ3dufZvm82bT9NsZXPTozTS+9+py+5m6ztwBE4lrWo0+c0cjtSh/K6zUPiFMhi96glePTWTUxjF/uR1nE1Xa1SckOBcTk+b9IlHtNqSuQ6O+mKaOCDAwUdAjY/GGReNNSkLJTIYaURjJErXpFLTLt2H6/VZSCtLHDmXtLQ+RPWcRa3vcibegiB+63s/Cm55i2QOv8s0lZzK0vMKW/FugKAoNG9ZHURTqta3Jl7+MZ+uB79i2+gDZQW5qxUC/oipIaaIqKqAjpUlcXAxr1mxg3759dOzYjdSU8uJQ3txcQpRcfr60T2lZybjkldbPED/oYWwYWOMSk0JDkGOIU/6G+oQPPsWWUyN/1/HDN4FuCHxSY8nAV9k+dd5Jj1n+4hcUpGThfj0C95g4VCGxKWW/7r/PovT3YQtwnuDc+C2+vew+9n0wl9z0UHZ++gtqeD2Wf3Up+w9WptjnInv9DiJ6HsUeCXpWMWaeB+nR8TqDUA0Dglx491vpQldOHUxY1WjqtI7npwFjcEWFWBKTC9axd/ZK0rccIHPH4d9tz59Fxdjk3wHDKKBdtZ7UsnWgS+seKMKJIqzIi6e/uYuO9zWh03UtUBSFEe/dSue7m3Po4DESK5dNuXr17MtNN5aRXk7s9AzG4RTcOWXj4eDa1Xhk5kDC4kMZ/sNQHEEO2vZtg1FcTMaMzzENgzujB3NndHl7seKbXxna8DEy0jIZEDOYATF/3Z6U4N16A0ojw/6IVk1RFeyBTmyBZVEoJTxhQ+MHs/i9xTzV6PE/rOdMI18PINfrwqMreE0Vb5EHzXSjCQNN6CiKgcDAlNDy+SuplfgRkXm3Ig7OxviqTKNDmIKCfSq+1AzcKSpGISg3H0IoBkKR2LxuguPCSN2VjFMxUTi7/G0Xsj35wwgOKeVjwGMA/giOYVLKfkKIccCtwBj/31knOfxXoJYQohpwFEsd4eYz0nLgs8/f4+ab76D3dVcSn1KdqUtm48bL0YOpvHfPTCLiQtka8CuaasM0VXxmjn/VBKZ99CVvvzUFUEhL20tEZFhpvc4QBbXIzfxW19F19fQTzjuj38s0DnMjEVw2+kYmPWRxeZwwIdEtB8PfoQCLTojl7u3lJzPVel5MtZ4Xn7DvO/UGICSIuCDuXvIqRpX6XN5mBYtXd0AIyZ3v3kndK84P/fnfYs4Nowk5upYgmyD7WDFCtbFjW198e7ZT7LPj2O7DnhaD9ISQWP8wQhqE1T+GCHBhIjCzvQjdh6rZ+KD9IxSm5RIb2BY6gy3QgVnsIXvXMTz5xThCA/+4QX8CUoJ+nobqV+D0EVc1msdG3UNmai63dB6NpqgYRW6mD3iEHq8PJCy0MgUFXux2OwsXzqJqVSuVZcC9d3PngBs4vD8Vm12j9bN3M2/eAnTTxpHJ06jWvzdB0WUpIQ6Hkz0bjxFo00iweWn31M18+thMTLPErWDB45902xToele7E9r7R+g5/sFyn1WHjTp9Lz9hv08ufxx3Sg6Hf9pCSL0EEvutIXfffi6LOcbiV+ahnec/+RY9dqPKNOzXbAAgf84n5H0xnqjW+ShO0J2xSMWGKMrHTEmmuHlHwISLjqLW64KwBaI4dQQSoXmJuHckYtTHSK8PKeHXx9/BnZkLCMTxX9BposKe/Dfw1gvTyczPYUdBFFdeXI+cd97gaFoyNWs2BWDnrnWEhMRjsUFIiooLKCoMYsXizbTv2pQq1Wyk7XVgmCcftk2/cSxVg3z4TIXm/6vPdzP2ACcuuuiGJTD0d35xN3//PO+2vh+8Jnevt8YnBYfTKHrtKxI7NT1hf2maXDltGFtS9mKsUEB3oAiJEAIhJLe+dwef3PMhlz988hSXc4X8o5l4M3PIUgKxqx5q9rLUky5fMo0Dd7bB7jCJsN2Bhol0qkglBGIjYNtRbDlZEBMNdjty8w3o9qUktqhF37mj+bblLUgJzZ++k2ZDruPIko3EtanLR20eQnM5uH3t66fV7gpb8u/Cgh3vcmDHMX7d/CvzVs9CCIXI8AZ4iw1cajgNWtXgmusv5/Kb2nD5TW249eGrSExohECxIk0xmD7jWz7jXQB8Ofl4pHrCvZ/UtgEvrH8GgNf2Wnxhu26+CgqyyV+6GHABcGf0YNp3rc3yBbtK40wfa/jMaaW9FeSXqQm9W+9WWlc+hlQ1mnz//Un3d0WG0OvjEWgu+0m3z3namooOSxzyj/KEmdKysR5ToAgIcEmEqiL8OR6pORE4bT7sEeG4QgoxDDuK4gXTspMlEHaFKlMXYmCSNaYXNrEc34dBaAF1EVHHUGp0BSDAonfCJeCj3uMQiqD/VydyQJ4OLnR7cjr022OAy4UQu4HL/Z8RQsQLIeYCSCux9AHgBywFli+llFtPr8lluOqqnhQWptGtWxdGzR7C3twFbN47i06XtyagTjD16gZzm7s6wQEuOnWyHANSmox+5nEKCvOwsugNPv30S3Td4Mc5a8jPLSKpWTwSgUShYON6jOKicudN3Z9Nrs9JqtvJzMdnUq9FQrntArjhpatLeXwc9rPMcu4fuXiSC8hPyWH28muoPfQLcAiQgil3n11FkdNB8a4d5LoDySoMIL6DleLY9sPnCa2qERZRSPPHbqXSTfupdHsq+tFCzEKB9ApMxZphiIgAjNRDAMQ0rgpQKm/V6H9NCRA+mvRtj2Y/s5JXUorffVXgwofNoaIIgU3TCKsex2XPW+pL+QV5SExu7nsdlStXLnfMoNteokeTIdxwiRUBFhSuEOwswDR9bO7RlS59uzFg2ZPc/csThASHINGwq5DjtfPtyBnlVh1KYjle2zKqtKxJxwZnrb+5x3IwpfWgXjxsCnP7jeLTW96lYZfG/txzhRGJf53k9J+CqqUA4DvyKwDKwWdQHT4Uf1iGIhW0LdtQCwqhck3U/DSU/GzUKgqKw3J+um77BBHXiKBnsgm8uAudfviQxBGDSA+ri71yLB5dpdCrYJpnNje1wpb8++D1+vD5ymRgJ04fRseOF/H6gqe49uOHsQc6GTCgbNUzMND6DUr/2ti8mau4otkDDL7pFb7+6EdaffkuwY4CXHY3G7p15dhbE3l8n8W5XKV/E1KP5qNjo8jUWP3dVhq2Kj8uAcue+Mwyh+nfwd2r3uTu9W+Vfg6qHEP7V+8nrHZ5W/h1nzG8W38g3/R5Cc1pR+05DgIdCGECVhRH4yua8tKh8XQZfH45OGxBTuyKxK5KTC2AGrdfDYB79UdEx2YQEpoFug9MAyFNpE+HYi/oOj63E9+RbMgvxLPCh+/91hQ+FY/0FJFw1aVEtG1KYHwUql0jqetFOEICafnQNbQccvUZaXvF2OTfA01TqdmwMiBBGNz/wG24i92Y+Cg2cmjaol65/aNjTkY6WZbces3423AFOwit8se8dI6a9TBNGDfdZTn9/RONvT/vLN3ntz5+t/uvKwN91vbh4z5ZRknqOl+1vZ+jP208YX/d7eXzHk/z9Y1jcH/aGvdEJ8r/2TvrOCuq94+/z8St7WJ3gaW7QUIkREAQA0SxE2xUsBUMsEEMyu7AQFRMFCUEFUFCujuW7bx7a2bO74+5u8vC0vBTvu6H17y498w5Z86ZvfPMOU98HiRq2KteSsqO/09oOrgUg2t/e4Y7NrzOeX9+wHl/fkCDGy6iw4v3Uv/eW2gz5XVUM4vQtw+gJARB0ZC6TvFWD5tuuILgt7cQmpxA6JVqFDzeEmN9Lvl/paGaQO4GzHbvI7rY4SgJDVOQUhKRFE1xRgHezIJDD/AYcSrLk6N6xUkp50opzw9/zpFS9pJSNgz/nxsu3yOlPHefNj9IKRtJKetLKZ8+scOvCEVRSKwWzyODX2XFuo18u2gDKW3qsXH1PH74aQoSC4nF0KE3Vmj32qvvMOjM+7nzsud5+enPaT3xaRyaH4HB+nseYt2VlzByy2RSWqQxcstk4htWRwCmJcn0q2xekU6LsxsD5VaR6Q9Np+d1p1G3TU2eXVAx3OVIEfL6Kd6Tc9h6RhnPhmDtrXfgWvcrG2Yux/LbITn/viRy5XDrFqoCigLtxt0NgJW3k/rV/6JFq1U4swagYqFJA7V6PNRNBWcMIhBCRMcgEuOQi7oCcN7LtzF01WQ0GeLbM28lqlYyztgINnw6l/Wfzj1hY5bYhIuHOqpw6iEYDDHtsxnk5uQDEB0byariqSzJ+wjd7WDlmi28+/pXKIr9RJ17bl9yc/PY11nvu2nzSEiJ4qLr7LjXyLYdCIScCFRUEaBgwXwSU1NIqp5Kg54taHdtd5Ka16Ja8xr4DIVLnrzogHE92mY0T8y5h+cWPXJM8zKDBive+J6ctTswDAMjv9z1/fvTBjCzw4X4fD5AwZACCwEEaCzW07luFvH1ksJhG8d0+ZMCKSWja9/B6Np38sVLdmYXK9eDVeTGmnM7oeIS9Ci/7ULXOBHqxIKvBOFWEH4fTn8eetCLZgbAlYhVlInvw8swZ14E+esqXGvx5B8p3J7Fxh9XUBRy4DN18oMO9Ab1T8xcqJIl/2swTZOm9c/mjPblfA5tOjfmte9HEBUbwfKl62lZ+0KaN26NogjOP79fWJZAqTx5/OHx7NqTQc8L2tO9r+2BGTCdBA0HCiHyZ9ieoykt0rj68ZtofmEHLCGwJOQEHWz8ey9Nz2qEADtcFbjuhUu4euwAABqfcWJ+vwdDxrIt+yRrkMyd7mRW1igeWz0uPEWlLMX2vw2umAiatF6BM6KIzleWoGgqMhhAqmlYBBARJUjdQyi+GsHYZII1a6Fs34KopmOtc6A3fQWt7wZKE1YI1WLPHReiFGZiLl3A7M6DANjx3Xy+73kLGyZ/St6Slcc97qq1yf8mnnxiLJZl8dpr7+BxRqKgI4Rgw5pt+IoDZGy3nyOPs05ZGynt0NL4+Niysoa9W/HAyudxx9gh4n/c/zKfnzaEnJWbK1zvmXp3MOWjYpp8N4+QQdjjClyqJOMQOozrU/dPpHl4nP9DeUa3M5+/lcTBt+AZdAOhohJC3gMvpjp1ml7WneaXn4m5fjPm3jhUBexs2RJPjAOQ1GhxIIH6ycTwda9y16bXiU1OCI/TgaKpNL/9Yqr3aEfdS88msnYKhuFm197T0Lo9jxlSIBQid011ghl7kIVbEQooKSrRLQtRIg20RB9EaCg1IzA3DS9bf1739QjOf/E6Bn//MLrhJ5SeyVdXP18WTn0icKrLkxNr1v6X4PbRl7Dq783c8uBFDLqtD1JK1qwpX7TGxcURFxdNXl4hAHu2eCnRNtDljHYMuKo7AI6EJII5eTi0IGqoBO/yJWXtL3vnNsyQiebUGd3pcfL35HPjK9dzV8MRZRpNCSyasqQs1eyxYNbQiWQs3kD/d4cQevM29OZdibvrZX7qMBAhdAJDzoEePZBlKgyJXpxFrWhJixED+eXt38vcpv6t6NxnNpk7a1KttQdF05CWhVniw7KNPDgcZyKtX8GykEVehAkUFhNSHIhQIVpiJL5FBsbSJEKhGCJHrUJaFkZhMc2H9KXxZT3Y+OV8Ujo34+OzHqTBBZ3oeM+Bm8ijhXXcXPRV+Lfhm69+4eYhI7ll6BU8O+6BA84/fO9Elv+9CqfDzfnn9+Gii/pTu1Zz9rXl7w0sZ/EfHxOfGANA6zH3kPPncjKeHo6QgvRnRxPXzSbA9MRHck449/yMl2awZcWPLP9+2QHXlcBf0xZxyROXHHDuSJC1fDPLJnxF5tJNtDLfAcsg4qpRRPS8FF11AoJfu1/ONb+8xYe9H8HeCuloWohqjdJwedwHxFtOPPc56nZtwAUjj/9Z2hejWj1AKMdLNY/kxt+fZnSb0UgsFCFoFF1IlxvOpNl9g/ny8rFlbVaOn8fFd1/B7gIPKhCs+Tzru99Mn5uKiK1XgrlJQ6+NnXZPCHCoWPk+hEfBkiHcHRfh/3QY5pr5WJ4YqB5TYUzt776QWfe+TdHeAkI4EJaBUBQyN1RGO3VsqJIn/1sQQlCvXhoxsVGVni8uLiEvt5DX3nwdpMr111/D5MlvsK8syQquZdmOTaTWKLe2nvHpSxSsWkXR609jGZIdY0dBJ1ue9LivPz3u6w/AiBYjKckv4Y4PbuH2tHvLlJNT7vscgA9yjn1d4s8vZve8ldQ5pz2qoyKpqBV2tVYUBROBtCQSQeH6LST+/iXLctKYmxhNaZjX2NaP89yuk0OQd7xIO7cHtbZ/g2OIvfYr/PlzCqe8SLVOXoRTYDgEKBqipBCZuR1fl3PBDIC6G7V+Z4TqQmgmljSRpoqzRXvypi2x09ICa9/6mg2vTCVkCRShsnfOgbL/WFAlS/738O57L3PGGX1o1KghN3S7lSffmoQUOs89/Ta/vryElfM38taqxwEFgQPD8iGEhZQQCPjR1DgEKmvWLqZhozpl/eZv3Emcls/SGx6k/WcvEle3lk2CHobf66dDbBElloXp8rAlu/x53zdK0zBtyVWREe/IkJqWtl84vp1os/7giw+QLys+m8OCUZ/gqh7HdbPHUvJcLDK/mFLPDU1Inlr770ofWwp/oZdZvQYjb+zLhiWxxHo7IZvPY9fIBwiZGgW+SFJdF5A3v5i0a7eiqpDYewdYdkifFQig+O0kGbk7Mvj47FGAndLeCoRQBGQs3si6L36n/e3nH2ooR4VTWZ78m437Rwy/P8DXX/1McbEdStKkTR3mbHuNy2+zY5V6d7qB6y9+jAYN6nPDDddQWFiI0+HGfiQtCkLb2RtYzvs/jqZpOIVXjx9ep8/CqWi6CajsGHlP2fWEoqCF2cLzduZiGRbTRk6FCuqN40daj9akdGyC/PNzhDQIrZoHgKooUOYwZl+v9LPDEUJ1CnSXw2ZT36e/j4e/z7NnPHZCxnaiEHHBM9Tp4iD2DpugrOjbD8l86GqcdYuJaJqJFbsKGRmNEZ9EoEVbFN2PbFoda4sLR5+FaKd/i0OXqA4LTSnC3LGBiLQUOk24H0VVcUR7aH59XxyRHrwZ+XjTc497zBIwrUMfVTj10LN3Z26+7XKuG1I5Ee+I0TeiapJAIMAXX3zLnXfcT+vWpSEjtigNWEVlyg2wNzqJndsQCtoL+oOlNZv/2lwUYPuibfudsZ/gY1VuAFRr15DOj19LxxGXI8KpC5Wo0jHaqouQBTFpSWVtEp35qKpkS0Yuz9S7A0VYKAI0Ac+d9SR7Vu7i91fnAmAaJlmbMo6b1OuTBz6gJMdPCJWcgOCrwZOQYSJnC0G6z8WmKT8BULhhC27FRMFCxSBvdwbfzujH9Bn9CGlOnG4fimohQxph2iUU6UCc/zeGJwHVKAFVQ8nNQigajk5XQ0Qi+nmvYRGDFQyUjavOWa0JmAJvAOpc0J7E1vUxLLDUE2MfOJw8qcKpB0VR+PnXD5n29SuVnu/SvS2RziiEaT+Pl116HUKUPj/2+x1kBeUGQGTdGrii3EipoChQOO/XSvsvyfEiTcn8d+dyotclK9/8gd9GvM2WbxeQeWMLMm9qBcAv19/HL6dfzi+nX86eVesBgYWCtBkBcOsGZ3ZzcfaD/bH491v/5KaPsbw+Aj/fAoC6ZSSabiBkWIkjBdrqtajFPqhZF6VgD0pxDiJBoiTUBsA9KhMlMhr9lu9IumcMXWd+QEgK1IYNSf9jNaYVjt2X8oT8darWJv+b6NSpAwsXzmLmz18zdMLVfPHJqwy55WLe/OAJkhsnUqt5Ml8MfBKwUBSBrlpIaaHrChdfPBCJxMKgfVtbGWpZFgF/kHM+f4qg6SBgOtn08IEO9uu/XUxG0E12MIqSYsmA2ypygJWG0RqEFRwncEe5v3ID4I/HPkER4Nudh5SS7c0/I7PfHAY8MRBFSJR/8V78m2vGETI0TEvBqZkktW9OcqfW5Ck1yC+JRImLxxU9mupDsynZ6sMs8CFLQhgR0YSSUjF0JyKqDgCF27Iq9H3Jp/eRUjeOhueeRv1zDk2efDQ41eXJ/4QHx5QPvub+u5/l4VG3c+8DNx5w3uV2snLDIvKK00nfk8mNNw6muNhL+eNpEbAKy1x/SmEGAlhhwhirklQ5pmnaGksBS7+qqH1/JWMCUkp2zFtFQuOaRCTHVjg/oZHNwH/jsufLYm/3R/PBfWk+uC+GYVA0wYur11UApI6+g/RRk8vUGgpgIQE797LXjOCZenfgBELCnuPsiT+w4kvbEvFQ3WGM2ToRy7RQToBEsiwLIxBi9/Kt1Ghdl5L8EjLW76FOx/oHbOgebz0MmS8ZvX0SlmVh/jgCpMDYNg9H4/OQa0bjSlbQTD/gQCCQvgBEapCXi69hO7BASSxGxNcCy4tlAghMw6Lkq3fxx7Zg/ftvsbVGCl2mvcyOb3/Fl1PIBe8MI7lTs+Oer71w+xdL0iocE+ITYhnz/MFdLJ1OJ24rkTh3MXm+PWzYuIlffvklfNZ+FgcPvpZdO/fw7rufcdvQ60hMtDMe5XpjcPpDWJbCtvuvpc64D8r6HdtlNP4iH4ooVVruu9QVXPjYBXx40Vji412c8+odqHq5naRUjgC0fqPy9M+KqtBoUHf+euU7dhZexsCP7gPL5gbos+jzinXD1z/r3ccJzf+ZvyfaRIWRKnhLM+Mq9viqOUO80uYuGlzZm18nz+SiF67gtEs6s/2HP1jy8GtUP7cLpz99y0Hv5/7wREdRurGzUFm9Yg8SDY2wKloKdA2y1m6jZnWdRCUHRUBWscKMZ6eFM1tBnYu70Ch0MUKC2kBDWALLD/olWxGKiqLWRUT6UYryMRLsDaRa/wwiH1lBwfQPMXK9LHl8Eku+2EhKh4acM+k2DKkghGDtF39x38aXWfLubGq0P1Eu/lXy5L+Ixi1q49ykoyTupX6DeoweXbrBsFeNuq5jmibPj3uNjh3bcFZPe3ORMWcJRcUqQtExCFXo0zRNZj73DWr45/T1499WOH/j24Npc24rSrIKcCdEIZSjf/83GtQdaVqktq9LyQ8SwhmlrHU7yuqIAj+U0RCCqkocjhA1bx2Mruu2nAmbgDcuXM/bg14mKjWahxc9ddTjORyyNuzCCBiktqzDxvkbmPXmTPLWZ3HNhEtJbdsQ1emgaG8eL3R6hMb3nc7o6+5k9PZJ4HUAApm+lMKNO3HG6yguA5ok2mP3lSBcCvh8OC0/SsCPJVTMiHhk0Ifx53jY9Dh6s3NR69gccM5IDzmRjSj6K5tavdLwGk5CpoVLk9Ts2+kEzLZKlvyvon378o1r1wvb0/XC9mTsyuW1N75CEQpNa8Qz5/lJdLrzAtyuJKRp0aJlS+66eyjvvf8RAMX+XN6c8CUhWcCkETP4auE4ojwBLMMisLOQlf3OZuSWn8uu88erP6EqAkVCiQHfvfY7tZunsn11OmA/Br3v7k6txqm8cstnJNc9PLfHwSAt67DyyACwbJLkj1tfjVM32S1rsDsrhBpevRQXFxMZGXnM4zhZiCzehtAkQaDdpEdQwryAHVrMRtEk1DgN3QiAIZENoiAhAXKKUXPTESE/JCYi8+1QpDrdW9DvldvInPcXP/QdRqOhl+HdmUXxzmyKN+9iwNdPnKBRn9ry5H/Cg6Pvud25+roLGTDwwMwAAFdddz6uUBIg8Pl8jBz5OP6Al31j55cu/Y0NG7bw2qsflBGDhfKL2JvrYE9OIvneSII7ynO1Z+/M5uE6dwOSjld2QkpQw29sFXjm/DE8mDaMGTdPYvaDByf5fKvtoVlvf3ngPd5ofgc/znCh7XodK+Nvmvc7i96LviCmib3AHjTtIRxOjYEfjaD5D7OZs8HOqe7UKaMGatDNJiOK0UMkayFWf7uYR+vexW9vzAbADAT54+4J7J6zpNJxHAzLvvuLB9PuYu/6vXw8cBy/Pj2VR5s9xMsXTeD+msN5u9l1rJ/4IQDfDBmPzLdjT0bXDmd2MFQwFYwAhIq8qE4foWI3orobkRqBtms36p50lCIvSlIySkEOiq8AZUB3FE1HOGIRLgMUC9GgK/E3PgTYnuiBPZl832sof49+g+Uvfc68W55j74ITwHG7D4nRwY4q/O+hc/fWfPrzGNZtnU/IyOGttyYxaNCF4bP2H/3118fz9NMTGPPMZL784oeytq3GPEwg6CZouChcvqlCv3k7cnGoUL9jbfo9eB66Aroiwv/Dt099S86Krcz/cQMP17v7mMf/14Tv2Lt4M8XjaxGaHIOVv/mAOkPXv87Q9a+TfFpLat51D6WvCEWBs6rv4vTUbO6baXOBKAJCJQHW/7ICBZh+3yf49uaw+Mn3kRIyjvJZu2DkAGyJZVs1QaGm2yBaNwCJRzXxGSp/Tvya9hMfwqFa6KpJrebVyF+zHU3YRGORsbGotftDEJSSACJSx8q0EIqtGNI6vIpUNaSqYekVrUSeTj1QomJY9s0WANL/2ogz2o0pBIYFQSkQikL7G3qTGvb2O25UyZL/JL6eO5Hlu6ax7O/fmDbtA7744mMmTXqx7LzPl80HH3zGqMfGMfKhZ8vK6956JYblocgXhS40gts3lJ17svVIfn1lDgLJZROvCBs+woTcwLr5axlZaxgfdnuARS8dmPhuQqPbyo6DIaZuCh0fupy8PV6cN71M7COfAdDnz6lIgpjCJLVLa2p0bUzpGkuoGlKovDzwNZ6pdwdCWLafioC3B70MQFF6PpZhULi3gG2LDpRNR4vpT03j/hrDeO6ssXxwwXMsfXsmr102mU2z1pO9K5/p177I/EG2PP2k32OUM6iFsCyLj78/kx9+b8uG3FHMuWwEFGUQVWMvcksJit+HYoXKQt5kUQBpmFhBA3ez7/B/fg+BHyZhZHnKlMmliExLRErYu3wb+UGdoKWTF3Cxc/nu455z1drkv4XYpEg8DheJcbEMXf0yne68AIBgyDZ2tmnTmpYtm7HvXufZh99GUQQt2tn7B3erdgQMJwKJrgbI+a48c2THIT254v3bGbVpPA16tUGogv4jysMfJDB7/Dzev+0z3t7zAs8tKufTOBrsmLWMD1rezPafl5DzzDXkPGUbc3du2sTMjpcws+MgDMMAFEwUJApNk3KoH5dP924RNL20WVk4/hNNRh7TGE42OndbjDOiCF0PktjJ9nqTlgWKhbRAOJ3IUAgZMpBFRVDkhwIfAWcUZkQUMhAiVGhRNKIaefelUL9XazJn/EYoK5ei9dsY+NMY6p7XkUaXdOevl75kzoPvHH+q3FNcnvxPKDhq1kxh4iujaNCwdqXnu57VjuSUFO65/QFuuPFarrryEvZPnta6dUsee/g57r37cebPWwSAKzmR+Bj75SQtBStY7o+zZsYKABwqXP78lTz060MoikRXBIoCuxenEzRhS7HGb79s5cG0Y8s+kL7YVqo0rzcXNn+FOWsoOZvTyVq/q6xOtZZ1uXnFy9To0AgANdFddq5fnZ20S8wh2mXP06nYG5MNc1ahAD89NR0pJYsff4e9c5ew8P6Xj2p8Xz7weZmXRl5IZcuGrfvkSBbkBR2se+97AHb8tnIfXaDJ0vd/5vXPBvDRd/3447E5zOh1K4ooILbBbgzhAk0BaSDcOqbfiyNvF45QsZ0VIbIr0jQw5g/DdVoX3KNyiL75K7TEZJyp1TA90XSZ+SH+nMKytJuKgNz1W4/uD1AJJOXErgc7qvC/ifanNyc+MRYpJY888iRz584vOyeEoHnTrrz7zhQ6nt6aK668sOxcYreOJMVlkRyXRcjwVOhT0WwxfMXL19JneB/qta9DqfXzysmXIYB0v2ZzSOznyBx5yZF7JGkeO62aI/z/oikLeanBbbze5eBeKyO3TGbklsk8tGkiGWotduTHkLN+N3f9/BAFIZUSQ1Cy1c5eEpUcw4xrx1BcaOI1dHp/PPqIxwa2W78Mb8kMy8IF+EyVOtFFtIkvJM3jR1ckvj8WE1c/DaceQlMkjYf0p/+zg+1nHDteVTv3cxx3BtBv8aFfnInrzgKkZSClhfx7OOaaLIwdXsSyHRXGoKemoSWl0n/KvQhVofm1PRGKwoBXb8VnqURUT6Ioo4AXzhjNF/dPIeANVDaVo8Lh5EkV/vdx1VU3cNll13HnneWhsCNHPMVttzyA263z9nvlig93ajIxUflEeYpwO0uwDLPsnBrOIKar0GnQ6fS89Sz08LpEUwQLPvgTU8LWYo0vX5rDk+2OjQB94cRv+Pb68Uy96X3ErIGEZtqeWn0XTaffwi8AGPj2PTQf1IWeT1+Lq149Wnz/M6VR+k5hB9m63LbsU7FIdZm81XUE71/7Gm8OmsCeVfYaZ8mT7/Jl22vZ/MXcoxrj76/OC69NBAWmysKfFpVJTwEUBVVyduUBEKWUkOjwowhJtBLiqzvfoLAogR0765DSrS1xydn2atlUy1bNivQgzvkDw+1B8RVAIIjIzkTokag1W4IApes46D6lwrjaDT0fwxIUZXmJb1yTkCUQQlBSdPJlSZU8OfWxbu1msrPsUGun08GSvI/4decbKJrKh+98S+cWV9K6dSsiIjyMHfs4Ix4aTWk4PljkhjZTt1F1nnz1VgDaTXyY9q+NJjamECkVMl+dXHYtzalTt1tTVF2lKK8EaUo+HvZhhfGY4V3u8XiDK5qK6tRRNBVz81LMrX9jmiZrrnoQ+4FT2PXjb5SH40sU1UDXQzS68zquG3dzOCumvc4v8Zbw4c1vlXEC/RvgufUrOp+7CHeyzctkZO5h1zVdkPEa7qY5KLE/YsYlYCYkoZgmSuZuFKUY2aA5hIag91qPtTqE7jFxRhiULJlPuydvI7ptM1oMvYiomkl0f+5mml7dm41fL2TTtwsxg8ZhRnVonOry5H8iROVwqFU3lb82f1L2fd26DTzyyIO88sobZGZm4XK5aNXyTDas38zFgy6ga7cOZXUTRjyO6/lHkNKiaJ+UON1v7snyr5eQ0sz2lkhtlMpNb99AflYePa7vwYgWI/HmFO8TolHxQRu+4VWklAeNyS/FVb88yW/PTKX+tbfDwnux2ozg/b62+1HbNy6ttM2Di8pJdmbdMZ69M9eza/luxuycyON170STkoylW8rqLHvhM9Z/vRBdUah9zumHHM/+GPbDvTzX5emw4kKwfvYOQKKEf1oOxUQJB8alOApJ9fjwGRrnzXyRt7o+iqqoFBW5iW9SHZe1HIp1COnozhAiJDGdkUhhYioCtbAIS3dhRt+NJ6Yj3kfqghbEXb8A6d2DiLTT4pkGbN+ts737fTgsB6YhcWp2brzG1/Q7qvkdDP/y57oKJxk+n4+PPvqUsuc6HEO9ecsWVEXnooH9iIqq6CZZUuJAVTVM01eh/Jmt4yt8v/e7eyp8nz5iOsLvo1RtaPiDaC5bSXHD03dC2LN97ty5hxzzjUvG88ZlL7K3/b3Ual2LP5rcBQi8GYWHna+iKJzz9n1krNhGYpMavH7BOEAQtATxWoirv7iHGh0aMv+htyjavQBPzWpEpMQftt/9EaWZSCS6MInTTIpMlYvu/B7N7+fzN2weEtMSzHpyKlENa0FJMdXPOZNAXiH1Y7MJKa5K+5WmH3N2W4hoAN51hDKc+HIiibv0urI6oaJ0+Ks70juclB49uGX1q8hALlJKGp/dilHbJgHw+fD3Kdqdw9+f5RBfK5Gz7ux71PM8YHzH3UMVTlVIKVm3dj2GEbb0SwsQPDfuJTTFTZu2zWnWrFGFNuaZ56L8OJtAUMdVvzxV5KPLnmbTH+up26kBAAMeGUCNZjUJySBdLu3CsNThhCwFVbM9OrxZRZUPqsWhXbxj6iQDkJiYA95dsOlLlmZeweqpv3HFFw+hhRUtZ4VTa2fuJ5vqdpYoa4uITIrhjLcfZEK3Z5GAM8bDzvV7UICPhrzGVc8NZMuXv6JI2DV7KfUv7nG421mG6z+9mfcuf6NsbbJ9QTo6FhINCVhCwa1ZSCmJizSJET5CqkGdRh62/Pg3WjgVfUr3tsSvnYuUErWhZnuY+QT6ZVvsLHVBDREVgQh4MWNiAXCcORS9603kf/4uBS/1wXnrU8weO4cLP76P6JrV8JkKwoLC/BIu+uRBpl71Is0HdD7iuR0KVbLkfxd707M4o/0gWrZqzK8LPj3g/MZ129m6dTs5gXUIIZg1ax5zyowwdjB7kZGOM7x+APvdHt+uGdtCKm6tNM3qgXuT9DW7UYFA4b7hZxJVETy+5FGKduVgGSZx9Q7MXjKh0W1E9arHkFfvr3ReNc9sxdVL7dTTuX+2Q5oWqqrSY97HzO9+JVJCnfN7oNz7SdgEAppm+6dP6PMiIFBFuYLliSa2J/fI2ncxZueJJTE2TRNvZj7RqQlIKdm7Pp2k+tXKZF4pstIzebnLkzy2aYJNuvz+aeB1gi8DAGPhvWiuYiIiM6AYqBOLCASxPBGooRC+0/vY2prsLNQarRFCRZoSKySwTEHuc/ey3dsKcvKYd/bV9FrwBcU79pL15wq6jhhEXIu6ZVyRx4NTWZ78JxQc+8IwDFq06IgMx40iJX6/n/XrNiKEQocObXA4yh/+Wj3OZNFot21d9FTkyrjz+4oPa5vzWrPkm6U8f87zjJw/Ak3TeabF/ZiWRbTnQO3m4ZQbAOl70vn5jT/4+Y0/6Hn3XbjzfJS5nB5B+zOeuJHkbn/T+IIObP59FUgwTEloTxb97juX9rf25YdBTyJRCUo449mbD9vnvkiqk1xG7GNYBopikeaSFBuSQlMn3hGiMGD/zNwOiaJauLQAcdUT0RSJotj8Jq3uuwC+G0kwqKN4LawiE+EQqBesQnXH4fgiCREdhcjJI/Lsy7Byd2JH4nmg7QiUsHID7DRSUkLIF8KvOlFMg4AFsbUS0LTj/8lL7E1WFf676NihBwKFuPhYcnPLiWulDGKYQT78aAp3Dr+pQhtV1VAVkNL2sNo+7mGkw0Od4Q8f0P+Ys8eye9UeACbuGU+gyMeE9g/iUAQhX7mC42gwqs5dALw1cBKxtWIRigCr3M1w7oNvs/WnxVz8/RNYu3cS2bQR2j5KmqSmNUlqWhOA7E3p4VLBHeteLoud7fLkdTRoGUn0PvHCR4M63RuTt2AdipAELInfkGzIrIGxS6dmi2yy1ybi1Cx2TPkWl1NHczvpqKpobhcxNROJbdeirK/ARA9CE4i0aKQRQkloBqaBFXEdWWu+Q1oa1m85pPaw60vfNgIRCciATuHiLkTVGov1S19E8wcQrUeV9dvozGasnr6YyKQoWpzX9pjmuS+q5Ml/G926nsPy5avRVB2X20FxUbEd+oCFaZXw999LD2gT+vFXVFXFtGyPCDMQJJiTj7t6NRqc0bisnqIqdLykAy8NeIlFUxby/NZxrJm9hmm3vIUBpNSsuKYZvuHVIxpzk/6daNLf5oww136MqNaWuZ0mAoJ3ej/Gzb8+U2m7kVts67ARCPFa6+EYoQiS69QgpUE18rZmIbdloyMIodB2UCdm3fEqUmp4EiLo8vwdlfZ5MDTv1qIsPa5hmSiKpJob3KqXDL+LBIefvSUufhk2nrZjhrHq7mcwBXR/+V529BuDLmSZWUpJOx9r47cIEUBGe7BKapWtv7RWL2JtGG7H8bn2yTKh6uipNVETk/n6Dpvr6MMeI7jix6ewEAgJgaBFjfb1uXv90XnOHgxVsuR/GwmJsVx40dmcfkbl753Hx97Ohy9/j0BFSpOht92D7qjora6qKlJK3nxjCued14vqNWyFRFEwheJiL6ZUEBeeRtOvy+XOQ2nDCJngifXgK/Dtw/sHQsIT7Z+kSZQfTRXctOqVCt4cpeFuRbPKjaqVwVfo5d0O94KI4Oa3qmGueh9ni+voHfYIA7h59cu81eJ29Bg3jT+ehhUIQucnw2ctQMHpUvH7TRyKRZzDZOk7s5j11nziaydywye2DFn7zneEvH5a3TnoSG57Ge6vUeqJb1AjWrCrQMPEQhWCBEeAM7vEcsZHY9k652/ev/5NQOGJuncwevsrUOIES0VK8GfnoxQuRAZjoEYkwjTRhIK6YxeKJwJf2zPQCjOQqoI0i9Hb2KFHavVqkJcBikXCXU+z8e7XUBWbFu3vcR+x49MZBAzb40WPj+LCOZMPNpUjwqkuT/4nQlSOBtnZOcTGxJYTioZfUqblwzC9ZOccmPpPVRR7Y+ItwQwZbL7+DLY+ciNmoAizoGLc5Hu3vM/25TsZ2ewR3FEuHlk5lhquEGm1Kk8Xdzi8dsbYslzys1/6keaXdglrWO039+9PfsQ7zW7ix1vGkzN7PsXrNlZo746PpMVlXdE9TqbfXerFIrh8+khOv/08HA4H533xGKmdm3Le1EeOaYxS2qLOo1nEqxbFlkr9uCJaxhUQoVtE6SarP5pBTAI4NQOnZrtNacLWsClYEF0Dq0iiG0HUWgLcKlaL91DdcfaI42JRiwogNhoAJT4N99AfcFz/BfmLLYys9LLx6G4HhiUwpUD3eDAsgSFVCrJ9+w/9mGEd5qjC/zb27s1EYmKETFq3ag5InnvuKTweN6CwdOlKFi9eVqGNlBLTFJgI8n7+iNi9HxCz9XX8YyIJPBON94WYsrpF+1hWMzakozl1WvZuiocggXzvUY/3sdr2i7lUluTvyMc07UwGpSRSW779Exk0mHP1KNbdP4ptk948aH9tL+4ISDSXWoEYrGT9Rna//QG733r/qMcIsG7ORtyqQdASBCzbIXX5lA6sndeGjcurURhSyPY58Zk6eX6d7MKwNSfCTecvX6PpI/YCxgpkIWokQLuGyNg48EQQXL8Ma/GvWCufQnMEURQTPaHcy8RRrTNKSTGW10IXkpK/h0FELYhuXGGMrS/qwOjtk3hwyTMk1at2TPPcH1Wy5L+Ldu1aIzGxpOT2228GAXfdNZRrr7kCEBQVeXn11XcqtJFIrH2Uk7l3NcD3bHs23tMb/9gISt7pXlb351dmsWXRNrYs2s6oVo/Q5tw2DHziIlKcITpddGzElo+2H8ajtexjdN8/URLKvUgMX+gQLW1oTp3B85/lim/sNUfeVjsrQElA0qBlCqM2vsDZD1yAIyEKkNS7uAea++iVulJamNLCrZokqAYBS6Fr79/p2GA7SW6DZHeQ3F+XEt+0Hg4thBAWEfGxtBrUiXIGM9DOnYZjeAD9Zh+Oy3NwDVmGDGdTkesfxdiYQ8hnofy9s8L1I888l7TXvia2fgpSQrVWdYhJSySmaW28poJUHAR9QVb/8Dchf/Co51cZqtYm/7vQdZ13PnyOm2+7otLzQgjqNalJ52bncellAxn73OPk5JQaYOzf8q5d68jPL+SuYY8xZky5Yq3922OxpIq0NIzAgYkPHCrUapHKmK3jUMP8YLpSvqbYWaKypUhnRO27jmlueRvtNXxkZBFyyTjM2bfjyy9m1Rd/lNXRNI1b173ODQvHo8fG4UxOLjuX6pSclpTN+f3tMpdiZ1XZ/PMyCnflsu33DWRtzcT0B1gzcSqb3vmGYFHJUY9TCIFAJaPYQiJR7Fxv5AYd5KzZDsAfoz5CC5OeK9iJGF6fMoDPfuhBUNThpz53YBTmENt0O2auQMZHQl4+wq0jdQVXYTp6qBg1UIISnYS0TMwNn+Gs7sA1/DciR+cS0fls2n31CiGpEjfwPDZ98kuYu8zO2BfMPYh33lHiVJYn/zkPjtM79SQ/vwAhVOJio8jLy6NW7Trs3GE/XGOeHc/1119Fgwb1ytpYEixToERHk3VXHZKSwCzeifFCDUDgr96KiOttNzBFFVjh/GdSSj6560NiWtSh+blHb+mbMvSNcD/lZQsmzMDEtkoEvX62fGanjs38fQUb183CVbM6baa8Xml/LQe2Y8HrcwBIapZWVh7cuo34LbMI/Z0Gzeoc9TiruQx0RRKhgS4ElgmX3DQNaUl+eHcQQsCq92bQ5erz2fX+57hr21ZgRdiuuHG149EcHuQdPqxgIWLnz1Dv4gpZbSxNQ1FVUMstJGpaG4q/+5SiGVP5+/dCNi5I5/QRg5DVFXymAiYkt6+Pbgm2zVpORFLcUc+tMkj+/SnuqnBykb53I253AoVFBTRo2JPFS/5AURR+m/8n335rpzL1eiu+PDvM+ansc9ZtaWB4UN1+hLQ17qoVYPPrH5I55TPufn8Mr9z6BYoQpDSuzr01hgGSwW/eQmxd+wW+ZtkyFl81EVMKBq+tuAE6GEplSauL27Pl64XhVNJ2oR7pIlTsp9nwKxCrFlHt/D4H7ceX70VXoN2lZ1QoD3r9RJ3RhZTLBh7RePaHLiVZQScSBQUFoQgMLJACQRCf4cBExamGiGtTn8QmNSvtx1jSC8syESEDUeLFSKwBejKsXI3VqCEp2nrouRBngxYV2q17KgXzSsHuJ8FKUGn09lpWT5oKfE7zO489Ve+hUCVP/tuYOOk53n7nXfx+P59++gW5ubuJiYmhsLCQDz/8DJDklm1SbLSf/SOFy5YR3bYtc+bMQXeBEJLqMX8hTB01s9z6evolHfnmyW8AiEiMID8zj+UzVxNfI4aEhqnHNuhMe2NTKk8sw8QMh/B2vncAuxeu46fBLwBw3rhL8OfnYJb4UD3l/GARSTEHdGsoKld+W25oGfjZQ+TOnku1AccWBpagh9A1gQAcArympPEZWTRtto2pr12KKVUs4JtbX0cYCTg9UTjiY2k1oA1i7neoaZXzusmSnZjzuiLSrgQzh1C6A3aB66Lny+oE0+cgVt+IZQku/74isfQ1U+7gh1HT6HXfBXx845tsmb8Oxe3krtkjia1x9KF9ZeOiSpb81zFrSblhYvfuPTzxxKNMmzadpUttg8ubb07B7VaJT4hi2PAhZXUj6tUiKS4LRQi8JRVDPU+7rBObf1vPLZ8PB+DBn+7nx8k/0vWarmi6yqSLbEWJ7dVU8Qc4fMOrZG3eSVL9NA6F6qc1oO2t5xBdIwHcBkpCUya3t73k/3rzJwb/+Hil7Uq9wrbP+INvhn+I2K0yZudExrS5n/z8EmJzi8vqevOKyd+8F5+hEJkcixZReUjrwWGH8KhCIFFRhYWKnd1FRaJr8Pekz0mKDeLIz0eikO3T+eD6l5Do5BXGUdPlwBNdjKaEMPwO1GiJ6ivBUlWkqmDpOiInDyIjsHQn7hYz8L5wJuRswdkgD7n6deg6HoCY5CS25sey9Z0/SaibjHdXJkJYqBLqXdLjKOdW2WxPbXnyn1NwjHz4Pm677S6ktLh40EXExcUwatRIRjz0OJMnv4kQ8PPMORUUHB3m/AjYMe4aKv5cD2rEPpuXvOX8cdYAVMtg1OwJRNaphcPh4Ptx01n5k51J4Oqvysm83mkyhGinQWFAY8i6g29MtszbQHmsm41l788vc43055fQ9s4BLJswnRa3X0hqNYGn9sGFSElmEboCzQe0r1AuVBXF7UJxOg97/yqDLgwUAdGawR6vgwR3kDlzetDhkg2ETIFhKciMbJb/sI3CnGr0Gmczl7esG8QqKqLDh3ZqOCEUVGcsNLA3EjJ3ETjiMJcMRa7Zi6FLRKgQepRfO6r3ANSoGH68ZToAfz77BQ1eugiJvajJ35rL1VPv5a83f6bFJRU3Y8cMWZrloQr/Vei6TnR0DAUF+Xwx7QtGPJTG2OeeZvLLL4QVHJIuXQ5uHQ0EHJheD7pl4JRBFF2gXjSTnBueRVMFm4Y9yGMLvufnp79i1pjSbAcK7970Pi/stsM/fr10AimR5lEwWZfHzV7y0rWM/XohFmFvMOCaRZPKq17Y7ZA9pbWrx4Yfl9N0P8Xt1glv49uxm92zltLtp/fRo48uXZtTC6ChEwIcwsKjCRQsJAIVBVNYuBQLLItBnz5Q1s7wFcP8C6HL52gRcUhFQbF8gAkRkShmCN8ODUeTBFAVFI8DvUELSjZsYucrr1Nr2FDc9eoCKtJS8Ps9qHttj69NH/0IgpOm4KiSJ1WolpTMjp072L5tG9dccwPffDOtQqrD5i2aVKgvhCCmnS0HzJ0rMQM6ZkhBjc8CoSM1g8XX3o7cuRXDFExK/76s7b1lbtaCay8s5314p8kQXJpFXkhy+/qDe2C9d6ttQNlX7iyb+ntYugh+efgTet9drpDImTUPs3EdglnZuA+yPnG4FEJ+k/7PX1OhPOOLr8n8Yjp6QgKJfXsfdEwHQ1BCjGahY7Kj2ElapJ9PnukPSJyaD11xoEqJsnsrPh9oYda8qIZ1iG3bjJqXnlfe12Q3RDoQ1SKRZhKKKwJZtJOA/xqyVv+KlIIa8eWZ/KyVNxKKiIKYFMyZHXC3HIO1fDTKGe/gjmnIxeNt/p+MtbtQBBglAXyFPmJrcOyokiVV2AdDhgzll19m2V/CD+yox57muXGPkZSUQIMGFTOBFRd70FQFyzQrlF/y/FUVvtdqnUbvW3vz8iWTqde+Li9sHsfcl77j19dm46iEteFwyo1S/PCSndURkcwT20YBQwFB3uasw7atdU5n+r7kILmlrZQM5PvttpsyaNaxFudOvg1h2d7jplS5cNb4IxrTvpDYnudW2HOjuttEFUF2lkSS4ApQEtLYvSmLGh2aYKb/CljENEtm1e8b0VT7T6BHR9Dlmh+RxaBWN5H5YDkFSoePUdP6Evg6BT02GgwTIycXoTrBXwACZM1rEJ3Kw/8UxU5fb0mJFRFDYSgXIUEVcNrI6w42jaOa8KksT/5zISo33zyY1FTbAvrZZ9M47bS2uN1uHhv1YNgiIenZ6+CLe3+Jhq/YRcCrYRhBQsJPxN2F6IRQFFh/6314M4p4vu2DzB4/h32VE6VwaBJVkTi0Qzv4PLqq1BpgkwuO2vJi2TdTQnSNeNrech5D1rxJu9v6k3rxBcS0b3PQ/lTNjtet36N5WZmUkjUPjyOkx6IkHb0154+3fiFkgmFBblBHqApRukHGumS+fqI7xSGNgKVSFHKQvS2XECru6nau7LRB55DU6ww8KQkABH4YQuCVNIJL7sfw5WAuHIi56ArwbiK0UyOw2YmoWS5oLcvC3P0Rnm5n0+K6XiCg84OXoLkc+IVGiakQVScVZ5Sbrvf0Jzbt2HN074vS+3+oowr/+6hWLZn4uCTq16/H88+PR1UiOOecC5CYSCwKC23yzrzcAoqLK3pzZGyrS3p6KnnpqRD0YPncZL10BTvy49mT50FNTMKyLP58azYLXrfz0itINCH5cPx7PN3uQZyXtMYb0igKHl5P3fmmM+14dCGpe1XYayFsgb19wdNHPOcx9e5gTL07mPPMVzy4fgK1T69Iflj7sl7EtWtEXPuWqO6jV5jWiQrg1kqI0gzcahChSDTFT3RqFNeueZcWl3eldkwBNWL3C9P5pjZi7+8wvQ4AhiWQnihQNKTmgFAAfIV4V7vw/16AVGxLctHKVRSvXEXx6rUA5dxMWJim/ffrNfUZen1WOafAicDh5EkV/vdxVs8zadumLf3O7cv3381AVSKIi0sNyxKTvXszDtrWMnR2rK9D7t44/Hk6vkIHofbvENq+HRCoiv0j+uSG13i2aSmB8YGW1giHiVs3cQv1kGPtdttZlKedtPv45dHP7IAOKXFEumh963nU7tOOLk9fR6MnRuCuW+ugyg0ATImmQLNz2pQVSdNEuiJJOP88YrscGwGnaSpkB3T2BNwIJUS2z8IKp5nM8kawt8RNhi+CUGIyuX4HoZC9JnMmxNH2lSdJ6mGTroeyfoQmtaBxHWRUNJYzn9DWXZgLv0Lf+yJCsVAUCxkodwuXjmY4jCBa9lZkjEBm/g65S6FwfYUx3vz1vbS+pBMPLH6S1KbHo92oWptUoRxSSv5atBRd24doUggkdjaxLVvXH9BGVRUUBZRwSvVtg9uwc0gLClfOoeS5WMyQv6zuK5e9QtBnsH7+RnJ2ZtPn4Yto3aYa1dwGBdsPDPU/HB6tNaws3AUJG+evxpQCKaH5Vd3IWb+Td5rdxDvNbiJn7u/seP09O81q2dQEjc5rT0ytpPJOEDS8ugeDPryXmJRYoqsnElEths6PVh7iczjoIoQpLTRMYhQTr6HSuME2WsUVUDvCh0OxKJrzJw0GnYVTM3GoIXq++QSaAF3YigcAGXKBJlHiQUnRMHcFUNPCSuHIGNSiApRQAKrdCEDEPXNx3fYDeX/HUPTzdxXGJCLdBC2BKyWOkCmwUAla6nFltSnFqS5P/nMeHACdT+/Ml199TVFhEUMG38zll13DhIkvYklbuzfuuUm89fakSttmbKtDyHIQHekmtk4uhARrrm7J9rw2qPjp8e1L7Fq6BV9+CRoWBiqakDyUNgynWyADkuR4QcCnkzTi3MOOVYjypYimaZx2Q0+WvDubQW/eyi5yjmi+Y1vehfQadLn/HK76eBi1OjU8oE4gK5f1Y98gqXvHI+qzFBt/XU2xaadiM1DDLu8qIakAJgFL4A3q6Bj4AhIjoKGGSVzr3nR5xbnmfAtNE6Doa+QvH0K1/sjdf2CKvmSuWwFSkHZf+WYs9HMDFLcDY9PTdB2xja4j7Kwyc+fOpddDF7LgrdmcPWIAX977Ed58L5dNHozjGOJ4K8O/Pf9zFU4+Vq5cwNat28nKyqZ7t14ArFm9DoRGtWpJxMfHEwgEaVa/LzVqJrN45ddlbXflVyNkaaRYgoaxPoQqWTX3NEAlhJuiGi34/bbn6HbnOZjBEDu+/p31u2yLxOoXluBQBNumbOWJ7e8e0Vj7PXIxrfqfRlztJDwxdnztg5uPjthu7vjvKPcCsQj5Aqh6ecpby1dC3jsv4Y6Np/n7Xx+sm0Mi0iXw6CGChoVDGBSbIVJSDHr/Mh6AzqMHk3tBB5yJ+4WbSZCWBNVWUIiEDoTit6Pn7EaYIWRJkMjUPEQwiKk7YVsx/rfbUu36xUS2aIanoZ11ov3sX5jz7WSa3PA3RqKteI2sfSAr/IlGlTz5b+Odd17m++9/YtOmLcz4wQ5ls8lGNSIjI7n11hsA6Nn1akLBEPMWflrmyRkMOdmVX43EoE6dZFDdXvJn3M3uAnvBXKO3rYRMX7EDwx8CTBQ0lPC6xKFAfKNqRIU0nJaFeVb1Q461futGFcJTntwxkZdOu5dgnh8pBMP/tkNTeo2/rayN4jj0e7dWxwYgwOEpV4qWbN/FznenYknw5gZo8dQ9h+ihcmiqHR8PEKGCvdVTkUhquH1khHQsBHlrd9Fh6ACK63gO6CPkS4cN92L5gghVQQS8WLUaI/I2InxZBGvXIOXyBGSNYXiatilr5+7xLUt6nU1MlK0oTRn2FZ7zlpCxMkCsKx9XYiwAcWmJDHz+6qOe28FQJUuqADDzp1kUFtoKtzFjnuChBx/BoTs4/XRbaVdc7OPSS69n6tT3ytqYUiJNgQmUFOQRH59lP5ffDEAIBeOlBNQHbOPCOff35evR3yKB6OQYJp03jrzNBfS+8WyiapYbEyc1vAa1gYehMyoPnd8X+/52Exul2B6mCFZ8+BuRarkyY9c7U/Bt30nywPNxVjvQcOkvLDUoSc555OKy9NlWKISVn41v5jS4/Og9wiLdAo80QIJbsygIKvS4bAmi6HemvXEplgTTgj2bComK8iEcbrQIN9XqxpK3PQ81zFrhuDXfHk/eOoiuj75P6L3iN7B0J1LT8XjsMD4RkQA+A9/i+exam8Oiu2chNIVbV79KQa4fgcr6GSsY/NNoPuz3JIp2aCX10eBUlif/SQXHzTdfjxBw5ZUXc/HFtiZv+LB7QNi34/kXbFbeQf1vJycnn1nzPyzjg9hdYG9MTAkNY31IU7B2dUtAwcTNoqHjccRHMeiVG4iIdfHKpROwX6uSgA8cCuT643h03QtHNNYntldUtPR++GJ6P3wxALsOkxYSYOZTnyO9IUDw+7gZdNtyfoXzRmY6Scl+tLMvILLTod3SK8NV797OxEY3IITEJUx0tQQVJUxcKFERqIqJLiwu//VZpCXxxB9IuBpc0AqZGItwuyAUxIxNglVfoRR6UfWNKErbsMFoH9c5RRByxSAjE1F8PsRfg0EawB10vrEnnW/sSe6OLJZ/vhCAT257l+veu+Wo57g/JP/+/M9VOPnQdZ0WzU/Hsix6n92b2bNmM2/+LPr2HUBuTj7vvPMR11xzGWd0O40aNZIrtA1ZKiDIKlIxAgogqFcznZA7SFZBBFnzVqAI6HhpbyJqVyfr9xWwq9R6YmKLbsno2ncCFh4Nat3dqUL41v6o0arOcc23Zvta4U/2j//tbg8zdNkLZSSjittD0i13o8Ydu6fUub++zk/dB5MaV4jTYVLgdbI3MwbLtMosEvGntSCQk8/CIY+QdklfqvfrhohIwDJ8KA57oeBp/AaB2Y3BoYGUKIqJ8PsRloVUNJAgfBsxivYQ0biiFwqehgTjayISrz/meRwNquRJFQAuHHAlAI+NeoSXXpzA7Dk/0r37OViWxcyZs+jTpxfe4hJCoYoknqalYJgOCvyRWIaCCKgEFEGM20uBz8XuXzbyZdtruXT8PWhJiez4ZRlfjptJqaISFHI3ZHLX9rePeKwdBndh6Ud/MvRnOx3jHb89w8zRn9P1znOOuI8pt0xi58+2FfmhLQey/buSE0i7oDN7/txMZKM6R9zvvqgVVUxWSQQSBYdqoQgNVdgblHaPXcfsxz5BU0DXTToN71+Watv4/RpIn4sYuA3UBEKo6IEiiHVhKREIyySYE0FEEwv0CPSSpeid+1K4eClFy1dQ/fprKFi8FCjE748EJHunB4mLV1hw5/Mkd23NGZPuO6Y5HQpVsqQKpejTtxcJiQlkZ2fwyCNPMPPn72jXrg1xcXG88MJ4QDJ//oIKbTrtwxO2+7pqaHoMlgWOxHywBFKYLOg5EE0G8Fgqk9K/xQiEkJZkW5hgd97stZzxgP2ufqPhDdSIAGPPkRD8l/5wbYXku72egnCoOUDHey9m5+y/qd61OY1u6UMwI6tS5QbAnuU70BVwx0WWKTcAzBI/ittDXPeuRzCeA1His0iMMFGEZHeJQqrbxyfPDURi4tFMTKni0kxWvPgJoZxq1Lu4O0JRaNu7Lnu/3kjNm65m1z79KXF26KGV8RMyex5K01EoWV7MPSUIl4Qu5YoKLTGZGhM+Y9k9UxBiO9KwlSWmFCjYPCAJDapzyaf34Y49kCT2WHCqy5P/XIgKwNl9zuLBh+5i5MNPHZBq1el0smuXnZ5xz+4Mdu5Ix9rHDSpkaUgUMgschHwaRkihaa3NNKuxjXhPFt5dmeSt2EzTfm3Ys2Attj3C/oXYelGJWRJkdO07ea7+7TxX/3bG1r/9pM112/x14U+2O+lfr/1U4XwoI53gtk048BHTotEB7Q+HHXMWUj/WQEXi0QJEaRLTCuLyCAbOGUfNbk2Ic5SQ6C7GHRtZptwwNr2PMb0pRshmDjdNCwJeCAagxEuoWk2IiYAoB4E4D6nDriJ15FicieUbxYDiYOd7FjIgCS46DbL+hKyKAlt3O223N0XQ8MymnCjIwxxV+G8gOaUaqqYyePA1fPf9dDp37shTT43CsixuvulOxox5iS++eZmJrz5WoZ2ongQEqJtWiKpLNE0SVyOb6KQckqK9uCNBKFDtjBYs/2A2uRv2kOw2gSA9L+/AY5teLBPerrCX1/Ek85r/5hxeHzSBUDDE6Np3hBUnFdGgaytqdKiHRzWI0kwsn7+cQj2M2HMvIqpz9wPaHin0CA/1zkjDb2jsyY/FZ+iYFnx71ZgK9fJWbyF/5UZy/lwOgOGvDgUWproPv5AjEYIBrICBmVOEdLiwnC4UXUe2qolskYa55JUK/QY3LEUoOp4uK3A3PnqL8bGiSpZUoWXLZkRGRlArrSafTf2Idu3a8NhjD+Er8XNuv0v48MPP+HPZFyxZ9U2FdYsEkBZRkRkoTvt9amXGkZaQTZPUXaU12P7VbJxunWVvzaSc/16W/T+69p2Mrn1ka5ILRl/OqE3jSaprezfpbifnjb2amJpHrty0lRv29X9+biqWUTHuv2DGVwT/+I6mN/ShzrUXHXG/+yLGIYlzlBCj+4nVgyjSok6/Dlzx52TqXtqHVpd2Ii2miBYX7xcCs2kaoiQb+cvZ6A4HUujIyGikoiJdHpSiXKxCk4KFEag52chkm1R597vvs/fjz/Dv2k1k65ZAuUdI9ataEdO4FnUuOouG1/Q7pvkcCarWJlUAO2Rj4sRnATAMk1tvubMCcT+A13vwTBuWiCQvIxFvXiTBIo3iLBWz/68oZhAQZd4IY1vez5jm5e/KrJXlfBl2diiwjiDVaLlIk1wzYyiepBgIh0Hcv/lldI+Ly+eMo/uT1+OuWZ2Y01oftK/IJHufsT/f4MaxkzG8Pnb/upxQYXFlTQ8Jl6KSFXSxN+AO21slJgoCjSyfi2yfgxy/Ez9OvIZKQNqea7WvHkCdGy+jziU2cXvg/Y4EJ3sITE0kOD0Ja/Mk5I73sAo3UrA2kr1/NyYYeTZaJ/u+WpZFYGYDrHUXM/CzkcTUT6HDvQMAaDigs52RyenBsixialcjvv6J8zo9leXJYT04hBAuYB7gDNefJqUcJYT4DCjNnxcL5Esp21TSfhtQhG12NKSU7fev80/glpvvYuOGzdSqVZ8tW+1F8uuvvcPQ2++me7dzePTRB5m38FOklGha+W2ynA6k30/zetmomoWQgoT6uwlkJpBsgV+x0KNscrBNPywm2SNxRGv48ku4ZNoIXutf0XPjwEjYI0ewJMiU297hylcG83gdmzhs9H4eHzf8MJJxDe9EF3bKpGWfzKXDreUEYJ5Wp1HnjaloiUkcC6JT7HZO1aReTBGFfkG8u4SzF00BoN+b97FgyMNEpu3n9rpgKEJayG+bwUWbkFIgXLYywoqMQeYX41vvJKJ1DOrubLQkP3rTMyleuQpHaiqOxAQ2PlONCLef9DFgGJE0mb6IQE4+clV5bGFUUvQB9+R4ITm1iXeqcOKwc+caLMvCoScAgoSEBLZtX8FzY8eTkZHF46PHMHToDSQkJFRod/EPLzL31rEsn7+BZvoiCEJ0gyIcIQeaw0uMtwglLgmH20WHPiuIN7aRevUbbJmziqYDOqHtY5UISHBzfC+bH574CoBJvZ/mUFKp5wMX8sPVYxACfIY8QEF8ItBs0vMsb3s9TixCpoPtxR6SdhcSKgnw0flPElMtEmvtGkK4OPth2yNL7liEdIK1/beyfpxdfyf/17kULphHQupKglnL0Fu2x8z+EVGzLug6ZvaasvreX7+i+L1RGD3vAHoCYC5/AiJqoza47oTPsxRV8qQKAEuXzScnJ5fkavUBQcNG9Vm6dB6TJ79B+p4MhgweypVXDkJVK7ofxzWrS8zZDVj3s0IHZQlYkNJmB76tXjK2JtGybQFZuxU6vzCcnb+twQyEaJjqwZfvJaFZLa6Y/nAFheaJfKIL9uax7seVUOdgNexl8qo35pKQlEi7wT3LzkR164WRm0Nk5zOPfQACEjwhYl1FKIpJkd9NZEQIR7Rt4ezwxK1Yj92EoqlYhlHeTlORIRPMcPaa6HhCcQloeXtQgiVYW7KIamAiFQVrmw+54z1Cze+l7sgH8W/bjqtWGkII2nz7PdsebktKi91QvB3N7aLto0MqGeiJQZUsqcK+cDhcgEbtWjXZsmUL8XH2Ovy5cU8jMQmFbKVifl4hixetpOfZncuUIOnb6lPgiybS4aV6xFZcySXkvXUhOwtsIt2aV55lX8PtwAqAEvCjCB0hRFnoG0Rz+e+jiT6CDIadbz2LBa/NgQho1LwJdWeMZNpNr9P2qiP3LB9T746yzw+un4CqV5SVid1OY+vuPfh2Z2KW+I6aBN2jhSiRttk6UgVbFKs265plElAcKFhU79SEDTOWUvssWwnjrpFCnSF2CL20/MBWaN8IYYYQJSVY2UHIKoKP21G8uQ2WqZO3yEfUzfZ1A/MHgEPFEsWIHT9x+fT7oMDe5wx47koiEqJof3VX3hr4IjuWbqfj4O70f+L4SdFPdXlyJCEqAaCnlLJYCKEDvwkhZkgpLyutIIR4ASg4RB9nSSmzj3OsJxTvvPsyV155IxdddAH16rbks6nvM+SGa9i6dTvPPz+JBx54jDO6dKJTp4r6mEsWvs3vd7/Aoplu6vdYCoYgrlkePqFgCR+t44twtrCzJ1x42xxyMmuQMPBNstbuJLlVbZoM68S6iXbIROnv5ljdaLI2Z7Dqu7958s/SDC0H/hJVVSU6QqAbISTgT88/oI6efIyp4oDElo1IqW6RrVikxBQR6XSwu7B8MyeE4Ix3n0FaFiW7M3BXr2ZvihSBDEnQbGFheWIwdReKCgQD6Ll70RoaFP7hJKaDB7XRMPw7drL+rvuJaN6UJhNfREonpikwDA1dVxB6JL9cdh/mFZ2RvU7O5gso0ypX4b+JMWPG8PBIO4zNtLx2XnRhP8U5OTmkpjaiqKgQEX6y97ealELZtpYa0V6IlSiqQiBdQ1pghky0+CwiBtrpEh1rJtIsTSILXqXT7c+Wtd9fcTf3CELWDoqwTuPMYX359t4pB61W47T6SGm/9ITjaFOsHRmMEj+FRVAkPfhMlRJDIX9LMZZpkb8jh4Ide4jQnUgpyN+VTXy9VKyQB1lsQWzFMeXN+B7v38uo9uobuOrambFKno1FqVeMDGqoe7aV1VWi4rDstDIAWN5dsGYcUgisetcc9O943PiPyhMhxGjgJqDU5DdSSvlD+NwI4AZsw8gwKeVP4fLTgPewdXo/AMOllFII4QQ+AE4DcoDLpJTbwm2uA0pzjz4lpXw/XF4X+BSIB5YC10gpgydxygdAVcpdiU3LS2xsDCAQQrBxw2ZatTqd3bt3l8kSy7IOUHAAhEogxuGDeAHFJkSoCAUSamZhJbYmrrofoShULxrMtffvQly4kqzVGSQ0PpDU8nh/iu9c9TIb562nZptaZK3YBgiajuh8QPjcAxsnMKHRUNyaRdBS2PH76goKDj25OtVuvuu4xnLBXx/y11nnoaoS01IoDikUfLOM5nd7cYXduBVNZdObn7PlzWloT9hcJ1KoICRKku3Z4Uy9H2v57eBwgBAoziAiGPY4kbYLnfV5K1y3eHHVKDfmqB4PqeebKKRg1Xr4uOZyRPiPypIqVI7+/c/lyy8/okOHdrRo3o6CApsPpnRtPGPG5wA8OuIlPv7wGz6e9hJ9+9kemJnF8fgNF37DAVhgCQwFkqLyyfNGsOvjuXz5yRwuefJGap3flUUTvmH6i+GMLZiACkhe6jCKCM0KB8NBh7cr33j3G3ER/UaUe2rpbidXfDSs0roHRylHmKRgZzbx9co9vmUoRMEbT6MPuPaYMrwBpEX62OVVAAVdMZBCoAoTKSVtL23Ppq+XAJL6vVrQc8zgyjvxbcF0C9SQgQj4MZ0RWGYWWqGBUTuF6HpZFG9LJPqCfe6TXgPF2IoqTfzZz6DurAfbp6L0/gmlWlf6PGx7kO35ezuaAn++O49+Iy9Ed+mVj+FIcYrLk8Ou2KSNUl8enVJCiTCE/aRcCnxyUkZ4ktCqVQtWrfqTWbN+ZceO3XQ+vTcXXDCIKR9PBSRSSiZNrJwUx1mURVpcISJBoKQIQgU6SFDxo8Xk4bnybkLr3sCVuYTq4hsiU2Kpe1ZLhBBcfu/VjN4+idHbJ/Hg5pd5YPPL3H+UZH/7o1nflhxqWRJdrfxBPhlb/ppXDMSSgl158RQHHFhS8vuTFTdJ2z76lt8GDiNj1p8ASFUgdQURVQcANbE/lqag+IsRVgg1VITDzCLm9ALkNi/BSTVwpCST0K8v1S4eGO5VRUoLsAiGFxs1+56OHhNx8pQblGs1D3UcDkKId4QQmUKIVfuUxQshfhZCbAz/H7fPuRFCiE1CiPVCiL77lJ8mhFgZPjdRnMyJVwGgTLlRCiEE8+Z/j5S2Uq24qJjrrruy7Hz9epW7UoYCkpCpkf1XFCVrFDYtrMXyxW0wVRPLG43x/TCGpQ5HOJUwec/ckzanZ3dM5NmdE2nepw21Ojbg3CcvPWjdPuOuI9YZpH69k6Pg0DwuIjwqPlPD3uxJNAHOKDeWFFg4KbX8RiRFA+C+PwPH3VtwD99Toa+0kY9Qb8LkMuUGgIzUUPfuRtuzAzVUTtTsbteDhPtfRqtup85TImoiIyIhMvqkzLNsPByfLIFTWp68JKVsEz5KlRvNgMuB5sA5wCtClKX2eBW4GWgYPkpJH24A8qSUDYCXgLHhvuKBUUAnoCMwap/7MDZ8/YZAXriPfxSqqjJ+wpgyWbJ16w5OO608FfPddz1Uabu8JesQqASzTIhS8e9SKClyEwwomDv/QI027Xdi+ipcoTwcczpT58wWRKXYt6J0TTJ6u70meeA41iSbftsAwK7lO8rK9s12UApFVfHoFpoKDlWy+88DszocLxRFoVr/c0kviGN3QSJBw4E3oLH2s7lYhsneFdvIXb+D7XNWoEZ6yvzkZW7AVhTVtDcpIqoDUnEgQyHMdC/C7cFyujCkEzzSDnkTB9oLpZR4em3C1WsTnoYH2fCcQFStTaqwL1RVpV69OtSu1YJQyL79kZERxMREowiFG2+4k9/mL+DawQO59Ipz6dCxVVlbfwhAEjQsFIeBNBRUn4PkmAIapezBZn2QlOzKZulrM1j62o/Yig0LUEGUbzAty/586LyRR4b0VTv46ZmvKlAHVIRNTfpB38fxZu1jd9c0orr3RomKPiblBoBTk8TrXmJ0Pwm6H80y6TDycq5e+jpdn72dahEl1IopIiKmfG1k/HYNxvtujKlhxaeUaFbIpixwucDlwSxRETWjUJJiiG6cRZ2pi4gdUO7ppXWYxJoXk9g1IZrsySWIOpdB9b4QXTF9+Bm39iKubhLXfXDb8Ss3OPXlyRGZpIQQqhDibyAT+FlKuXCf092ADCnlxoM0l8BMIcQSIcTNR3K9kwlViSg7AD755B3A3qT88vM8IiNLYyYln346rdI+CjfvIRBQyV3oJpAu2bs8gZVLWmMqTjAc5I27iDfv/BpcKsJ94ths90eNlmk8u3Mife46D098JJ1v7lVpvatnjaXn2GuJTXZy1bcjKq1zPEi9YhAhSyVkaRQEPOz1usnZlI6/wMuiV2ew/ot5rJoyF1daKhG17YdcZoeQ+RZ0nw6A5tuLnrs3HNdmIQJ+hJQQCiFNidB8mOm/U+e+u4g/03ZZaz97Bg3v202TwUtp9KBtBGwz8no8qScmHeyhcAJSJ71H+eK8FA8Bs8IL7lnh78e64K/CSYJpeQ8o69z5dEY/PgIpJcnJyfTp0wsZVjpWq5ZI40btkfvRUfeY8Sa9Z7/Nd7P78+onV7M1vS61G20kIqmYyMZbcbcvwJSwalMdDLcT5Zzf2Ll2F/M//uOkzc0V7WbI53fR8dqD82h8c9+HFAU18tIP5bR3fMhwp1AYEuQFBaYER/jXHlUvlaAlMKMjkQjebn83AMFgkM96PsjSVytmb9GiY/A0rrgI8NyRCaEQBEPIPnMqnHO06AZaecYHrX862vm7Tp73RhgnIA3be/zvyJMBwKdSyoCUciuwCegohEgFoqWUC6T9MH0AXLhPm/fDn6cBvcILoL7Ya5ZcKWUe8DNwTvhcz3Bdwm1L+/p/Q6kseWxUueLijjtu5qyzuiGlpHWrVtStW6vMfGFJi8+nTj+gnyZ3XEq9y3ux6MfT+XDCeXz68SC2bq6L5SxBdQZQC2dwZ8pwhEcDjwZO90mb07BZD+GJ9XDr9LtRImx7WHKTytOfRtZIwLQkIQsu/fLEr00AvBG1KAg4CJqCbUVuthe52Lkpm0Wv/chng8Yy49JR7Fq+m6xgJIpTxwoGkEEFaQqMlfb6UHXE4ei2gsyF1+M1RxNYH0doZyJ685HIpmlQLRlaV8xOlzPmJjKGtMa3bB5ge99YeSsPsTE7Maham5wchPdBy4QQ31VyrocQokAI8Xf4eKyyPv4JlL67LMtiyscfsGLlYurXr0vLVi3Yvn0XPXqcS1xCBK++9STxCbFl7Qb88R7Nb+qD0BWELhAC4utmkdpoKzEpmXTqlE2r+utpeuO51OzcFD3SRd/rO9OgVgQ3vXsDT2ybWNbX8WbieO/aVxmRNoxnTnuY1897jgWvz2bCmY8fUG/wjJFEagaxjhAKJs7ocg4cIQQpdz+KlnBs4fgAulsjMcJL82pZ1IovIj4iRJPLeqG57DXD2bPeosN7z5HYsWV5o/SZtt7UnweAVFSsxGRQdaTuhJAf318hvFti8K0qQIQ9y7Y+O461Q4cjTZPlffvjNgKUlEQSzHSh1DiH9MCD/Hrzy/gy88ou1WfEhQyf+xiNz2p2zHPcH6eyPDmiLCpSShNoI4SIBb4SQrSQUpZqY67g0N4bXaSUe4QQ1YCfhRDrpJTz9q8UVn7cDJCcnFzmbl1cXHx8rtf74blxT5V9Lu136udvs3XrdgSCmjWrs3PX7rI6s2bNKnMJLRvLyGtxhEL8tq0PIUtF72wQ1dPPJr0XiiYpDriIbBTJnIhz0HSJmDuXkD+Eqp+Y3MSl2PfedHzpnApz2h95u7ejX9qehcsW407fcsLGAGD4AojEKII39EZKSJaCYiGZ/fMsis18tIwMZP82ZCuwZPdW5MalUO0ZAMT838O9XIC0OiKzMhGWZVusdWlLxjrYarIl6xBbKyrtLPM5RMReZCAO5ST9ZirD8QpsKeU8IUSd/YoHUO7I+z4wF3iQfRb8wFYhROmCfxvhBT+AEKJ0wT/j+EZXhcOhMiXHI4/czyOP3A9Afn4+IJFINm7ajEChadMOrFu3uKy+6nKg4qD1XVdQd8HtIDUULUREmoEslmR/Xx9TwmtvnM0ZV3bg2itVRnd/DgFMvet9JmUePu3aycDGAh1TOnHmW1x5+OrHhJQ2dcjZsxxFKmhClnmeqdEegpaKmefFoYqy5/CzjrejAKtfnk672wYcsm8hFNRLswGBpp6YtNHHi/+wPLlDCHEtsBi4N6yEqAH8uU+dXeGyUPjz/uWE/98JIKU0hBAFQMK+5fu1ScDmDTMq6asCDrY2OVGYNft7oOK7++FH7ubhR2zlXV5ePh07tis7t2PnNr799juiwlxfxcXFbE2Lg7Q4ciJuIlGU4NINShwh1qt9bCOLlHRITmBaYWsSEv3o0c3I/+xrSvJ9VG984tMgd5t0DlsLt9P5+X5YpoW3xFvpfavx6Dnkrd0GElbtXI/YczA72bGjyO1Hu6UXEkF9bKtjEWBGlZAyrDOakGUKpOLiYub9/geyejgdvdYaUTpu08SfkIgIKDg7vmqX5YMsdECJA0yzvC5g1OgAKW1Rtu5BKZgLxVsgWAD6nxBVURlyIvEfliUnG8OBtcDBXPrmSynPP8i5fwzNmzelxLeXadO+5uqrbgQEb771Es899wTn9L0IELRp3Y1ib0XvRz3CTXSTRriVb5AxElFsQaSC2A0RMV78sam42ncF3Un86nZcf5MPOj7GWU+OLeuj2bXtWPPjCq7+6l4+OfNZtH6VKzoPh80LbLlQlFmEM7yF0vQD91LJjWvgVCVCQMiSJzRdKkCnZ29m9YgxGChYUuA3Hax872da3dAXIYTtGSJh4ZBHqH5ud9IG9QFFIhUFSvlAtFiMmnXQc3YhQgFkegFxHf2g61ibCjF3R6IDvi1b8e/ahTQMqFsLY/caQGCa9rY9c8FK8lZuomRPFu5qh+c4OVacyvLkqNLESinzhRBzsTUnq4QQGnARdtzrwdrsCf+fKYT4CttN9AAFh5TyDeANgPbt28sePXoA9ku/9POJQHR0NB3ad+PNtyZX6PfCC69i+d8r2bBxCRER1TBNiSIUpJQkJiawN2PTAWP55ckvqL/ucdwOC93jI7J7Eeb2Qgo21Ofxb+0cy8On3sa7T3xE7go79m3snOEktKh/QuZypPfm7y8XMfvZhQjgwjGDaHsC7yeAFTL47LWP2PTiYqSEgCmwpKTLJe3Z+c0iYhx+JBpSSi5adx2+1X/Bl0NAtXBfWm4FzvxkCpnvf0Ptu69F3fEFet1UjIzPEE0ag6JgFl5MxJn22M28LAIrf8Pd56IDwlFO9G9mf0jAOPxTnyiEWLzP9zfCv/FDIVlKmQ4gpUwPKwXh2Bb8VfgHsX37TlwuJ35/oKxs545dfPfdTF4Y9wqPPnoPPXvbXhKdbuzF4k/TMAydmjV2Ep0aCXn5WEZpNKDgj4//4tqXrg73ZD9fZ0XcytRtT5KUdOwWCYBgIMTjvZ6n3XmtuXjEuWXlGbtyubHjk/S5shN3Pn95WXlxSCHOCepJ9Dg2svJxCBCKhRCUeb806tWSPUu34TME3pCKU7VD04ImOBWJJY9sTEJ1nrSxHy2OQJ4ciyyBf4E8EUL8AlS2g34Y2yLzJPYteBJ4ARhC5ZGU8hDlHEObQ/VVsfAga5P/LyxfvpJBg64LfxMIBO3atWHmz9OJjIzgt99+K3vfFbcoIv/uM1CEQHf5iEjLQqSaZP/SmM/mdAEgtV0So2b04MakYQghcIkSJmW8eVLncLB38me3vUXunAW4VYv+y99CPcEbEoDNc1byzlUv43Bo+A1wquA34PLnL2P2+E8QGERoktgGKUTeVzs8zrMq7cvfsAFaVDRaXPmGIvTDlQivD+nxIOt+iKO2zSMS2l0T388fENnrUpSYRIzfJsDu2RDdAK3HkhM+T6ham5wsCCFqAucBTwP/f+m1jgNffPEll15yDWAbZDp1Oo1Sfp/c3Dwee+wZJLbxwO+vPI1rzg8zQarsnBtB7Z4lhIpMsvbGo7vysXavJrboFyZeFMPtFwRAglz/ArQr55q59MnBtmSHslD8Y1EQj1zxNK+d/xKXvXwd71z0AoY3yG0zRlZeWUDIBHe1mBNqUAZI6N4FvWc/0r/7E5B4g5JFL3xB40FdKckpxhXrYdOUn8hfuRFHQixpg/ogaQ4FC6DFIAAULRZ953qEy22H8Qgfis+P9Jd6rRcTnHsfTV6ZgDRMFKeT9m+/zpLBrWF7LJ7utm9B65HX0XDweUTVPnYOxcPhVJcnh/3rCyGSwp4bCCHcQG+gNPdob2CdlHLXQdpGCCGiSj8DfYBVldX9/0K7du0wLS9DhlSMh5w+fQpbt61A13Wuv/5qQGJJe/GcnZ3Dzp27DnAx7/3oxYR8TrIyE/EXuhBKCC1Vwyj2ULpWmnDFq+z5uwgQSOD1C57i3KSjJc6pHMV5XnL35FUoCwZCLPhxhZ12NQx3cjQZPo2CkMaXz8w8IdfeF4quAQp5AdulXCJRhaTl5WcgBOSFNEBSd4BNvupu3gHHsM24Hsyp0I+jWjJafDx6w654bvoavfdrSMMEywTDgGYDy+pmj76CondHUfz1kazzTzzkYQ4gW0rZfp/jeAZ63Iv0Kvz/ol27rhWUGxKL6OgYLhp4Lb//8Sfn9LusQn2/34NhOPD5PBT/plDwdyKe1GxK/5yxabEAFIYscvwm+YYDBcHldSp6whblFLNw2uIDZNWh8MVT35G5YS8/vFgxhfQzN71LcYGPz1+ZXaHco0OS0yDFbZK1Kf2Ir3M0uOLT4Xg0C02xUIVFpxvssLRuQ/tw8UtXE5AOQqioibEA+HGRH3Rw4Y9jD9Hrvxf/j7IE/h/liZSyt5SyRSXH11LKDCmlKW0ipTexjR9gL17S9ummJrAnXF6zkvIKbcKGlxgg9xB9ZQOx4br79/WvQrt2XQ8o69mzO9WSGuNx12T1qnVl5e5IB9u21mPLlrr4i93odULgKE2/av8p05fa4ZxW2EFShJWlOTk5+1/mpGPxd8v5OzeCpTmRFOcdfdrGI0H1dg0IoJMXVAhYChLQMGg5qDM+U6HYdNiExZsyKNxlc+F/ftbdfNByCD5fxY2fq1btCsoNAMwkhGEg84vLlBsAeo0GRF//BEqMHTKrnDENcfpLKN1/OSnzLEXV2uSkYDzwAIemkegshFguhJghhGj+/zOsg6NUuVGKevXq0r9/P5vfB0FOdj6KOPQWsPaQS4lvXou9O9rw6rMXM/nF69i5tQ6xtQvxJOThbl/EpgWb8WsuiHOgNB1+Uubidru5e9ZIqjepwW3fP8StP45Ac1bOMdHm6m7Eu0JUcwYqPX+82PH9YrJ9GjuL3awvimZbkQNpwYf9Hufjng+y+s3vyfa7afWUvc+TuxcAYG0Oe6srLnDXQBom1q4ihEPD0h1YQkeaFkiwlr2Couuo7nIuj6aPv0DzR9Op0y0WANWhn1TlRilOZXlyJB4cqcD74TgYBZgqpSyNQbuc/cJThBDVgbeklOcCydghLaXX+lhK+eMRXPMfg8/nY8qUqQeUP/PMeBo2rEXfPldQ7N2Bw2G7NmdmpgIKToef6DUh/HkROGPKc0u3Ob8lN782hEtihmEC+QEXfvNAovbCzEI8sR40x5E51Xzx9PcUR+Zy/y2P83bm+LLyq1s9StaufOo0S+Xdv0YBEBkXgVuVxDos/EWVa2qPFxYCTQFkmBQQSXzdZLymglBsV/ItXy/CfPp6VE1jwfNf0vDSHiS3bFDWR2yv3sT26l2hXzUxEnXPDqTTibLtcrhkkV0el0QoPxM10nbTNb5uDCV7EL1ncbIhpcQ8Xr+typEhhEgNazRTsTlv4NgW/FX4lyErK4u4uETy8wvQ1IrPuadmJCI7k4BPR0vyIYMOIht6ean9pwhd4Gtiu7HrQsWtmeSEJE4BFwzvUaGfB1o9hjRMVs9eTfqCDXgSIvHEerj582EHJd694L4+/PbpQpp1a1yhvO9VnVn869oD+CdUID8oiNQkMTXij++mHAQOh4MHtrxS6bmVU39Hw0KPiaDb3QMo3JNLyADLUshevYOYtHKPFm96DprHiTPm2EjF/j/wX5UnpWMLfx1IufHjG+BjIcSLQHXseNtFUkpTCFEkhDgdWAhcC0zap811wAJgEDA7nF3lJ+CZfUjM+gAjwufmhOt+Gm5bkcDlXwqJZPz4Vym1TwWC5esJ4dARWCiqRYnXTf6iBNzJeSSesQbmdAI0bvzY9gYpMiwCJkRpLhRMLq39CLOKXy2/jpQESoK4Io7c28lX5OOO+g+hqApvpr9Uoa+eUbfhcOn8mFUem2/EROLKLsatwUe3f8jtU++orNvjgjvGjVsDU9p7U1UAmoI3uwgzvF4pXUH7870U7MgkkJWPIgRf93qAy/84dJp57fy/oXgzSmS9Q9ZTFBVqn7wUsfDflSUnE0KI84FMKeUSIUSPg1RbCtSWdrbJc4Hp2HKrsv5OashbKWb8+BUrV64Gyr0mhg2/iXPP60VUVCRvvPkSBQUFZYaYF14YjxCCdu1aV+zo+n74C88kbXc6boeBoRksdpyJaKlgFql0GBnDl3ntcUY4SM5PZvuEDwFQhCStVa0DxnWiQsjXZVQezrY3SsKNPQlqlXuLHO/19ZvOJMpQiAKSpL3LXrj8L1KGdUYRFiK8F5+/wOZKk0nP2uTFDjdi7lyKi4v5wzWKwM6daNERKL5MQCIi46BpEQgFjFCFcDcZ9CN0J4g37AXYMY7/aOd+qsuTw+6mpZQrgLYHOXd9JWV7gHPDn7cArfev82/GL7/Mxe/3l32X4eRGX335LQ88eDsAGRmZpKXZ99oVZWH6QviKVZwJIfTYfJSoIsalvgtA1Ghb2eFSQVUgO6ggMCpc89cPf+eT+6aiOjT633kWBXvy8BWUcPG4K4lMjKp0nI1Pr8eSVblEJlU8n5ddjCktdm7JLCt7eeBEVAWidIkjFDq+G3QQCCBCtXV6igKGBXnbs5FSoFsWpQq4v975ie1TfiaUW8jWr37nmlXvHrJfRa2LKFwBwSDyjC/KyuMfegtj83L0pqfbBaX56rN/Ac444fPbF5KTlhu6dJE+hooL7mNZ8FfhH4RD8xA0Sih1KZdhZu+8vGyEsENMSjMlADQdP54/B96MJIqMr3uCVGl39g9ENQyACeLHbgSbFPJLaBGj6tZHDbmIcwa49MmKKdd2FNqbnZQ/N2DlFlGcU4QzwoVlWgd1/46MieDljWMOKD/36jNo07UR8dUqypjxe8bjL/LjifEc0Ob/AzVb1yJr8QZSGifyy8NTSG5Zi3qNY/DnFVOvbzlXgXdPNj/0uxehCAYte+8fGeuR4D8sT54TQrTBvgXbgFsApJSrhRBTgTXYVP23h3nAAG6jPE3sDMpjcN8GPgzH7OZiG1+QUuYKIZ4E/grXe0JKGX5Z8CDwqRDiKWBZuI9/McplidPpoKQkAEjq1q1dVkNRFBxp1XHmric7N5piRYVdadRtv4QJL0xBOlScPccDtrLUpVvkBi2cwuLGFwZVuNpdjR4iUOjn0qcvxswrJDIlGiEFp1/b7aAjLMkvQUiwjIqG7qDfwDItfF4/hmGgafbS08rxEuWwiHNIZPreE3ObKoETCxle7Uop0IRFVEosdbo0ZPeyreT5LDQhiUWw8r2ZGJZAEdDlucPz4gshIKrBYev9f+A/LEtOJroA/cOKCxcQLYT4SEpZGjOKlLJwn88/CCFeEUIkSimz9+/s/zPkrU+fPgeU9ejRoyxkbObMWfTrV5qa1ZYv990/nGefHXWAQWTHiKspWLGL+IQc3DUzcDfxkfl9TabN7U2psvW1jAnceIltTBFWkM2BBcwqerVCP8cSQr5n/V5CQYPaLWtWKN+0YiepdRKJiC4nTR4yaBhRukBIi/F7rz2gr+MNYZ/48CPs2V6AEGBJiVuFq7Zfwws3DQUZIkqXIASD1tqKZN/aGMjdgLvLZWXXP71ObTY9P5b4/hdSfeidAJSMS0DpXB2i45B7d+HuYXMlFn/zFt6vJqKkNiDpmS+PedzHMvdTXZ6cXGr4UxB9+1bMRGLnn5c0b94UpETXFeLjy10U20ybSsjQyCtOYO5H5/P7J/0pzjBx1Q7hTAuR90QCoVCIrBYldEwK0D/Nz+2dKqZXnDdtKbtLTHK9AX6bPJOVX/7Ful9Ws2dVpZE/ALTo1ZTardOYsLpiysoxX9xBfGoMj39Y/mK+6pVrMSTkBBQ6D+t3HHfn4NB0gaZYaIpESJN+oweQ1r4e9Xs0RY2IJCegU2IIarRrQFFWIUh5ROQ1Wp95KF2noPbfiKNGh7JyxRWBo/kZiLB1Wek+DdHiFkTj+07K/PaHdZjjcBBCfIJtbWwshNglhLgB+2E/WwixETg7/B0p5WqgdMH/Iwcu+N/CzjSwmVObxOt/BlGiFgI1rM0XYTkCum67VVqWyfp15RYId0oSZy34iuKEVJSIAmrX3IHaWGI2aYZZtx6GKTmt9sX0drZh9h6TP7M9zNgdg1AUgsEgZ511TgV2/ho9WyKiPPS+/3zOevhCXrn5fY4F1esk4vJUtOAqivKPKTcAml3SlSjdT/GKtQgkWSu349ueDkVFTG19PZ+1thcWxdt3IwSIskfl34vjkSVwasoTKeU1UsqWUspWUsr++3hzIKV8WkpZX0rZWEo5Y5/yxeEQl/pSyjtkOBZLSumXUl4ipWwgpewYNq6UtnknXN5ASvnuPuVbwnUbhNueHJ/m48CaFZvRiEWghJUbEoGC1+ulNB3i1i3bKrRp8dKTFMiarC9IojAjhUBeLFqyRFVCaAEfvpXf8fPMP/gltJCzahQwsJafa+v5uOiWsyv0s32vlwyfyYK3ZjN/8ky+HTmNrx/+HCNwcCNJQloC93w5lEd+qfgedrh0TCGRChU8wnRdoTik4A1Bu6vOPN7bdVDcv+4F2lzSnpt+foiHN47n0W2vIYRgwNir0IwQFgpBqVKtRS1ERAR5ISdWtWTSurY8fOf/MlStTU4spJQjpJQ1pZR1sBWns/dVbgAIIVJEWCMghOiIvbf6/4/5Oko8/viBho3IiEicjlQcegoPPVi+v8jc7qKgIJaMvckQV4KVa+GqceAUC4MWvqCF11LBgj4xQyuct0yLvIz8Ix6jlJJHuz7Lkz3HUZBVpkfiu3fnc1Pnpzm/+t0V6ntUSZRmEKGfnGxFkbWSQUiCYSVoaaREUHfis5w2D5gUfNDvEQDWztnBkh8LK/ThqlOXZtO/I/W228vnSQRKXjbKrq1oWVnllRUFywLLsI1X5vJRGJ9EYS648aTMb3+cyvLkqEhG/wsoffmWbkjsBYXg119/5bzzziIYDHDrrffx4Ye2VlKL8FD/4XuZN/lbUnyriHEaaAkga6eB14ssrEXdmL7UU9LYGQkZhoe6gSAXYac2DIVCLJqzHgsoDIF0OlBUhVs/upWE+tUOMsqD47QeTZi+eVyFsua9WjIh/eQqz6s1qcmlWw90KW/Wqznbfl0FKKixMaS1b0wAJ6GQwTVzDxSu+0MoKqT1P2w9JfFMSDx5C6R9IeG43baklFcc5FSluX6llE9jE1ztX74YaHFcg6nCCYVlWUSJaCy1PrFaCiWyCBGXTkZGJqFQkNKw/7r1bMtrIBDg5hvv5cabrqZBUpA4KxNpaejJNUDTMedtw2N6ODO1ESU7SnAQh+0RZcsolysGgPPP70NUvI7b5eGm5y+HMDHoZbHDkED1RjO4+KGTo+D8/4QW60ZTBCigGiEEGgFTQQhpM6gDe5eswbt9J7HOouNmAT/ZqJInVTgY3nvpGzzOGIIhgVuJJd/YBZSu90SF/0rhTqlGt5kfUXzGABrU3QpCwVk9BTM5BYoL8bS6gPs7D+QcV1vmpfuBCFQMLgdM02T9+k00bdqIEICEumc1YuVHf5LcvCbnjrjgoLHvpdg/1A1sD+353gNDs5/fMf7obsgxwulxccFzgw8ot0ImimXhdmucMex8crIKiQoYWBJCJRX1XWYgSOHWdOKa1D6gn38LqmTJ/x+EELcCSClfww51u00IYQA+4PJS5eu/GX/+uWifb3bWt2eeeb6sZOrUrxkz9lEAat1wHZsfH4OmGDgw0DRJdN0ixg57B0dNN/7dNseeLkCo4A3aYbTtzqmoJNy1ajefXfE114wZyOKPF+CIcNLj9rNp1qdyZaIQAhSBlBJXZLlxeMua3ZjSwtrvNhtAnFOeLM8DslZsxa2AU7EqeAgY/lLPfFsgF27KpGB7BmtemQ5ASsemNLignE9JcVU0dLvu2gjTEpFCYMpyT5WIc69HT6mB1sAOpJA58xCAzPvtRE/tAJzq8qRKwbEf/py/Co9eHV8oA6ic2SQrM6vC99R+PWg25T3iE3aB5UCvXxsZG49lOBBBk7M8jdht5pFhVAMUthZW3Jjc3v9ets7Kp++1p3Pny7ZieGjTR8hJL6RF13o8+t1dJ2u6Jx2FOzLQkCQ0TKLD4J54swvxBwG0Mu+LUxGnwLurCv8QfMV+IojHo8UiFZVYoqh+WjI//DATW6JYNG7cgDVr1tO2bSvO7NafZctW8dln0ynx7yBraDMsv8T8LRulpw6FCqDy1HWvccfjN1BMPrFKLJVxLKlFFs4IOM1jezFoqDTyRBE0JGdcctBkV6cUvNt27/NNgrDwh1OnOV0GQb+JpWnseHcahnQAEmlZ5P65lJiWTdGiIv6RcR8KVfKkCpVh42+7saRFfefpWECUlsKe0GJM00RKEyFUGjYs5344p+/lzJ3zG1M+eZVmrWqilmyzxURkJFbIQM7bS8lvsZzmuYqtwRxq6UmAwAwvBXW9nKvmgpibQEqufPZKeNZOCH1VwnAsU/Lsb/dTp8W+odKnJmLSEohwWgjDy4qPfyXm0sZE+0yqR/hpfuN5Fep+f849BHKLaHbLBTQfOuggPf7zqJIlJw9SyrnYKS1LFRul5ZOByf/MqE4MBAoSC01VCYWCgMWkyeX7zGq9urH2sXGY3kjmTeuHU2jUbryBWj3WowgvVJ8DwALnGu5NSsMIOqnm8nH5p7eW9ZG9J5ugBek+kx8e/xINOwPahjlrDqrgAHg7Y/wBZbc9fTELf1lDm64VqU48qiDTp1Cz/snhB7vszZuZctVEQICUGGE/hrMfvYjfJv9Ibp5EExYO1WDWvW+WrdKiG9Q8aJ8Aqu5Env0LKC60+HJmB6EoONv3LfuudPkCa+3DKPVPTLKKw+FUlien7g7zJGHOtL/QFJ1ajtNp7O5FiqMdqmrHrkskmuZg6ue2l2tRUREuR008rlrUH/UwqmahqCZyUx7SV4L8LROndxv9O7+LZe4b/15RbfLBN+8So6tEpkbQyTOETp4h+LwBW3tmnLo/LoDo5BiiHEEcqskvj37CrFGfUrthHLVap+KpFltWr2hbOmvemI4VMg7e2b8EEjt10qGOKhwbhBCqEGKZEOK7Ss4JIcREIcQmIcQKIUS7yvr4pxER7eHZ1+5EQZBCNDG4uefuO7n8ikEIIXA4dNav38TEifb6yFtSAuGsTTcMHo6j4zUEiiPw50Tj+6YQqZngCKJ4JLoQNPFE0TTa5L43bWXo29e/RAoJaMLNzOAffLG9PFOSgYmKxK1JUo/BI+zfiJR2zVAwEZjoDieKbeBBAEG/nd579lXPUv/+mwmaCkFTYceU6ay6/xlWPvjsPz38A3A4eVKF/y7GfTmcmkoTEoggDg8RIoIzz+yCpukIYYfPbtywpYw3bM7seUgpufqqoTR97WUUPYCamk1oZg7m75shpENIJS5hG/HEYts7KyepjxSC1p3r0j3pZjp5htAt5iZCpsQECrKKDqh/KkLRVNyKnwjdJJCejgA2fzEfBcnqSdP4rPV1/HSlTdZu5ttx9wUbdvyzgz4EqtYmVTga6ESxbwgtQImvBCntdfiFA66qUL/D9HeJ7Hc+W30aiXG5RNXMQ9arg9mgEUJaXHn+3bQPNeT3vUGW5br4aU8MQgj27Enn9E7dmPq8nUHIBJqc0wZT17n2/ZvZWxBk9bzKSUMPOnaHzpRlT3D/pIrZYl7cM5Gxuydz57wnjv6GHAHqnNGEh7e+wsNbX+bhba8wapu9jqvbqQFmXhESQUiq3LXxTYry/eQHHaQNPItqTesctm+R2Amxj3KjMijOeLQ2r6JENT0R0zkkTnV5UqXg2A8xEVFEygTi1XgEKvFqTDhsxSbgMYwgzZra2ezmz/sTKS1M02Dsh1/ivvguTEMQ2uSg+P0S0A3QDXqdC2l6EnXcFrXdBhNXPW7zUIThcFVnZuAPJj8zHQMTAxPFFyBKh1Ez7vpnbsQJQu0ezYjUTIJbdyKQbP95MeaePRgbtvDrbc/jzSsA4KdBI1n98lf8/fyUf3jERwZ5mH9VOGYMB9Ye5Fw/bNKhhtgs5K8epN4/iq2bd7J00wqSlVhquVzEOhQcMpKtW3YBGg0bNiQiwsPjj48AIC8vL6wll6xYsQb/lu2AILJ6Pu6kIizVQk3w411YkwgdojSQCN4cOgVvvpfLXriG+b/Ntv3AocJeRQBZAYsM/8mJR/2ncMXKD7hy5Qdc8OadRCTFgjSJTLBdPqW0n0+H7gIEWmQkEXVrYUmIat7oHx33wVAlS6pQGdQIweyNrxGpWtR2RKAIg5k/f82VV11Khw5tiYuLRdXUsqxuNiSmaeD3+/H7EvFticGyIOT3IzUDU0rqR6fj0Zw0jlFpGm0yaeVoABpih1/EO1owM/gHr/76GV5vAAOTNFSidYjQoPVZzf7/b8ZJgopAEYJYh/2seQ0VX0gJp9OEgtXbAIjUvcQ6izDzDuCN/Feham1ShSNFtFYdRbhxKtEI4aig6ABRRgYMsHbtBqbPnEtq42r0abCLxIRczHQVImMw12Zj7XZzvnstMarjgDDamjXrseivxdwxfjBCQNP2tbn29SE8vekF5n6+lNkf/8VT/U9VDlobqq7iUCVREYK2l3Rk4as/4i/0E7QUQv5/v+H2YDiV5UmVgmM/DHvucu4afj1uBHWIwyWcZGRu4s47bynLQmBadgzszp22q7RE8uor7xHcthcj4EaLKCGyThaitoVIswiujiJSBYcKQhH8/dNKIhIi+e6pT1nyxXz7ryDAT1HZ5iQ3aJHlt1j449//wF04cZhx0WOoisCtgSYAKTAtm5wmc8Eqvuthu1lpZgBFWLgS/r3pHEshkRiHOapw9BBC1ATOwyYSqgwDgA+kjT+B2HCKqX8VWjXvx7j/a+++46QqrwaO/86dme0NWDoIiIAFERtgbIRYsMVG8mKJJDEao7wxRpNXjcZuojGYosaSGLHHqESDWFBBbCiCqICFIlXawha2z8w97x/37jIsbIGdnQLny2c+7Nx67rOzZ5773Ofe5w/3UZ5XwbLaLayor6KqsoY5cz5GRFiw4AsqKyvZe8AwANavX+99atRl8eKldL3uL2QNOwx1vZP12nX5lHxwEP+cdThhF4JOlIirhF1l0+erePmXf2f97IVE3TqCbh7B+kzmVk9m3E9Gk0Mm9W6Ueo1ybM5Pk1wy8df3W/sx4a3fc9ilp3D0bT/mBwv+yYGXnMJZMybR49hDGH7jTzl68k0UH3UYo999jn0u2/6p6snWWj4xe6aLLriWg4eezH77HE9tNMgWt56gm8/kR57i8ceeZc6cz9i8uZRoJEpZWRnl5RW4GsHVKCDMnj0XXMjsVkZmQQ3ZTiZkKJIBdbV7kxcEXCWqwr0THgLgtQ+nMf/F95CG8xpxG+skjhNkXa1LeX3qP7R3Zzi4/l9ZwzCyQr0bJFLQmXAU3ByvThIlSEQzqFu2jOoVa6ha3vxD4JPF6iamrSKRCNlOPntlHMKAzCMYlHUEPXt2j1lC+fnlWwcrOPigMfz4R5dz42vv0vmCy3GCYfL3WQ9bKmBNDdSHOH34B9REhbLoFrzr/9t/3mq1hq/XLOPQnAkcmjOBlx+dRaZAUc8djxiZLgr7dCE3UE+BW83nz8/mvT9NpUi20DO3jmNv2toTJlJTx3MjfsKCe55NYrRtk+75xJ7B0cS8jxaR0dUhx8mge2YGFfUOjuNw773/5Pd3XIuqkp/nfeHNnfsJrnpdPCsqKsg94jtUzXiZQKbrdWV8pxsQ4O3PBxAQ7wJrlgPPXPNvjplwNCf84kRCufkUZx8CAgEyGvNBTdTFQfi/s+/nreoHklYe7eWNYBBAxUt2grIlnEFWIELQiTY+hyMvw+tim9PMsLgpRdnuwUYmLv4E/Bpo7kPQG1gV8361P21t7EIdMc78zowfftPtXqUgU3JxiaIoK9Yu5s47bwB1ierWUQhmzpzJHXdcFxN7kIcffYrBx4wDxqGRKBIMoKrsdchqBoiL0zC0bFBYuH4ptYd0ZjmV9O7Wg6tuOa1xu0ecNYDOAxrasAXQuJRFe7R3DPpmDetMOWUsnTkThhazeeGn3vR8YPlX3ivZMTbH8onZgWeenUJdZAu50p2VzkYqIpvJlCxuvfFPOIRwCTdeRevda1/OPvsMGk4qhCDvvvMhRz7yOjWfvY/72hmgUJ15PqVffcmCtb0JOTXeA3pdoXThSuqr61j8wrscMfFk71aWQBQiCv4zRVfX1ZMbyKAyunv1Bhv5+4v56DcPkD1iGHXeoFdeZ7jMEOAQ3VJNbfkW6qMBQNjv2p8x57yfgyrHvPPcdsNpJpXlEtNGgUCAPk5/6qnBRcijE2f98FzunnQf9fVeHWXSH+/ltNNO5qijRqHq/d3/4+Enufeu61j5+B/JWJeNvlKGk6M4mfWQ75LtCH0yCyjKiHLM1acDcP3IX/D4h89SkVVEhCjvrf6MXjIQFIpzsgkr1JRUNBtrOgjlZJKTEQGEgNRCNAOtqSMg8Pyoi3EEvv/JZKrXbETrw3z5yEsMnZi6z/IB0j6fWANHE6OP+j4AI7scyaLyTZRpDTNmvOfN9LuRL1v2NX1670tVVS0NLRKq8GldNqOenU3ZLXsTDJeS9b/PUVNVzyunPcbA7BpyAg4RVzl4YBGPj7uTJXNWsldmD1bWzAOEMaOO5V/v38kxORdT7UYah4VLZ+PmPMTzh19EJOpVGoKOd798bTRAQBSiUFNeQUS9WlTxiKFUr/yG7D49UvYhpApE2zyAo2kLETkV2KCqc0VkdHOL7WDadn8gHTHO/M6MH/69s35GZWUlAzJGUaXluIEwr81+iNEjLkBwKKn5nIarhZ9/MYfjjzsbAIcccjI6kZObxZqNHxKtqcXJykREmP/v2bz1xw8p21TFXFcZ31fJchzuXVXGZ6wim1wuv+m7XHXV/+GQSVQrAahcM5M7L3qyMbZZ1RPaXRbt0d4x6BMh0TFaPjE7ctSxh/DGG2/RJbMX0ahLQAIEMoXSDVE6ZfUnHK2hrG5p4/LTpk1v/DnoZPOH2x6mW3F3LrrkXDjcuxU0G1j0j5kUvvIcfbKFsAqdQ2GOPvsQHjjtd5Qs2cS8F+dRUj+ncVsb672RFo7JuZjKaDjt6yRNDTzlSAaeciQAU5+eQkFxHpHSck6+71JeGXcTAI6ChDLQcIROQwawIisbJxhIrcYNLJeYthMR3qn8O0flXUCfYBFh6jnn7HNZunQlL74wjd69e1BdXcPIkYeiqlsfNilCbSATcMju4hLIrKamPER2v0q2LOxGZhDyQ95y/7rxv+x/+kh+/dJvuLTk5ww92BsR0SXaWHNbXxtBJECtm763cQD+LW0OAmSKEBFhS30AByU/M7o1a0bqKcqsJBxMvYedN5Xu+SQ1zyCTqN4to94tY01ZKStYSZmzkV9cehtFGf1wZOt9rps2lVBZWdX4PitYxNjv/JCamlqKrl9G3s2lFB44jPLqLPrmKlkhhxo3iIgQqCrl2elfMH3zJkI0bFM5Z+JYAAYcuHs8DBAgIyuT8Z89yvmLHiW/Vydv7GR1yS0MNj4YUMIu9ZEA9VGHjS+/xZxzJrLkz/9MdugtctEWX2anHQl8V0SWA08DY0Tk8SbLrAZiH93fB/gmMeG13cbNn1NTv4qX5t/NtPfvZ1XFDPbbfx+OPOZAat1NiDiNr/33G9m43hHfOpQu3XN58+2nKJnxDh+e+H0W/OxXAAw+/kC6De7Ju65LfoZSnAU5IZfP/A4tNVQxZMgQJk26i4i79QGAp543uvHnpxbempgCMDvNcolp6qWXn2DFqnlMeedPHH7kUN5f8BRLN71K956dibh11Ea2/p2Hw2Gi0TDgUlTkPdhPROjWo5i6ks1UfLawcdl5D79JfggWVkSYU1pNfqiOz1+cw18/mM0Dmz7lg2XrG5e95YptH3PU0LhxTM7F7I7yenTixPt/ztF3XkSXIf0445U7OO2Fm8koyueYx2/l8ElXUrB3H45+dTJHTkvNOorVTUxbjBo+jk65BxFyMqmXesrcOr78dBXPPTuVcNhl2bIVrFu3js6d+vHmm2813pQgCDNnvE/BWT8kUutd3HUcZdPcw/nv+4dSG4UMJ4KrLqCs++gr7h/9W+b97SWo3UKADCprl/JR1SMcPXYYNa5LvRsloul7It1A8I45guAQBQkQIUg4CuGYO/siGiQUqWp2O6kknfOJNXA0EQgEcQgiAo4G6NmzK5H6KI6EtmmtD4ejBIMO4BIMZKLqkpeXg4iw/J5/UPbhPAA2frUWVHlubS2raivpnVeLWxvh3ehnfKVLCAe8RwgccMABnHHeGAAmf+CdiOxuV0p+OPN3HDZhNN0GFPPdf99AVBUXl5p1JSBCMD8PddVLmE3GiE4lihLFbfFldo6qXqOqfVS1PzAeeFNVz2+y2IvABf5oKqOAclVd23RbqWLAPn04YNjWIRyfn/YAhZ2zEUKouqgqBQXe3TiBQJCZs/7Dkq/fZ8i+AwnkZINAsNCbn1OUy6XTrwWgpF6YV5LBjLVZiOt4zewu5OXlcsUVl293VXFW9YPMqn6Q3gN2n4bT3Ulr+cTsubp378YBwwby1Gu307d/DwAWLn2Nm+/6GRGqaHj4OQjV1TUAXHLJjzhz3Am8MmMyp59xAvPPv4SFl13Dls+9UQq+fcUpdN+vF59URRlRrORkQHZIKWUTUaqZpYsZPHgQJ500lusm/aQxllnVDzb+fO+bv05YGSRal6H9GXDKKESEvD7dKBzotakX7tOXnsd6A3dJIJCSPUytbmLa6tNFH1Mb2cziyBI+rl/OF+4y/nDzP8gOdCEkuTT0Mq2pqeGuu+5tXC/oZHLOuJ8zp/P+FPyulNAv1pN/8wZ6PfQ2K2oH0ymrFpcgAREG5tXx8l/fYMm6WmY8M58Sdyl1bjnVWoqI8KfnrySKUq+pfqrcOhHhjNf/xCG/OodQbg4qfqd/ABwccXj6Wz9DFeqjDtK1C++d+qOUHNmtQbrnE7tFpYmqmuUALPhkKZ0659O7r3dScNfvHyKqNYB3ZURViUS8LlXX/fYKyksrufa6X1A1ey5rn3mB9f99lZGvPsNRlxzPgCMG89IRN1ARAVdhdfXW/VVTh8bck98gtjKxOxlxzblwzbkA/GDBI43Tj33iNrJ7FhMqyKXnd48jq0fXJEXYBgKupPYf9u5CRC6BxjHnpwEnA0uAauBHSQxtp3XPG4WSSVHGXrz01t/49zP/AZT6+jB/uMsb0mzj+s2UllQweOShHPHWi9ttw0FwcPi0PIgAPRlIrmZTuFfqP5zXNMPyidlJ1191P7mhXvQekomi5OXlkpOTy6ZNpfzyykvp1KlT47IFw/Zny8KvyOrlPUBw+LiRzFu5FmZ9ybsbgrhdYPbGwNab/QS+/HLRDve7u9ZLdhuWS0wbBTOgvh4KAsVUaRkOAUaffjBfP/g1Ig4bqzc3LluycRMNDR6OhHAkwJpV66j6ainhsnKKRhxCdWklbKnm7U1hQtRxsX9t5/p3X6CKCBBo3F5d3ba9F3aXi7k53Tux7wUnsu8FJ7Lgn6/y8R+fYcT1P2DOLZNRhT5HHkCpP7rMAVf8iC+u/wNlcxckO+zmpXk+sQaOZgw9aOA273/+ywncc88DgDQO6RgKZRIO13PhhefTo4dXeYiOOpT8YfvT+ehRjev2PqgfgvB1pcO/lucQcV0yNYd6allb8V4Cjyp1Fe7bv/Hn7J6pf6U5/dubU5eqzgRm+j/fHzNdgcuSE1UcuA7igDpw8kn/Q1lZOQ2Vhhtv+j9ycnI4dOA4gm4Ok6fezNFjDmlc9ePXPuOO//m7/7lzWeuW4xAgH+8+zvKVW3awQ5MuLJ+Ytnp88nMEJICibFoeJT8/nzPOOJUnnniWufNm0qlTJ0o2lPGXOx9n4lXnst+dN263jSf+NJUgATaH4d2NWdS4EfrpftQT5tOqpxJ/UCZuLJeYtlj9zXxef/0topWZzHh5Dvc8cTWO4/Dkk/+hrKzMX8rrDfrpp58B0LlzZ7p07sZ5543jRz/5PrO/fSa4Loe+8Bg5nQoZ86tTeenXT5HpQMiBiIvfuAFolOXLl7B48eJthrWeVf0gd14ymYNGp+YQ7rvqgAnH0+eYAykc0IN9zjySupJycnoV89oLU+l74Rl0HzMKrf1f8gYPSHaoLUrnfJJ6fexSVJ+iYwhIiKLMQbz3/nSe+fej7L33AGZ/8CY9enRn1Yp13PqbB6iNuAy95/f0+p8ztllfgEpqqIzUU+7W0V8HM1gPJBAI7HB/JnV53bZa/mdMUweEDgANkO8WUV5egYg0PtdnyOARDBk0irLoekp1FRN/fMs26948zhtJqWcghzARpnx0J2HCjV8+o04YlNiDMXHTWj4xJtb3xp+KNtzrXVtDZWUVTzzhDTl46CGjiUajjDnifB6977+cNOLS7daf0PdX9NIiorhsppJvolvYrNVkkUkB1hMsnVndxLRVQUE+Z511Kt+74Hjue+paHP+WqxXr3iYYcnEku3HZoqJCAI499kgWffE2v7neuxW24KADyOrTs/FW2mMmnghArevw3IocpqzMJcvN83uHCf369SMY3P66+q/vn8CJ44/o2ANOMHEcigb2QhyHQEaInF7FAGQU5rHfpd9DROh5yrfJH9Q/uYG2IN3zifXgaCu/KSggDkcdeQqq3i921MjjqA9vYOzRF1JdosyYNpc3Pt7ajfOifa+l9JsKOpNBXTCTbyKbySBEHjnseFAIkw7SuduWSY6MXhkcvGIoUZRVzCczUEjA8Z7fM3BgH+Z+9AmZgSJccVmxblnjeq7rUu1GCIoQBYLicMFhN9KZAgCGDerFpP9ck/QhYM2us3xi2mrpojUc5B4EwDzeByAn2A1XXWqjJQwaeDgl62pBILypdpt1pz4yndotdSgQIcLpZxzNiy+8Q6ZaVXB3YbnEtEf3vFEEKKAoI597J1/N7NlzmTr1FS655EJuuvkaamrquPzC2zlr/AmM/fNt260v/lgim8IRHHHoTX+CGqT7EGs8TUfpnE/sW62Nit0eCMIAHUgpyxCCIIJqmNNOOZfVG1ag4lL3VeU265V8U05mIEgIZV2knM7kAEH/0S3WwJGOFCVCeg9pZRLv+bmTOKrrTxCgUPoRdEJkSA7lrCUcqcfVCHXRMgDyc4oa13vshhdZ61ZQ5eYQJEAeWUSBAEKnUIhvlpck43BMnFg+MTujR59iNlNDAAfI857K44RAlQy3kDVr1iEEyQjksSW6kdUr19Bnr94ATHnkXVyFqLqEcHj9xTl0Vq+hNBf475b7kndgpt0sl5h2cx1vXGQHzjv3EtQfDeX22ydx083XcP73r+CDNxbx5gtz+azkWbKzvQEBnrrlBZ79w+v0crLZ4NaxgQpQKMLr3bFhsd1Gm27SPZ+0eouKiGSJyIci8omILBSRm/zpN4rIGhGZ779Obmb9sSLypYgsEZGr430AiVJIEdn+P4CcUDdyQt0IBYqYPv0t6l2vYaMyWkJtrXfVpK66nopIPfXRKLVRlxzJIEAmAQJkEGJW+f3N7s+kMm1l4KT0bfE0HScnJ5M+TiF9A0V0Dfakr/RnL/pQqD1Y8OliAk5O47Lh2q33PdbWhnFwCBMhgksYl5PO/xabpZKlkVKWRkq5cODVrFu2MRmHZdqt5XxiTKzOXQvo6eTR3cnlsIyhBCWDHjKQXOlEMCuEq1EUr7G0LlpB7769AAiHI2ycW8LKcAWlkTDZZNEt5D3DJ9cJEAoE2bR2UzIPzbSb1U1M+5xy6FhCmk03txcgBCSDnGA3hBBHfesUXnltOhW6gQq3hD/c+lDjeo/+/mVCAYdgIEC11NKZAjpTgEuUAPB25d+TdkxmV6V3PmnLMzjqgDGqehAwHBjrD9EIcLeqDvdf05quKCIB4F7gJGB/4BwR2T8+oSfWJbefSZgoFVJDhhST7xSTI0UILq5GcLWeukgZddEyQqEQAP+8dgobqWJDpJY6jZKh3vRMcckXh/HFv0zmIZldpCgRibT4MmZHNlLN5mgNhcFCOkkuBU423aQnjggZgSyCUkhusBt9um19pkanXoVkk4ngNH7dXP3ghK2jHiiEy2qoqajd8U5NSmstnxjTVJ26iAh1RAkRor90p4BCopEaAk4Wjt851yHIki9WAlBesoVaN0qd//SeCC6/ee4iyqniG61ghVvODef9jWdun+o/SN2kG6ubmPY66qyD2V8H0x1vJMPMYGccJ0R2qDNffPEVEbcKNxqhIrKed977oHG9NVpBdSRKeThMseYDioNQFMiiWyi7mb2ZVJbu+aTVBg71NNx3EfJfbf32GwEsUdVlqloPPA2cvkuRJtmEX5xOJkH6OIXkBAvoR3960YdO9CPgZHi3rADg8NF73hBrBT3zySKIi+JdU3HZa2A3NlDDSrawNFzK+cWXM+OJ2ck7MLNLvN9o8y9jduTJebdy9PmH8Nrq+yh3a9kSraOaaiprlvPO7Clc8MMzWfT1dD5e+lzjOuMuP47nF93Bn1+4ggFDe/H8V3d6MxrucBMIdsomuyAr8Qdk4sJyidkZY395FF+7JYy+cAQBAghCZ4oZ852jKSooIhTMo1vOEPp22Z9ee3mjklWV1aJAJt7QsooyaszwrXlE4f05i5n6x+ncP/HJZB2aaSerm5j2+PEVp1EttdRILV2CA+nq7EUPGUiQHLZUeMO7hrUSpY7DDz4YgKryagokwMpoKTVEqSOK4FAmVXzjVrAkspkpf36NDSuth1i6Sed80qZncPg9MeYC+wD3quoHInISMFFELgA+Aq5U1dImq/YGVsW8Xw2MbH/YyRHBpcKtZwiDKXCyydIA1U5nSqIBMoK5ZJBDULLptZfX8tmjfzEBQo2VCRe4bcpEvjvsysZKhaPwwqTpfPu8Uc3v2KSUdL8vzSTPgEG9uO0Bb2SD2dWPbDNv2EH78bcHb99uHcdx6Nm/mJ79ixl5/IGN0+dXPb7NcvaQ0fRk+cTsrCtvOZ8rbzkf8P7uS9w3+O3DEzh1/Bhc12Xa1Df5zvFHkp299cppv/168tSS3+G6ygWjfssp53qjFhx0VH8+eXu5t5BAVOHwUw9sukuTBiyXmHgolBxC4lCnfegkhYQIIhKl2lmHaBZRqhGERfO93mEb15SRTR4R6gDvCvhb1Q8wPOd8EFCFKTe/xHO3vMRPnj0ziUdmdka655M2NXCoN2TIcBEpAqaIyFDgb8AteJ/lW4A/Aj9usuqOnqK5w94fInIxcDFA9+7dGyvrlZWVKVNx79a/iB9MOpau3YtY+3UJCuw1uBvZuRNZs2Yd+fl55OfnsvTrL1j69Rc43eH2l86ntrqe8s2VdO/TmWWrPufi277TuM3C3Bx67N11l44xlcpmz4pFU77l0hiTLiyfmPb5sHpy48+O43Dqd4/b4XLFPYsAeGXVXxunTX711g6NzSSS5RLTfkPPHsL0Z+ew74i9Kf2oFEXJo4hTTj2eOR8soqoih7PPOIPf/s67WNN3SA8uvOl0XvjXDFYs3LT11gCh8Ywvqkphj8JkHI7ZZemdT3ZqFBVVLRORmcBYVb2rYbqIPARM3cEqq4G+Me/7AN80s+0HgQcBDjvsMB09ejTgXZ1o+DnZZs6cyZlntv8Om9HfHt3ubUDqlc2eEosC0TRu1TTGpA7LJ8aYeLBcYuLhzsmXU/dAPZlZGUQiEe7+9VP8atIPml0+EHAYf9VYxl81dpvpH5VPpqqymsKi/MZpqXIh1LQu3fNJW0ZR6er33EBEsoHjgC9EpGfMYmcCC3aw+hxgkIgMEJEMYDzwYrujNiapFJdoiy9jjGmblvOJMca0jdVNTHxkZmUAEAwGW2zcaEkwGNimccOkm/TOJ23pwdETmOw/h8MBnlHVqSLymIgMx2vkWQ78FEBEegF/V9WTVTUiIhOBV4EA8LCqLuyA4zAmYRRSfngkY0x6sHxijIkHyyXGmHhJ93zSagOHqn4KHLyD6Tts0lPVb4CTY95PA7YbQtaY9KVENZzsIEwbzJ07t0REVsRhU8VASRy205EsxviIV4z92raY5RNjTDxYLjHGxEt655OdegaHMQbS/cE7exJV7RqP7YjIR6p6WDy21VEsxvhIfIyWT4wx8WC5xBgTL+mdT1KygaPJVddUuuKXSrFAasWzO8TSpiuuihLV9H3wjjEmdVg+SR9x7BEWT6n03ducdIgRUjdOq5sYYxIq3fNJSjZwxF51TaUrfqkUC6RWPHtULAreyMnGGNNOlk/SRrx6hMVTKn33NicdYoT0ibNZlkvSShIbTJPZkJfsRsQ9ef8N+27b7bNpnk9SsoHDmFSW7q2aZpc8mOwA2sBijI+Exmj5xBgTD5ZL0kuyGkyT2ZCX7EbEPXn/O7vvdM8n1sBhzE5L7/vSzM5T1ZQ/MbcY4yPxMVo+McbEg+USY0y8pHc+SYcGjlSqEKdSLJBa8exBsShuGrdqGmNSieUT0y6p9N3bnHSIEdInzmZYLjHGxEt655OUb+BIpSt+qRQLpFY8e1IsSnrfl2aMSR2WT0x7pNJ3b3PSIUZInzibY7nEtFEyP+fJ/hvbk/e/U/tO93ziJDsAY9KPouq2+DLpSUTGisiXIrJERK7ewXwRkb/48z8VkUNSMMbRIlIuIvP9128THN/DIrJBRBY0Mz8VyrC1GBNYhi3nE2OMaRurm5jWJbMhL9mNiHvy/nd+3+mdT6yBw5idpeBqpMVXa1o7STWJJyIB4F7gJGB/4BwR2b/JYicBg/zXxcDfUjBGgLdVdbj/ujmRMQKPAGNbmJ/UMvQ9QssxQqLKsJV80haWT9KXiNwoImtiGtNOjpl3jf87/VJEToyZfqiIfObP+4uIiD89U0T+5U//QET6x6wzQUQW+68JMdMH+Msu9tfNiPPxdfhnU0SW++UxX0Q+8qd1FpHp/nFNF5FOMct3eLkmRRzqJmD5xBhD2ueTlGngEJHvichCEXFF5LCY6ceLyFz/S2euiIyJmTfTL7SGikG3JMezwy/HDoyli4jMEJFKEbmnyTodUja7GEtCy8Wf11wFJg7loihui69W4m7rSapJrBHAElVdpqr1wNPA6U2WOR14VD2zgSIR6ZliMSaVqs4CNrewSLLLsC0xJlDL+aQ1lk92C3fHNKZNA/B/h+OBA/Aa4+7zf9fgNQpezNaGwobGuguBUlXdB7gbuMPfVmfgBmAkXg65IeaE/w5//4OAUn8bcZHgz+a3/fJrqAtcDbzhH9cb/vtElmsStK9uApZPdgct1Y1jlskSkQ9F5BN/2Zti5jXb6Jqg/TfbOBnH/ff1z1k+95e9PGbeLh9/HPbd4cfuL7fDXqyxx57u+SRlGjiABcBZwKwm00uA01T1QGAC8FiT+efFVAw2JDme5r4cOyqWWuB64Kpm1uuIstmVWBJaLq1UYKCd5aIoquEWX61I+ZPUPVRvYFXM+9X+tJ1dpiO1df9H+BWHl0XkgMSE1mbJLsO2SkgZtpZP2sDyye7pdOBpVa1T1a+BJcAIvzGwQFXfV1UFHgXOiFlnsv/zs8B3/AsKJwLTVXWzqpYC04Gx/rwx/rL46zZsKx6S+dmMLYvY4+rwcu3Yw2peHOomYPlkd9BcPT1WHTBGVQ8ChuPlg1Ex87drdE3g/nfYOBnn/UeAK1V1P2AUcFmTE+9dPf727jsRxw4t92L1jj3N80nKNHCo6ueq+uUOpn+sqt/4bxcCWSKSmWrxtPLl2FGxVKnqO3iNCwmxs7Eko1xopgITj31u3Xe77ktLlxO8Pc2OehbpLizTkdqy/3lAP7/i8FfgPx0d1E5Kdhm2RULLsJ33uFo+SX8TxXsezcMxV+ya+7329n9uOn2bdVQ1ApQDXVrYVhegzF+26bbiIVGfTQVeE69X7cX+tO6quhbA/7+ht2YiyjVp4nDPfModk9k5LdSNY5dRVa3034b8V1y+h+Ow/+YaJ+O5/7WqOs//eQvwOXH4nMdh3x1+7P5yberFms75JGUaONrobOBjVa2LmfZPvwvR9X6LerLiaenLMVmSWTYNklEurf1BtbNcFCXS4gsoFpGPYl4Xx2wgHU7w9kSrgb4x7/sA3+zCMh2p1f2rakVDxcG/8hASkeLEhdiqZJdhqxJbhi3nE1rOJWD5JOWJyOsismAHr9PxejgOxLuKuRb4Y8NqO9iUtjB9V9bp6M9Ooj6bR6rqIXjdoC8TkWN2IaZ4lmuStLtuAil3TKajiEjAuxWBDXg9kT6Imb2jRtdE7b+5xskOId4zdQ4GEnr8zew7ocfejIki8mm655OEDhMrIq8DPXYw6zeq+kIr6x6Ad9/jCTGTz1PVNSKSDzwH/ACvh0Ay4mnXL7E9sTRjl8smzrEko1xa2me7PjNbt9Zqy2WJbr0XuKmUP8HbQ88M1IoAAAblSURBVM0BBonIAGAN3m1O5zZZ5kW85P803n3X5Q1fRqkSo4j0ANarqorICLyG7E0JjLE1yS7DViW8DFvOJy3lErB8kvJU9bi2LCciDwFT/bfN/V5X+z83nR67zmoRCQKFeFfpVgOjm6wzE++W2yIRCfo9E+L92UnIZ7OhV62qbhCRKXg9NteLSE9VXev3JG24HTUR5Zo87aubgOWTtBCPerp6Y4AOF5EiYIqIDFXVBXiNrrfg1ZtvwWt0/XEC99+qeJ2niEge3rnAL1S1wp/c4vF38L7bsl68zxdjxR57NJ3zSUIbONr6Jd+UiPQBpgAXqOrSmO2t8f/fIiJP4n2ptflkNc7xtPTl2GGxtLC9XS6bOMeSjHJp9g+qvZ8ZP6qGlstd1ZYTaZNgqhoRkYnAq0AAeFhVF4rIJf78+4FpwMl4tz1VAz9KwRjHAT8TkQhQA4z3bw9LCBF5Cq/SXywiq/EewheKiS+pZdjGGBNYhpZP9mQNJ+H+2zPx7qEGryHwSRGZBPTCe37Vh6oaFZEt/v3qHwAX4N1G1bDOBOB9vM/wm34j3avA7TFXIk8ArvHnzfCXfdpft70V5Fgd/tkUkVzA8b/Tc/GO7Wa2lsXv2fa4Orxc43l8O6fduQQsn6SFeNbTVbVMRGbiPZNhgaqub5jXpNE1Ifun+cbJuO5fREJ4DQxPqOrzMdtu8fg7ct8k6Nibs+2xO2mdTxLawLEr/Ja9l/C+jN+NmR4EilS1xP+gnAq8nqx4/A9jc1+OCZWsstmRJJXLDiswcS2XdpzrNHeSussbNHHj344wrcm0+2N+VuCyRMcVqw0x3gPc03S9RFHVc1qZnwpl2FqMiS1Dyyd7sjtFZDjeFbPlwE8B/IbLZ4BFeA+lu8y/4gnwM7yHxGUDL/svgH8Aj4nIErweBuP9bW0WkVvwKpsAN6tqw/3X/wc8LSK3Ah/724iLBH02u+Nd/QWvTvukqr4iInOAZ0TkQmAl8D0/pkSVa3K0sx3W8smeQUS6AmG/cSEbOI6towM11+iakP3TfONkPPcveH/Xn6vqpCbzOvT4W9o3CTj2VmKLPfa0zieSwAt7LRKRM/FOfLsCZcB8VT1RRK7DaxFfHLP4CUAV3lNiQ3iF9jrwy5gvqoTG43eNPIxtvxz/Nx5X/ZqLxZ+3HCgAMvx5JwAr6KCy2dlYVHVRksrlN3hdyiJ43b9e9q/utLtcROQVoLX78UtUNWlPUzfGpIc25BPLJcaYVlndxECL5y+9gL+r6skiMgzvIZYBvFswn1HVm/31H8N7JlBjo6vuxG2kcdh/F+AZYC/8xsmdaThs4/6PAt4GPoPG8U6vVdVp7Tn+OOy7w4/dX66xFyuwHrhBVf/R5Nh74D0XqqXhUlI2n6RMA4cxxhhjjDHGGGPMrkq3UVSMMcYYY4wxxhhjtmMNHMYYY4wxxhhjjEl71sBhjDHG+MQb936DiLR1uLrvi8giEVnoj8xkjDHGGGOSxJ7BYYwxxvhE5BigEnhUVYe2suwgvAeCjVHVUhHppqrbDetmjDHGGGMSw3pwGGOMMT5VnYU3FGQjERkoIq+IyFwReVtE9vVnXQTcq6ql/rrWuGGMMcaYuNuZHqYicreIzPdfX4lIWQJCTBnWwGGMMca07EG84a0PBa4C7vOnDwYGi8i7IjJbRFJyuDRjjDHGpL1HgDbVM1T1ClUdrqrD8YaOfb4D40o5wWQHYIwxxqQqEckDvgX8W0QaJmf6/weBQXjjyfcB3haRoapaluAwjTHGGLMbU9VZItI/dpqIDATuBboC1cBFqvpFk1XPAW5ISJApwho4jDHGmOY5QJl/FaSp1cBsVQ0DX4vIl3gNHnMSGJ8xxhhj9kwPApeo6mIRGYnXw3RMw0wR6QcMAN5MUnxJYbeoGGOMMc1Q1Qq8xovvAYjnIH/2f4Bv+9OL8W5ZWZaMOI0xxhiz52jSw3Q+8ADQs8li44FnVTWa4PCSynpwGGOMMT4ReQrvlpNiEVmN163zPOBvInIdEAKeBj4BXgVOEJFFQBT4lapuSkrgxhhjjNmTtNTDtMF44LLEhJM6bJhYY4wxxhhjjDEmhfnP4JjaMIy9iLwH3K2q/xbvQWHDVPUTf94QvAsxA3QPO+G3W1SMMcYYY4wxxpgU5fcwfR8YIiKrReRCvB6mF4rIJ8BC4PSYVc4Bnt7TGjfAenAYY4wxxhhjjDFmN2A9OIwxxhhjjDHGGJP2rIHDGGOMMcYYY4wxac8aOIwxxhhjjDHGGJP2rIHDGGOMMcYYY4wxac8aOIwxxhhjjDHGGJP2rIHDGGOMMcYYY4wxac8aOIwxxhhjjDHGGJP2rIHDGGOMMcYYY4wxae//ARPpQAPA6a3GAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Umm, they kind of look the same. Why am I wasting time on this?\n", "\n", "* Note the location of the origin for each coordinate system 🤔\n", " * The (0,0) should be near the center of your points for the AEA projection\n", "* Note subtle distortion of points near the margins\n", "* Let's dive into some analysis of distances, azimuths and areas to evaluate projection distortion" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Part 4: Distance and azimuth distortion analysis\n", "* We will now explore how these projections affect distances and angles\n", "* Let's start by defining two points from our dataset separated by a large distance - we can use points corresponding to minimum and maximum longitude values" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
decyearordinallatlonglas_zdem_zdem_z_stdlulcgeometry
511952007.755506732952.75979447.674555-124.482406-22.16-23.080.8131POINT (-124.48241 47.67455)
579092008.191175733111.97022839.281164-104.0523361729.571730.570.9731POINT (-104.05234 39.28116)
\n", "
" ], "text/plain": [ " decyear ordinal lat lon glas_z dem_z \\\n", "51195 2007.755506 732952.759794 47.674555 -124.482406 -22.16 -23.08 \n", "57909 2008.191175 733111.970228 39.281164 -104.052336 1729.57 1730.57 \n", "\n", " dem_z_std lulc geometry \n", "51195 0.81 31 POINT (-124.48241 47.67455) \n", "57909 0.97 31 POINT (-104.05234 39.28116) " ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "min_idx = glas_gdf['lon'].argmin()\n", "max_idx = glas_gdf['lon'].argmax()\n", "glas_gdf_mmlon = glas_gdf.iloc[[min_idx, max_idx]]\n", "glas_gdf_mmlon" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create a quick plot to visualize" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQgAAAD4CAYAAAAQE3hSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAyGUlEQVR4nO2df3AU55nnv4+GEYwUiGANJIzBwjLBF1ZYWisGTrsbzIbgRTaZs9cmXrik9q5wXa6ytQSbRDq4YG4hKMZ22Cunbsve3VRyEEcmtmftiOBwASoXzuCIlUChAoUxMvaQGGysgGEAIb33x0wrPa1+++fb3W+P3k+VCtSj6Xl7uvvp533e53m+xBiDQqFQmFER9QAUCoW8KAOhUCi4KAOhUCi4KAOhUCi4KAOhUCi4jAnzw2666SZWW1sb5kcqFAobDh8+/D5jbLLZa6EaiNraWnR1dYX5kQqFwgYiepv3mppiKBQKLspAKBQKLspAKBQKLspAKBQKLspAKBQKLqGuYoRFtjuHra+dwNn+PKbVpLB2yWxkGtPcv5/Z2gmzkjUq/gzpts2aUo09axYCAOZu2I2L1wZN3+fkc8uF2tbOEdv62ltM/9btuVFEC4VZzdnU1MSCWubULrxcf9709W3LG4YvxPXZXjx/6B0MBnzsqWQCW+6vj+QGWPHc6zhw6sLw7811k7Bj1QLX+1n89H6cPHd5+He9gZy3eQ/eu3Sd+17NSFidm2SCsPWv7hj+jtwYG4UYiOgwY6zJ9LVyMBDZ7hzaXupFfmDk0zxq0jUpHGhdFOpnGo2DhlsjYTQOGrOmVONifsDSOACFG9vJuUlWACe/1WJqHPT7UgSDlYEoiynG1tdOSGkcAOAsx6MJEjPjYLWdh5lxsNpupLa1ExUonaKZMTAEzPnmbsu/aW7fq6YjEVAWQcoobkKn1FQlox5CpNgZB43L160NfK4/j7aXepHtzvkflMIxZWEgptWkoh4Cl7g27JLxRswPDGLrayeiHsaooiymGB9cuhr1ELj8Pj8Q+mcmKwpuu9l2Hlbzf5mQ2VssR2LvQczdsBtXB+V9TFMEn7n1wQZX270Yh6njK12/RwQye4vlSOwNhFkegkwMobAa4Idsdw7N7Xsxs7UTze17bd3/TGMa25Y3IF2TAqGwkqJf5hXBoXWLhe3LDWuXzI7kc0crZTHFkB2nUX8zjMuEWrAOgOUNn2lMBxbxT1AUflEBtYoRLlIZiPXZXuw4eKYkq3FiVRIb7pszai8MsyVcLVgX1Xfy8LzpkXyuInykmWKsz/Ziu8E4AMCHVwawuqOHO0+eMDbh+7Ob6yb53kdQ8IJy2na30w+/NNdNwqZMfaCfoZAHaTyI5w+9Y/s3ta2d6Gtvwe3rdgkNTLpNIHLLrCnVnt87rSZlmqI8rSblaPphrBeZMDaBoxvvGTE+p9Ogg299iGx3btR6dKMNaTwIp3URM1s7pV61MBoDfe2CF+6+3bRVIO6+fbLl9AMwLya7eG0QczeUZi3uWbPQsREbZAxtL/VifbYXFdGFIhQh4diDIKIEgC4AOcbYvUTUAOAfAYwDcAPAf2WMveF1IAkiR0ZCXtNQ4M1zl5EWWKW47/h57na76Qdvhcdsu9GINbfv5Ra+5QcG8fyhdzAU8slQBil83Ewx/g7AbwBMKP7+BICNjLGfEtHS4u8LvQ7k4XnTsf3gGa9vlwYG5ysNRozVkVPHV+IcpyAq159H2mL64Ze1S2ZbFlkFXQlrxl/PmxH6Z452HBkIIroZQAuAzQDWFDcz/MFYfBzAWT8D2ZSpLwsDoWG20mCMnYxLEI5vXgrAvHTaqlqSUJhmvHg4V3ITp5IJIbkC2rgffeGIqTFw6vGJYuX8GdiUqS/pJ2H26V6rPq3K2kczTj2IbQC+DmC8bttqAK8R0ZMoxDL+vdkbiegRAI8AwIwZo+sJoH+6mwVWrw4y3L5uF45vXmprDIw3A0NhmrHl/npuA5YJYxOm0wmnKz/afoyeRCqZwAN3pkcYJ1FYNZuxKx2vbe20LGt3mjV68txlLH56/6g3ErYGgojuBXCOMXaYiBbqXvoKgK8xxl4koocA/DOAzxnfzxh7FsCzQKEfhIhBxxFeYNVJwJX3F2f785YJUUc33uNoFcMMfVMdAlBdmcCV64MlRqjplkmWTXr8cltbJ254uGIOnLqAFc+9PsJIuE0p95PgVi448SCaASwrxhnGAZhARNsB3IdCXAIAdgL4J7+DWXZsH77+ix9g2sX3cXbCTXjiz7+EV+bc7Xe3scdPrMGJMTCi5aRoMBTKsTU3P2hEFI4dOHUBdW278PC86Spvwwe2y5yMsTbG2M2MsVoAXwSwlzG2EoWYw2eLf7YIwEk/A/nWivVo3/0Mbr54HhVguPniebTvfgbLju3zs9tIEZWSvHbJbKSSpdMCUbEGM3g5Kfrt2e4cVnf0BOY9iGCQMWw/eAYrnns96qHEFj95EKsAPEVERwB8C8U4g1e+9JNnUXXjWsm2qhvX8PVf/MDPbkNhXMLcEOhTknl/o23n5SHMmlKNTGMaW+6vLym+CrLXJS/4qN++uqMnkM8OggOnLkjZ3yIOuMqkZIztB7C/+P9fArhT1ECmXXzf1XYZ0AfTzOpIth88g9PnP8KOVQtwfPNSy1WMPWsWWkbSgyy+MsJboYiySMsvXgxafI9WHNKkWp+dcBNuvjgyKejshJsiGI03zJ67+oCZZgx4yBIx5+WkyFikpdXRiE6XJwCnVaNceQzED+59BKtfeLJkmnFlzFg88edfinBU1mhLajMnf8wyhyPoWg/RaEE9bRUjQSRtsO/AqQvDnpzIrljKOBSQxkD8tx2b8C0UYhFxWsU4cOpC7AyAEzZl6qU0CDycxBia6yY5OlcyV/eGjTQGAigYicVPf06tP0uIWYxFJuya2RKAHasWcDVDNLwKDJUr0lRzasgyDxdJVP0b3cLrLcHr1REGs6ZUo6+9hftUb66bhNrWTtvl1nHJBLLdOexYtQDbljeYLhtvW96gjIMBqTyIcuX9j8LvbO0Wq94STnp1iMQs1drs6e90ygCU1sZoq0FKI9QeZSBCYJAxzGztlPpCtOotEUXlphlmT3c3gUl9eXyYy8ZxRropBlCeOoz6MnAZk3asekvEOf9Bj2qZ7x4pDUTcSHKyJM2IUh1qfbYXdW27UNvaibq2XVif7R1+jXfzTKtJWeY/GOMryYpCaXba4824cn4wFb9BpqaXM2qK4YGaVBK/zw8MTxm63r7gKsIfhTqUsQBLq1MACkuaZg1itJtKc8WNx2hXvDWztdNVYDPIYrD8wCBWd/SUTCvMpifl6L36QXkQHqgeOwan21twoHURMo1p7Dt+3vRG4LnmUbi6dgVYdvUemzL1ON3eUiLIs+/4ecvpEu840zUp9LW3lPxsW96AfcfPu+7O7Xb6oxkFXuwiLhKEYaE8CA8YPQCeRzDIGFLJRCAdn9zipADLLnDnVsTHyivxs18nx+UHzUgob0JiD0Lmk2N8Mlo9KcOswrSC96R18wS266JtxGkVqpP98uInQQZQlTchuQfR194i3UkyewKaPSkrAPz293ms7uhBgggrQmq2wkNEAZZdF20znCwn2u3XKn5SLs2OZUVqAzFTMuMAwPQJaEy8GZesQH5gaLi80xgQjAIRBVhWIj5WmCU46XMa7PZrFT85tWUpTp//qCzrYWRA2ikGIKcGxqMvHClZHtTINKZxoHURTre34DqnkWLYGYlGNmXqcWrLUvS1t+DUlqWujZWZiE8yQZYxFbPaB60EXoOXJq1tt4ufaOnTRjVzM9xOXWXMWQkTqT2IqOB1gwaceQNOAoJhoG8R7zeLM9udQ8cbIw3coE49R9/oVvNQeE92rcuT3XisblB9/MFsKiMi1qPFQUZrWrbUHkQUTKxKOmr0auUNiAgI+kVbGcgV9SP8ZnE+/soxDJhIaQ2xws2jxQk0I6g3pDzW7jxiOx6rpLIwGtho35uo7zFuKAOhI5kgbLhvDgD7dmNW3gDvwg2zI5PbFQcrst059Of5BWe5/ryn6dPAEMPjrxyz/BurAKifeI4bQWVR32MccWwgiChBRN1E9BPdtr8lohNEdIyInghmiOFAAJZ/Zvqw62gXeLPyBjZl6rFy/ozhv0kQhdYyXsPLigOPja9a38SA9+mTleEBrJeQ/eBGsNiMKLJho8CzNicR3Q3gCwDmMsauEdGUAMYXGppSlcbdt0+2TJ+28waC6sjkNK7gdcXBjA+v2Jer+5Hi4y1n97W3mKppOUk2c/I9ab1HvCyli8iGNYvZyNbFy48251cAtDPGrgEAY+xcICMMEe2pkO3OoeNX73DTp6M6kW4yDp1mMYpA+0785COYGYna1s7hVQc3QUI335PXPJtcfx51bbsc3dxmy7zGPqYyLIWb4Ueb81MA/oyINgO4CuAxxtivxA4vXLSnwsZXj2HARBJvYlUS3d/8fNjDGsYqrmCXmxFk9F1/c3g1Ela1EX3tLa7G7eZ78oNZQFb7HrLdOWx89Zip92XVx3THwTPxMhAW2pxjAEwEMB/AZwC8QES3MlbqZ/oR7w0zk1L/dOW51E5c7SBxG1cIqymKdkFvytQPu8xRIjL+4obnD70zrEDuVVhIttwfJ0FKTZuzD8CPACwqanO+C+AlVuANAEMARohYMMaeZYw1McaaJk8emWhjR5BLg/ogolYO7MQgWfVVCBKrng1B4iaY53alxqnSuBui+p40w9j20tFAPydM/GhzZlHQ5AQRfQpAJQDhMlhBPo30LqJTeOv9YRgJkRqdt68rGDjt5/Z1u7h/a9dIWG8ktRUcI2bSg2MIuHx9SLiXGLaWqUZF8RDzA0OBfk6Y+MmD+BcAtxLRr1HwLL5snF6UGxOrko6EbUWi7zS99bUTeODOtO/qUKMEIABcHWSWRsIKo5HclKkv6fUwhjDi8wDgBgvmAeBGy1SkBzN2jJi0IpmSsPxoc14HsFL8kORES6LizS2DuNDNovEvHs75Lhk3u1nNtuuXCmtSSducBW0Ormfuht3glKY4wm0LOqO+KVD43rrevmAasD268R7M3bCbm1qvxy4mdrXoOVRQIcPUK4/tPCJNKrfKpHTIXbUTkWlMB5pGbdSl2Pjqsciy+Iyp2v35ASQrCBOrktz3mBlJJzeeFW6mb2bGQb8fXrr00Y33OBbqtTrPWozjr+f566t5w491EYwyEA45cOoCZrZ2BpZGbVY7wVs1yfXnUdvaWVIRKRqzpcKBIYaqyjGh15o4nb65UWQzGlqnAUwrT1GLcRgzaQlAdWXpVCYuncKlNxAy6SQyFNapg0ijNrsh7TCWTfMwBiSdYLVUGHatif6m5Kl/eUGfaWoW2DTD6obhTQsqiNAw/eMlMZGnHrrD5WijQXoDsWPVghFGIkqjwYCSVQwCE5LY4nWN/sCpC8M3/rzNe0bcQLe1dXJjDkb0PRSslgp/dMg8Gcpsu91zUm9o7f7GzMta3dGDeZv32HwKH81gaoHNJOeO0K45J+sTZitdB05dGDHFiQPSGwigYCT0UfEHm4LRTvDCDQbc1uZ/mY53Q9akko7nx+9duo7VHT0lF6JVgNBY8LS6oweLn94PwHqpkLdPs+3f4TRuAQo3vr6BDS8gqXkmPC/rvUvXsfjp/Z6Lr/RG4uS3RuqAuhX03eEgmzQ/MGhrjGQgFgZCI9udQ8PGn3nOUgsKP1F6Dd4N+fiyOYFl11VVjjz9J89dxuKn97taKrQi05jmXvDGKYlx7q6x/eAZ1LZ2WnpZJ89dFib8rH8grZw/Awff+tDV9Mzp+RoYGmkMZFMXj01HKT/pq3HAqnYiqOPmBfW07V5Stc26RO1YtaCkcrGCCjkDOw6ewb7j50tqRDZl6rn1HGHH9o3Ncq3QvJe5G3a7+oxjZy9h5fwZ2Hf8PM7259H3QX44riJDF6vYGIhyNg5xYwzxvaa1Pz4CYGTATit/96OBETZuCs/2rFnoOJ9CT39+oORzcv15rOnoQSJBwwWDUX5HsTEQ5Y7VjWPVI9OORAWV9I3UWDl/hufKyze3tOC2tk5TIzEwyLDx1WPDF7Kx1DlZUXCt9egrLb2uSvhp/mLErNGuE/zmfGgMARgyBJaDqEZ1QqxiEOWMVYny0Y33OE4Jnjq+snQ57cE7AlmWffKhBu5rWv6G2Y3GK1PQ4gteksBmTakejj/wulk7Ze6G3dK20I+ii5XyIARQk+JnFzrFrkRZa6RrlS2ov1E0st057Dt+HkOMIW2YyzbXTTK9Geyi6Jq3Y4ebG01bxfFyE+iP2U/MZsVzrwvzAoKgxiKLNSiUB+GTZAXh8WVzfO/HaYmyWS/FWVOq0dfeYmocrDoy83JM7KLoTpK63FRo6ist3ZZki8hI1LpW+fEcmtv3+h6HHf1XBkIv5FIehA8IwPK7pguZF7ppEed0Oc9JZyUvS2oiXN10Tco0Qr92yWxXHoCI7M3a1k7HuSY8eOI/ZuhXLWqqkvh9fqCkuCuZIAwNMRjz2xiAb7x4NNQ4hDIQDiGMXGYzNrr1g9Uyp1cBHD+dlcziB9oUhdcQ1w3a+6sqK0YcS1IXwdeYOr4Si+d8oqTJ662Tq/D8oXew/eCZkr6QvKmTFWEtoTbXTRoR/zE2r13+GX5/z2s3hrA+2xtaWzoKs4VDU1MT6+rq8vReXtQ8DNIWNwQBOB2gEjmvq7OTpKXm9r2m407XpHCgdRH3fVZR/FQygQfuTKPjjXdMhXS8oI+dOB0zL0dBC8DKJvqsp7luEvo+yA97EB9dvVHyXZo9jPQQChmqojwJIjrMGGsyey02MYg3twR3E9pxoHURV4ch6DZmfgRwvHZWsnr65gcGsf3gGXxsnDjnUx90der18NKZo9Y/dYK+LuPDKwMjDK2d2WXwttrjhdgYCMC+8CdIompj5meaICpd2oygGvg6CdZmu3Pcmyjqhrlh4XeK55RYxSBEzH29EmYbeT1+BXCcpEsbYxxR4iRYa/X09LqqsW15g8rWNSFWHoTTp/XU8ZXCP1ukUrYbgvZczJZCo2Rn15kS45CswAivx8p78rqq0fX2BSH5LOVGrAxE19vOItOH1i0W+rmilbLdoJ8maGgt+v10lNJa96/u6HHdqEY02rHxMi93dpXGG3heTnVlwnN0f8fBM0LyWcoNX+K9xe2PEREjohGaGKJxEoCy6pnolcdfia43JFAwErV/NPKmcNpRyoixoUmU6L0hXnDUuJ3X/SmZqPBstBnkKBZzOkEKq2eEGw9CE+8dhoimA1gMwLsoowucXNAfXb0x3PREFLxuzmHmxju9eZwgS6R/TAV57jGx5f76EQ+D/vwAVnf0SNU2Pl2TctWZ2+mSeVhNkxwZCJ147z8ZXvoOCpqdoTyKnASgBoaYq+alfog6oOcVGTwHoNC92etTO9OY5q6keA02BpE7caB1USBJTRtfPSZ8n2Z4Fu8lomUAcoyxI2Rx4/rR5jRy6+Sq0G5+O8JY4hSF1/JlhX+8GB0nmrRh6cR6Eu8loioA6wDYSl0zxp4F8CxQyKT0OtD12V5pjMPEqiQ23Dcn1DmrWR8FbTuPbHcOa17o8SXiEjRBZTz66XcRJSuee12qlnOexHsB/G8AMwEcKW6/GcC/EdEnAhqnVCf7agTai1sfbHC1Pdudw6M7j0htHIIkrFoF0Whdyu1IWT0ZBOJVvPcBxtgUxlhtcfu7AP6EMfa7YIcrB/mBQTz6whEh2gxOyTSmsW15Q0lW5DaLfPytr50w7SQVR/pMAnd2qzdR1GJUVyaGz03QhCUQHItMSpmi0hpaoC/Xn8fanUew8dVj6L8yEGgSlZsmslF0HwoC3s0mW0zF2KVL5mIxN7jyUxhj+xlj95psr2WMvS9uWH/AafeiKBkYYvjwykDoSVRWxHWFxUjUmZ12aJ5cFFMap5qlfpA+k9KLJF3UhJlExWPtktlIVIgtb2uumyS0OWw5oKl76aUNw/IefshROBOJ9FOMuLrKUY9bm4qse7kXl6+7N7C8nhMyrSaNdsIIMUlvIPxUcEa51CWDi6+PWei7FjlBq/fQko4mjE3g6MZ7pMnCTBBJk/BVzkg/xVi7ZDaSHl3l7QfPIAqVdRmTqDZl6od1MI1t8J1w8dog5m7YLc1NGZSSeJwIY6lTegORaUz7usnDvp4TRHjgTveSdWGiNxantix1vCx38dqgkC7SbjBb4gT4Op6jiS33zw38M6Q3EOuzvbjuUL5eBgYZw/NvvBP5KoYbeNWRZoT55OYZBw29oXMqLKRwh/QGQpY5rxsGhxjWvSz30qweY2s6K8J8cmtVudnuHJrb93IT07LdOa5iVzkTxkqZ9AZCljmvW7ysHERJpjGNA62LcNriaaxt157cQfckOHnusqNmPbylcK8ZjWGlMfsljJUy6dve17XtisxI2LUft8PORZYZo1K1tophxE2lKO/7sMob4EkOJIgwxJjtKpcX4eMKAsaOSUiff2MnX+AUq7b30i9zPjyPLyISNKlkBa7Y+K48IxL30JmZMTBDqzwMKjmI95TUp7pb4UVrc4gV+mCu3dkj7dQlrJUy6X0pvymsfubL+YEhWzd6BadbEG+7YiS87MxZU6ojyyfZ2XVGOuMQhHyBHdJ7EH7ZlKnHnmO/w3uXro94ber4Shxat5ir5jStJoUdqxZwVZz0LrNeOk2TgBtN2DU50X9XZh3Cv7vvZEmG5tTxlbhyfQi5/rzvqZ6R6sqEbYwoiGKwcQnCVZMVuQljE7h+Y6jktXEJwvHNS4WPwS3SxyAAa/d12/IGdL19wfM0pK+9hWsA9BJpYba6L2ecSAlmu3NY++MjI/Q5gXhnUIqKGYgm9tJ7vKafzXWTkGlM+3pa17Z2co2LXiIt15/H2h8fiVV+g4w4kRLc+OoxU+MwsSqJpx66w3HOhl9EL2ZEXZ/jhVgYiKZbJqG6svSiqK5MhNbZV2NgkIXWLLRccSIlyOu3+OGVAVc5G34YO6aC263LKzLU57hF+hiEmUsKFPIMtD4RYbr9YTULLVf8SgkCpUVoQa2eXLsxJFyKT7b6HCdI70FY9YPQXFPl9scHJ1KCPAk8s+1xWk6OY/xKegNht859tj8feXMWhXOcKI4/vmzOiAreZAWZSuPF0W2PE9JPMeyi1jVVyVDbkgUh7TfasOut6UZJ3UwNXEbimlXr2EAQUQJAFwpiOfcS0VYA9wG4DuAUgL9hjPWLGpgx1ZfHRY4sXlBsuK/wFLutrRM3TOzWaM2DEI3TBr16YxJEzkSQ6Jv4eL1ujKnuzXWThOpqOM6DIKI1AJoATCgaiM+j0AL/BhF9GwAYY9+w2ofTPAinxiFsUskK/Obv/5JrHPQYuxwrgifbnRMeWBSF0YPg5d7MmlKNK9eHHOXe2NXBODU6vvMgzLQ5GWM/Y4zdKP56EAXxHCHIaByAYup1+15b4wDIJfQzWnhs55Goh8Clrm1XSRdqXhuDk+cuW1au6rHL9hxkDNsPnvHV/dppkHIbCtqcvOz0/wTgp2YvENEjRNRFRF3nz593P0LJkL0N+2hD3yvihsRCQcab1U1vUH0QXn+8TvHTU8XWQOi1OTmvrwNwA8AOs9cZY88yxpoYY02TJ0/2PFAeY8dIvxCjCIgVz72O1R09w0/cOKDdrG4KCLUkssVP7/d0vH5S0z1pcxLRdgAgoi8DuBfAChZmUUeRVDKBbz8wV2k1jELWZ3ulU9dygnazumndN60mhbkbdnuWG/DT/ct2FYMx1gagDQCK6t6PMcZWEtE9AL4B4LOMsSueR+ADTSMzrsU7Cu/EOcYzs7UT41wUevid1vrpI+rHP38GwHgAe4ioh4j+0ce+SnCzZqyMw+gj7pmzDOGI7yaIfK+muUqUYoztB7C/+P/bPH9qRMRpjVzBR2XO2iMqMUvaCF8QOfbKOJQHspZNGwWJVs6fgb72FvS1t8SqZkSPtKnWKyKUzVPIjR85xqA5tcW8C5TbMc+aUu1LAzXbnRNSHCatB6FQ8HAj9BMmVg80t2P2K5AsahomrYGIo2COIhzMKkJlRuvBmR/4g3ShU+2NMR7nJqKmYdJOMdTqhMIKYzFXlPopVhgbHg0yNqIHp1XTmxuMrw1ihagyeGk9CI+C3opRiqxq37wenI+/4rx1oVvjIFIzQ1oPYuyYilDWioMiUQYGzuzJpi2fWb0WBdpav2yBbZ6r358fEBZI1JMW3H1dWg8izsYBAB6eF2/hHJ7bW9vaaflalMhYXm/l6q/u6BH+nR1oXSTU6EjrQcSdfcfjW7nqpzw4auwEfIIkQeRKqzQOKAMRELIm89jBa2QSJ4xTHSc3bSrpX6z3po8ly8o4AJJOMYJ8AvBEeEQT12aq5bi8vGPVAoyzCQptub/eUiPUbil15fwZpvKOfnBbhRnEcq90BiJo9zCIearxSwxLeTkIZFwqFMHxzUu5BqCvvQWZxjT2rFk44m9mTanGnjULsXbJbCRNjEwFCvKPQVxXbs9FENecmmKIgID0x1NloeEZZ+1LO/asWWj5utnDSctozDSm0fX2Bfzw0BlojatSyQpsuX+uNOc6iHFIZSDCKOOta9slfJ9DDFKKsnrh4XnTYx+D8IKV51rb2oltyxvw4uEc9F3tbgwxPP7KMXytowfTalK+6yf8EFQ2qVQGIowy3iCejn469siGrPkEUWOW8DQwyNBflF2IsngsyCmtVDEImSP/fe0t3ADn/FsnhjyaYNmUqfeU9FTOrf/cXpuEcALiZspkIpHKg5C5jDfbncOmTD0OvfXBCDfywKkLwy7q1PGVOLRucRRDDBWjO60F8+KIk6mt22uTAdhx8AwmjE0EKuMQ9NRWKg9C5si/JhJsN8d879J1zNu8J6RRRceb5y4jXZPCtuUN6Gtvia1xAJxNbb08uBiA8alKTB1f6WFUzlj89P7A9g1IZiBkiQab4UYkWPR6uIw4EXaJC0F6rbn+PN67dH24s5SLXrWOOHnucqBGwo825yQAHQBqAfQBeIgx9mEQgwwaJ70qp9WkXM1Da1s7uUuG2vx+3uY9tsZEZAGU2wKrcQnC1UHrb0YTdnEieTeGgDe3xFPE1i+1rZ3oa29B9djkcGBTFEGunLixZ38H4De631sB/JwxNgvAz4u/+6a5bpKI3biCAbaZdmuXzHadHclbMdEKnpx4GqISx+yKr2pbO0dMjY5vXmr7vQDOn8A3WEH0eDTz+4DEppvb9wbiyXnW5gTwBQDfL/7/+wAyIga0Y9UC33M2L+3I7J6Umca01DESK5y6oO9duo7a1s6SC+345qXD7rGItXYnuqblSrY7h4qAlsSDmu750eacyhj7LQAU/51i9kYv2pyH1i32tWS25f56TKxKen4/j0xjGtuWNwjfb9C4dUF5F9rdt4uXThxNrO7oCTRL1ajjKQLf2px2eNXm3LNmYUkbcTdkGtPo/ubnhd7M67O9qGvbhdUdPSNamms/QRG2W8670OJcwj5aEJ1L5Eeb8z0i+iQAFP89J3RkKCTs8NqIW6GpH7u1prz4x9Txldh+8Myw9TeTVQ+yyCyKubvZhSZzIpuiAIPYkgVbA8EYa2OM3cwYqwXwRQB7GWMrAbwC4MvFP/sygH8VNiqfaOrHbpevzGr5m+sm4f2PzANLWjpyGA1Kwp67GwOy8zbvKVvhIZ73p/cOowie63ESLNYQGYvwk0nZDuAFIvrPAM4AeFDIiCRh2/IGR12Ho26zFgTG3H4ny7FO8drGPWjspog7Vi0o+f22ts5QjbZdEF2PNkUUkVfkR5vzAwB/4XsEDqhAaXQ0DFZ39GDrayfKwq3mtWEjAKfbW4Z1G3jl6iKNQznkQazP9kq/GiMq+UuqWgweTy9vcJSIIxpZ60K8YPWENGpMhPnZcSQOla4EMfJ7UqVa89CWF/VKSlHPCcNmwlj/UnPZ7txwADeoxBpF9Cw7tg//93/9DZb9yXT8buJU/GrzM573RSzE7kFNTU2sq6tL6D7XZ3vx/KF3yrYLkobfp7BR4cmMoBqelJsHIXPcadmxfWjf/Qyqblwb3pZPjsWvNzyJz6z7qul7iOgwY6zJ7LVYeBBWeF0KDYqp4yuFC8uKyOcwa3hiJKicfplvqHLj67/4QYlxAIDUwDVMf/LvPe0vFjEII2ZBtea6SVK0HH/v0nVsW96Ara+dEBLD0K+m+CHqYKveSJSbRyET0y6+b7p9Sr+3JLfYGQijq6zloG+5v9AqTW8kKhOE6y6Wh3hMrEri058c79gAGYN+fp6gWrKX0Ui4rcyUqRmPVtkYJXYrNxpGTQ1ZY1/a9PDshJtw88WRxuBczWR8wsN+YxeDaG7fa3qhp2tSI7rrzGztFJLco13MTuMd+otfhHvtRg2ad+M5iUGESSpZgasDQyU3p9Ob1g1evn9N3/K7+05G1oTWK2YxiCtjxuLY46MkBsFzlc22ixKv0aL+TbdMchXvEDX3zg8MYo3PZd5MYxpb7q+HLHlK+YGh4WzX1R09uH3dLjy680hJFuyjO4/4Wmnx+v3n+vNY80JP7IwDALwy52603vNVvDthMoZAeHfCZLTe81WucbAjdgaCd9ObbRdVnu22e1IQQbkh+G8vlmlMS5sufXWQYXCodHSDQwzrXo5GJ3Qowi/KrzL8K3Puxp9+5Xu49Ruv4k+/8j28Muduz/uKnYFYu2T2iFUCXtvvTGNa6BNTS2GNqs19VE+0KOMFl6/LMSUKEwFhM2HELkipzUmdzlVXzJ8hNPPtbH9e+D5lhxdUVMuX5U/sDATgLjVYE4IRlUw1rSaFTZn62BoIkW3YeTUeIpElZiIDfe0tqGvbFWpSYCwNhFs2ZepLxFV5KyFOcBrXaG7fy22Gu9KnB8K7MZ1MBbwaB/3nTRibwNGN94z4TD/fK48VIamxy45mKMPOGB4VBsKIn4tY81zsErOsPmNTph5Nt0zyVYAWZVzg4rVB1LZ2Di8Hat/J2iWzhS+lBqGaHUcqKgjZ7pwncWU/mbixC1L6RZSojbE/gBtqWzsj0QARPR0wruxoS6n6ojo7UskEtxmKiAK1cmFwiHnuaennWht1HoTf3gbrs71CnmpeE3h4743KozA2J3GTRap5ILy09PGp4BSpZMWLhxAko86D8MuOCIOTa5fMttS3iAqvdR4HWhch05jmTsf81o/IFOB0OpZTW5YKkRcQhTIQLtHb9jDUm/XIKk3oJ2M1253j3jx+M2HleQ47H8v6bC9++3txgV6/8g+jbooxdXylsBZqopdQ7ZAx74CXpLb46f2OEru2vnaCe/OMRh0OkcvnyQRhw31zfO3DiS7GOCJ6g4iOENExItpY3N5ARAeJqKcojHOXr5GExKF1i33vQ9+Zad/x83jqoTsir04MGi17lABUVyaGg5D6IjKN2tZOW+OgPdmsVntk1eGokGnuYsFdtRN9e51OPIhrABYxxj4ioiSAXxLRTwH8DwAbGWM/JaKlAJ4AsNDXaELCiVivFWbl5nHAawDMjfFz4uVoTzZtesEbUdQ9LMxIEOGph+4YzuStqkwISQf3e02aceDUBd99KZ3oYjDG2EfFX5PFH1b8mVDc/nEAZz2PImT8zm2N6/xBSJ55QRPh5fHwvOmu9ym6/0FNKomtf3UHMo1py+kFIK4aVyQPz5uOTGMaB1oX4XR7i/S1In6vS6fivQki6kFBPWsPY+wQgNUAthLROwCeBNDmayQhYlbw5ReZnnY8I7EpU88NrJqJwzTXTSrJ9xDR9PbajT8IGFh9Z7zYRlRoU6ztB88MG2KRamdejKGTokG/16WjICVjbBBAAxHVAHiZiP4YwCMAvsYYe5GIHgLwzwA+Z3wvET1S/FvMmCFH2qzmcolspS9TxyYrjGnneszEYXjGRuvjALhbXdHnTfC+swSRaWwjSsjE1xGpjXH52g1Xf69NdTKNaUuv0a8X5mqZkzHWj4Jwzj0oyO29VHxpJwDTIKVX8d6gEXnxyfa0E4FT5SgvRlYzCrzSfe3Cl4V0TSpwoZz+vLm8I49BxoazWK2mgX6vSyerGJOLngOIKIWCl3AchZjDZ4t/tgjASV8jiSm8SH7c8XpDuAnwm6VmR/VdzppSzX3N7dM9LDRvbMeqBSOMRLJCTMNjJ1OMTwL4PhElUDAoLzDGfkJE/QD+gYjGALiK4jQiTlQlK3BlwJ+on74PZhjlz7Jz2uV3EKSq1xhybuje/fAqmusm4f+dujBiMuH26R4mWozBT22QFbYGgjF2FECjyfZfArgziEEFTZA3cU0qGcgFlY5JjEMm3tzi3FjlBwZx8K0Ppcq+dELQKz2jLtU66Cd8UE+bA62LHOcjiEjaklWF2y1Txzsv+Iq6SMrtVx5G7GvUpVqLRoRAqhNmtnZiWk1KmJCOHW9uaXEUqPRSWGQ13xfN+Y/EpNUHCQHDrRPtWu2na1JCZQHsUAbCJ6s7etD64yM4vrnQDn9iVRIfXhHvRehbxHe9fSGURipvbvmDJ2Kmq8F7gtk109mzZqHQcVoRZXdqp5zWeXx2y5ZG7ZegGXVTDCu8dt65Osgws3hSN9w3B0m/fctt2H7wTOjK3G5WHGSQQAwTUVW967O9qGvbJWRfolAehI5MY9pz8hRDaTMZLVc/qAfY6o4erO7oCaxIzFiNOWtKNfasWVhiENZne/HoC0cwyBgSRHh43vRR2SJuU6YeL/9bzlfa9fpsr20lZxQFgaPOg+B9ydp2P/37tDTc1R09+ODSVZxubwm8Z0QQQVezUu2T5y6XCPeseO51bD94ZjiwN8gYth88g/VZuQrXalL++iE45YrPmowfHrIv865t7fQtnuSWUelBWFlio+6G12q9q4MMt6/bheObl4bWIp/31HcLL0imbc9257jTCCfHGlZgFwAeXzZHaEq9Ee1a4qWNO12edhor0Qx1WHGcUedBOEFUtd7VECWSeE99rbBI+/FaZKXHb4VgmJWvQRsizYNzo/jmlzAV1pSBKBOcXjRuNEZ5+K0QlKnyVRR+08ZTSTlvxVE5xQiTsFcbnGDsRG1k1pRqU4Oj5S/4rVyVsc+DCPykjW+5fy7WdPTAX+K/eOQ0W2VE20tHAw9UzvQQqLS6wfesWTgimUkfz7Bym50kQZVb5asdVoFvLYaRaUzj6eUNJR4ILws0zEQz5UEETH5gKHAtT6+RDiuND6sgmPaUND7xNCNi1bA2rExQPW6KtoLAqeC0mQciKvDsFWIh5p83NTWxrq6u0D5PBCKWEVfOn4EfHjojZVZf2HkUUcFLG9fG5fU8l0OzYiI6zBhrMntNeRAhEFclcD9EaQzM0KeNi2Z9tndY+qDcEsaUgVAo4K2rdIJoRAakljAGlIfwsApSKhTwFsfRGwMj5eI1KgOhUCi4KANhg5uGIwpFuaEMhAXZ7pwwHU+FIo4oA2FBkEU+ivJHRN1L1HgW7y2+9rdEdKK4/Ylgh6pQxItcfx5rf3wk1kbCj3hvCsAXAMxljF0joilBDlShCJIgxHMBYGCQYeOrx2Krm+JHvPcrANoZY9eKf3cusFEqFAFzur3FdVdppwTRozQsHCVKFUVzDgO4DcB3GWOHiOhTAP6MiDajIJzzGGPsVybvlU6bU6EwQ9881kkLuNGAoyAlY2yQMdYA4GYAdxXFe8cAmAhgPoC1AF4gGik3LKs2pxPivsRJKI9agSjQlNBFeBVhtb0LAj/ive8CeKk4BXkDwBCAm0QPMEoOrVscWyMxYWxi+Ilo14dTYc6mTD2+YyjBdkuygvD4sjniBxcSttWcRDQZwABjrL8o3vszAN9GwZuYxhj7ZnG68XMAM5jFDuNYzalnxXOvl/RitNN/8IpW8OPFxVU3fbgYC7Xm3zoRfR/kQxW38Yvfak6eeG8lgH8hol8DuA7gy1bGoRwwE0gNoqv0w/Om49BbHwjfr0I8mzL1ZVGUxcOPeO91ACuDGNRoRfMcDr31QaiNSRUKHiqTUiK0PgLKOChkQRkIiVDLagrZUAZCoVBwUQZCMlY897rn96oVDIVolIGQDD/LplFoNyrKG2UgfNJcNynqIZRgFNlVKPygDIRPzHIjokatgihEoQyEQqHgogyERARVbqxQeEUZCAGI0EpMVBBWzJ8xQkI+qvEoFIAyEELYs2YhJoz1fmNXVybw1IN3YFOmflhC3itRS9wpygulzSkQfWUfj5XzZziWaTOTdGu6ZZJpM12VA6HwilU1pzIQCsUox8pAqCmGQqHgogyEQqHgogyEQqHgogyEQqHgogyEQqHgEuoqBhGdB/C2YfNNAN4PbRDBUk7HApTX8ahj4XMLY8xUkyJUA2E6AKIu3hJL3CinYwHK63jUsXhDTTEUCgUXZSAUCgUXGQzEs1EPQCDldCxAeR2POhYPRB6DUCgU8iKDB6FQKCRFGQiFQsElNANBRA8S0TEiGiKiJt32xUR0mIh6i/8u0r22n4hOEFFP8WdKWOO1w+Px3Fnc/iYR/U8ikqKJlMWx/BER7SOij4joGcN7pDw3Ho8lVuel+FpbcbwniGiJbrvY88IYC+UHwL8DMBvAfgBNuu2NKKiEA8AfA8jpXiv5W5l+PB7PGwAWoNBd7qcA/jLq47A5lmoAfwrgvwB4xvAeKc+Nx2OJ23n5NIAjAMYCmAngFIBEEOclNA+CMfYbxtgJk+3djLGzxV+PARhHRGPDGpdX3B4PEX0SwATG2OuscCZ/ACAT3oj5WBzLZcbYLwFcjWBYnnB7LHE8LwC+AOBHjLFrjLHTAN4EcFcQY5AtBvEAgG7G2DXdtu8VXaX/Lovr5wL98aQBvKt77d3itjgT53OjEcfzkgbwju5345iFnZcxft5shIj+D4BPmLy0jjH2rzbvnQPg2wA+r9u8gjGWI6LxAF4E8B9RsPChIPh4zE5UaGvMfo6FQ2TnRvCxxPG8WI1Z6HkRaiAYY5/z8j4iuhnAywC+xBg7pdtfrvjvJSL6IQpuVGgGQvDxvAvgZt2f3QzgrPG9QeH1WCz2F9m5EXwscTwv7wKYrvt9eMyiz0vkUwwiqgHQCaCNMXZAt30MEd1U/H8SwL0Afh3JIF3AOx7G2G8BXCKi+UW370sAvDy5Iyeu58aMmJ6XVwB8sRjbmglgFoA3AjkvIUZk/wMKlu8agPcAvFbcvh7AZQA9up8pKESdDwM4ikKw7x9QjNTK8OP2eIqvNRVP2CkAz6CYyRr1D+9Yiq/1AbgA4KPi33xa5nPj9lhifF7WFcd7AsVVlyDOi0q1VigUXCKfYigUCnlRBkKhUHBRBkKhUHBRBkKhUHBRBkKhUHBRBkKhUHBRBkKhUHD5/wInlbta84YkAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "f, ax = plt.subplots()\n", "glas_gdf.plot(ax=ax)\n", "glas_gdf_mmlon.plot(ax=ax, color='r');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Compute Geodetic distance and azimuth between these points\n", "* This is our \"truth\" - the geodetic distance along the 3D surface of the ellipsoid\n", "* Turns out calculating this is not as straightforward as it may sound: \n", " * https://en.wikipedia.org/wiki/Geographical_distance\n", " * https://en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid\n", " * This is one of the main reasons that we use 2D planar projections! Geometric calculations become much simpler in 2D compared to the curved 3D surface of an ellipsoid.\n", "* Fortunately, there are approximations and several mature tools/libraries with code to do this efficiently\n", "* We will use the pyproj functionality here\n", " * https://pyproj4.github.io/pyproj/stable/api/geod.html" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from pyproj import Geod\n", "#Define the ellipsoid to use for calculations\n", "geod = Geod(ellps=\"WGS84\")\n", "\n", "#Compute geodetic distance between first and last point in a GeoDataFrame\n", "#Return the distance and azimuth and back azimuth (degrees clockwise from north)\n", "def geodetic_az_dist(gdf):\n", " #Extract the points\n", " p0 = gdf.iloc[0]\n", " p1 = gdf.iloc[-1]\n", " #Compute the geodesic azimuth, back azimuth and distance\n", " az, backaz, dist = geod.inv(p0['lon'], p0['lat'], p1['lon'], p1['lat'])\n", " #print('Distance: {:0.2f} km, Azimuth: {:0.2f}°, Back Azimuth: {:0.2f}°'.format(dist/1000., az, backaz))\n", " #return {'dist':dist, 'az':az, 'backaz':backaz}\n", " print('Distance: {:0.2f} km, Azimuth: {:0.2f}°'.format(dist/1000., az))\n", " return {'dist':dist, 'az':az}" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Distance: 1889.41 km, Azimuth: 112.06°\n" ] } ], "source": [ "geo_da = geodetic_az_dist(glas_gdf_mmlon)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Compute Euclidian distance and azimuth between these points for different projections\n", "* You all know how to do this - Pythagorean theorem in a cartesian coordinate system\n", " * https://en.wikipedia.org/wiki/Euclidean_distance\n", "* I've prepared some sample code here\n", "* You will need to reproject the `glas_gdf_mmlon` dataframe and pass to the `euclidian_az_dist()` function defined below\n", "* Please do this for: \n", " * UTM Zone 11N\n", " * Web Mercator\n", " * Your AEA projection\n", " * Extra Credit: an azimuthal equidistant projection with projection center defined using the first point in the GeoDataFrame (you'll need to create a new proj string here, see https://proj.org/operations/projections/aeqd.html for reference)\n", "* Note that the `euclidian_az_dist` function prints out values, but you may want to store the returned dictionary, and then use for later calculations" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def euclidian_az_dist(gdf):\n", " unit = gdf.crs.axis_info[0].unit_name\n", " if unit != 'metre':\n", " print('Input CRS has units of {}, expected projected CRS'.format(unit))\n", " else:\n", " dx = gdf.iloc[-1].geometry.x - gdf.iloc[0].geometry.x\n", " dy = gdf.iloc[-1].geometry.y - gdf.iloc[0].geometry.y\n", " az = np.degrees(np.arctan2(dx,dy))\n", " dist = gdf.distance(gdf.iloc[-1].geometry).iloc[0]\n", " #dist = np.sqrt(dx**2 + dy**2)\n", " print('Distance: {:0.2f} km, Azimuth: {:0.2f}°'.format(dist/1000., az))\n", " return {'dist':dist, 'az':az}" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Input CRS has units of degree, expected projected CRS\n" ] } ], "source": [ "#Note that GeoPandas is smart enough to raise exception when inputs are geographic (lat,lon)\n", "euclidian_az_dist(glas_gdf_mmlon)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Analysis: which of these projections is closest to reality? ✍️\n", "* Do some quick analysis of your findings\n", "* I included a sample function that might be useful to compute percent difference from the \"true\" geodetic distance values" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def percdiff(d1, d2):\n", " key = 'dist'\n", " dist_diff = 100 * abs(d1[key] - d2[key])/d2[key]\n", " key = 'az'\n", " az_diff = 100 * abs(d1[key] - d2[key])/d2[key]\n", " print(f'Distance diff: {dist_diff:.2f}%, Azimuth diff: {az_diff:.2f}%')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Web Mercator: {'dist': 2615069.8042249978, 'az': 119.57892112999764}\n", "Geodetic (truth): {'dist': 1889409.4231811771, 'az': 112.06063809048167}\n", "Distance diff: 38.41%, Azimuth diff: 6.71%\n" ] } ], "source": [ "#Compare web mercator values to the geodesic values\n", "print(\"Web Mercator:\", wm_da)\n", "print(\"Geodetic (truth):\", geo_da)\n", "percdiff(wm_da, geo_da)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## So what is going on here?\n", "* You are seeing different types of distortion (distance, direction) for each projection, compared to the \"true\" geodetic values on the surface of the Ellipsoid.\n", "* In this case, the distance distortion for some projections is <1%, but it's very possible that <1% will introduce unacceptable (and unnecessary) error for precise engineering applications. This distortion will increase as distances increase.\n", "* It's important to pick a projection that is well-suited for your application. If you care about accurate representation of distances, you should use an equidistant projection. If you care about accurate representation of areas, use an equal-area projection.\n", "* Remember, there's no \"perfect\" projection, so it's on you to account for this properly. You would be surprised at how often errors due to projection decisions end up in published literature.\n", "* Hopefully this was informative, and didn't just confuse the entire concept. If you're lost or confused, ask for some help, and let's continue the discussion in class or on Slack!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Part 5: Save the projected points to a GIS-ready file" ] }, { "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "### Export GeoDataFrame to CSV\n", "* For convenience, let's add new columns for the x and y coordinates in the utm coordinates\n", "* This should be pretty simple - no need for loops or a custom function here (hint: use the `x` and `y` attributes of the special `geometry` column). Can store the projected x and y coordinates as new columns in your GeoDataFrame)\n", "* Note: don't _need_ to do this, as the geometry column already stores this information, but sometimes you want to preserve projected coordinates (alongside lat/lon) if you're going to export as a csv and analyze with other tools (e.g., AutoCAD)\n", " * Warning: no information about projection is preserved in a standard CSV, just the coordinate values. It's on you to document projection in metadata before distributing\n", " * A better option is to use a GIS-ready file format (below) that embeds the CRS metadata along with the coordinates" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def gdf_add_xy(gdf):\n", " gdf['proj_x'] = gdf['geometry'].x\n", " gdf['proj_y'] = gdf['geometry'].y" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "gdf_add_xy(glas_gdf_utm)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
decyearordinallatlonglas_zdem_zdem_z_stdlulcgeometryproj_xproj_y
02003.139571731266.94334544.157897-105.3565621398.511400.520.3331POINT (1431183.070 4955789.787)1.431183e+064.955790e+06
12003.139571731266.94334644.150175-105.3581161387.111384.640.4331POINT (1431181.915 4954913.882)1.431182e+064.954914e+06
22003.139571731266.94334744.148632-105.3584271392.831383.490.2831POINT (1431181.639 4954738.855)1.431182e+064.954739e+06
32003.139571731266.94334744.147087-105.3587381384.241382.850.8431POINT (1431181.394 4954563.604)1.431181e+064.954564e+06
42003.139571731266.94334744.145542-105.3590481369.211380.241.7331POINT (1431181.226 4954388.366)1.431181e+064.954388e+06
\n", "
" ], "text/plain": [ " decyear ordinal lat lon glas_z dem_z \\\n", "0 2003.139571 731266.943345 44.157897 -105.356562 1398.51 1400.52 \n", "1 2003.139571 731266.943346 44.150175 -105.358116 1387.11 1384.64 \n", "2 2003.139571 731266.943347 44.148632 -105.358427 1392.83 1383.49 \n", "3 2003.139571 731266.943347 44.147087 -105.358738 1384.24 1382.85 \n", "4 2003.139571 731266.943347 44.145542 -105.359048 1369.21 1380.24 \n", "\n", " dem_z_std lulc geometry proj_x \\\n", "0 0.33 31 POINT (1431183.070 4955789.787) 1.431183e+06 \n", "1 0.43 31 POINT (1431181.915 4954913.882) 1.431182e+06 \n", "2 0.28 31 POINT (1431181.639 4954738.855) 1.431182e+06 \n", "3 0.84 31 POINT (1431181.394 4954563.604) 1.431181e+06 \n", "4 1.73 31 POINT (1431181.226 4954388.366) 1.431181e+06 \n", "\n", " proj_y \n", "0 4.955790e+06 \n", "1 4.954914e+06 \n", "2 4.954739e+06 \n", "3 4.954564e+06 \n", "4 4.954388e+06 " ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "glas_gdf_utm.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "out_fn='./conus_glas_utm.csv'\n", "glas_gdf_utm.to_csv(out_fn)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Open the csv from Jupyter lab file browser to verify output looks good, with new columns" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Save GIS-ready files to disk\n", "* Use fiona to get a list of available file type drivers for output\n", "* Note: the 'r' means fiona/geopandas can read this file type, 'w' means it can write this file type, 'a' means it can append to an existing file.\n", " * https://fiona.readthedocs.io/en/latest/manual.html#writing-vector-data" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_output" ] }, "outputs": [], "source": [ "fiona.supported_drivers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## How to choose a file format?\n", "* I'm guessing that most of you have used ESRI shapefiles in the past.\n", "* Please stop 🛑. This is a legacy format, though it is still widely used.\n", " * http://switchfromshapefile.org/\n", "* Better options these days are Geopackage (GPKG) when spatial index is required, and simple GeoJSON for other cases\n", " * Both should be supported by any respectable GIS (including QGIS, ArcGIS, etc)\n", " * Note that GeoJSON is typically only used for geographic coordinates (EPSG:4326), not projected coordinates\n", " * https://feed.terramonitor.com/shapefile-vs-geopackage-vs-geojson/\n", "* Now that you've made an informed decision for an output format, let's use the Geopandas `to_file()` method to create this file\n", " * Let's export to Geopackage for this exercise\n", " * Make sure you properly specify filename with extension and the `driver` option\n", " * *Note: Writing out may take a minute, and may produce an intermediate '.gpkg-journal' file*\n", " * Can see this in the file browser or terminal!" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 🎉\n", "\n", "You can now directly load this gpkg file in any GIS, without defining a coordinate system or dealing with your original csv. You can also load this file directly into geopandas in the future using the `read_file()` method, without having to repeat the processing above. We'll do this for lab exercises in a few weeks. \n", "\n", "### See for yourself!\n", "\n", "Try it! Right-click on file in the file browser on the left side of the JupyterLab interface, then select Download and pick a location on your local computer (e.g., your Downloads folder). \n", "\n", "Then open this file in QGIS or ArcGIS on your local machine!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## A quick aside: `gdalsrsinfo`\n", "\n", "We covered basic shell and command line usage during in Week01. I included this because there are many powerful command-line utilities out there that can batch data processing and quick geospatial data inspection. The [GDAL/OGR command-line utilities](https://gdal.org/programs/index.html) are worth exploring - we will discuss more during raster module. Some of these have equivalent Python functions, while others do not.\n", "\n", "One of these utilties, `gdalsrsinfo`, is great for quickly inspecting dataset CRS, converting between different CRS formats (WKT, proj strings, EPSG codes, etc), and exploring transformations between different CRS.\n", "\n", "### Try it!\n", "Open a new terminal, navigate to the directory where you just created the output file. Alternatively, you can run these shell commands from a notebook cell. Run the following (substituting your filename):\n", "* `gdalsrsinfo EPSG:32611`\n", "* `gdalsrsinfo yourfilename.gpkg`\n", "\n", "By default, this will export a proj string and WKT for the crs. You can also output different formats (e.g., EPSG code). See `gdalsrsinfo -h` for usage. Try the `-o all` option." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Part 6: Area Distortion" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Get polygons for US States\n", "\n", "Hmmm, let's see. Two choices:\n", "1. We could go to ESRI or the U.S. Census website, identify and download a shapefile, unzip 4+ files, copy/paste the appropriate \\*.shp filename into the notebook. Wait, how can I download on a remote server? OK, maybe run something like `wget http://...`, unzip, provide absolute path \n", "*- OR -*\n", "2. Give geopandas a url string that points to a GeoJSON file somewhere on the web, and read dynamically\n", "\n", "Yeah, let's go with #2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's use the US States 5M GeoJSON here: http://eric.clst.org/tech/usgeojson/\n", "\n", "* We've talked about JSON as the text format used by Jupyter notebooks. GeoJSON extends this format to include geospatial information. It's pretty great. If you are unfamiliar, take a moment to read about GeoJSON: https://en.wikipedia.org/wiki/GeoJSON" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Quick inspection\n", "Take a look at the [5M GeoJSON file](https://eric.clst.org/assets/wiki/uploads/Stuff/gz_2010_us_040_00_5m.json) (digitized to preserve details at a scale of 1:5000000) contents in your browser or download and open with a text editor. \n", "\n", "Note organization structure. How does this compare to, say, a Python dictionary object? 🤔" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Read directly with GeoPandas\n", "Read the file using GeoPandas by passing the url to `gpd.read_file()`." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#states_url = 'http://eric.clst.org/assets/wiki/uploads/Stuff/gz_2010_us_040_00_500k.json'\n", "states_url = 'http://eric.clst.org/assets/wiki/uploads/Stuff/gz_2010_us_040_00_5m.json'\n", "#states_url = 'http://eric.clst.org/assets/wiki/uploads/Stuff/gz_2010_us_040_00_20m.json'" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Inspect the GeoDataFrame\n", "* Note the columns and geometry type(s) in the `geometry` columns\n", "* Do a quick `plot()` to preview" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAABlCAYAAABUdbijAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVsklEQVR4nO3deXCc9X3H8fd379VqdVmHdViWfGJjA7aFjSEEN1yFkEDSQEgTQgMpSSYHmZYkJEw7mUnT0iTt5OgMKYQWhzQhZAhxhkIIuCXUHMY2lg984UO2Lks+dFrSnr/+sY/klbVrrYyk3cf+vmY02v3tPs9+rF1/9dPveZ7fT4wxKKWUsh9HtgMopZQ6N1rAlVLKprSAK6WUTWkBV0opm9ICrpRSNqUFXCmlbMo1nS9WWlpq6urqpvMllVLK9rZs2XLcGFN2Zvu0FvC6ujo2b948nS+plFK2JyKHU7VfkEMo8bhevKSUsr9p7YFn02v7j3Pk5ADbW7p5aVcnl9cVs6y2iGjccPfqOrwuB3EDHtcF+TtNKWVDMp2X0jc0NJjpHEIJRWM8/MIe3jhwgj1H+9I+z+d2EI7GEREWVgSZUxagNN9LVZGPtu4hVs+dwTULyvC5ndOWXSmlhonIFmNMw5nt52UP/OSpMN0DYX658Qj/+VrTuM8fisQTN4xhV3svu9p7Rz3+xOtNfOnP5vHAjQunIK1SSp2b866AD0VifO7JzWxq6sp2FKWUmlLn3YCvz+3kN5+/kme+sJriPHe24yil1JQ57wo4wPH+EB29IZ6//2qe+MzllAe92Y6klFKT7rwZQjHG0HxykO8+v4uXd3cSixsurSnE73HSPRDJdjyllJp0500PXESYVeLnK9fOJ2ad572tpYddbb3MK8/PcjqllJp8tu+BG2MQESBRxC+uKqTx769nIBzD73biEOHpzc1jzixRSim7s30B39rczYHOfgr9bq5fXIGIUJTnoflkD32hCM9ta2dbS3e2Yyql1KTLqICLSBHwM2AJYIB7gL3Ar4E6oAm4wxgz7efuLa8tZnlt8ai2tu5B/vrnmznaOzTdcZRSatpkOgb+I+APxpiLgEuB3cCDwHpjzHxgvXU/Jzz66sEJF2+XQ/QyeqWUrYxbsUSkAHg/8DiAMSZsjOkGbgXWWk9bC9w2NRHTGwpHU7Z/5QPzKAl4AHA65Kz7cAh89up6rl9cgUPgpiUz+dbNF1Fd5EfOvqlSSmXVuHOhiMhlwKPALhK97y3A/UCrMaYo6XldxpjiFNvfB9wHUFtbu+Lw4ZSzIp6TUDSGx+kYOYgJ8Nz2NkKRODMLfTz5xmFmFvp44vWmlNu7HMIXrplLYZ6b7724l0+uqmVZbRHLa4spzffy9pEu9nf2E40Zdrb1MBiOcfPSSj50aRU9gxEGwlEqC/2T9u9RSqlU0s2FkkkBbwDeBK4yxmwUkR8BvcCXMyngyaZ7MiuAfR193PPEJoI+N61dAxigbyjRc7/x4gp+cucyNh46QU1JgPrSwFn3daI/xFObmonE4rx+4AQAP/z4ZVQVaRFXSk2d91LAZwJvGmPqrPtXkxjvngesMca0i0gl8Iox5qyzPWWjgA+GY4SjcQr8Lg4eP8Ufdh7l+y/updDv5ls3X4Tb6eCGxRXk+zK/7H5HSw/PbGnG6RAaW3r46adWUKZXeyqlpki6Aj7uGLgx5ijQLCLDxflaEsMpvwfuttruBtZNUtYJi8biaR/ze5wU5rkREQIeF89tb2fNwjKe/8r7eHZrK6/tP0HAO7GzKZfWFHLDkpnEMVw5dwZ/v24n0zktr1JKQYbzgVvj4D8DPMBB4DMkiv/TQC1wBLjdGHPybPuZyh54NBbH5Uz/++i/t7fz+IaDfHRZNR9bUYPT6WBfey+LqgpxjHOgM5V43PDLjYc51h+i61SYooCXe6+qp1An0FJKTbJzHkKZTNkYQnl+Rzs7WnqIxuNcv6iclXNKicfjxAy4z1LwM2GM4e3DXTy+4RDvdvZTWeTn5/esnKTkSimVcEEt6ACJJdQ6eoco8Lm458rZhKIxqooTBykdDsekTAKTuHS/gPkVQT5+eQ37Ok5Nwl6VUioz510PfHd7Lz4XFPq9FAc8hGNxvC5dCk0pZV/ndQ88FoszFImxs62Xwjw3daXBkXPDtXgrpaZLZ98QMwLecS8gnCy2K+CRWJxozNDWPUhFgZc8j4vBSAyf28mqOTOyHU8pdQEr9LsZDIXJ93sxxhCLm5FiLlNwabdtCvjAYJiuoSiD4Sj1pQHmJs3xPZFzuJVSaqp4Xc6Rv/pFhJiJMxSKIgiBKahTtingeX4PeX5PtmMopVTGkgv6VNDp95RSyqZs0wO3s6FQhGe3tROxrhgVwOVw4HTAUPR02zBzxn2nQ0aWiUvmdTkJRWP0DkX5/DVzp+3AiVIqN2gBn2LrGlvpOhXmd42tNDb3jLTPKvFTnOdhe0vPWbZOqC7y0do9dn7zxZUFI0vFPfLKAepLA9zRUENZ0EfD7GJKAp5zuspUKWUPOoQyxbwuJ//4wh5augZHtQvC7rZeZhWf+0yGTSdOXzjUH4qyo7WH321tZWl1AQjs7eg7530bY1jX2Mp2XY5OqZylPfAptrKumIDHyfH+8Kj2mDFE4oZQNI7f7WQwEpvwvgfCMYJeJ32hxLblQS8xA//+6n5e2NFBgd/NHQ2zaGzu5qPLa7h+cUXG+35pVwf3P9XIJ1bO4pKaoglnU0pNPS3gUyzP62IgHKVhdjEOhxCJxTnRH8IYqC7y09Y9yLzyfN7t7E+7D2MMCytOnzaZGCMXRKBrIDxSwOtKA7x16CSNzd34PU7qy/KJxGJ87uo6XtzVybLaIkrzx5/2NhaL8+tNzQC0pRi6UUrlBi3gU6x3MEIoath8ePR6zyUBD32DEQyJIlwe9BLwuihOMZuh3+3kNWsBiTMtrS6gozcEjD7wORiOEYvF+diKWTz07E7W7+mkqjiPu66YPWYfoWiM7/9hL31DEfpDMXxuB+v3dAKws62HwydOMXvG2Re7UEpNPy3gU+xYfyhle8Dr5OSpxLDK8PBKUSzOoeNjJ8SqyXCcfOOhk1xeV8ympsQvC2Pte/2eTjxOB6dCUeJxM+bA5o/Xv8vPNhyistCXGJbxuSgJuPniNXP40NKZlBdr8VYqF2kBn2KNzd0p2yc6h9jFVQUj24gkxr87eodwOx1UFvoQSewzEj29uMXiqgIKrKu/wrE4D7+wh1suqaSmOA+Ar/1mGyLw8u5Eb7t7IMyiygL2dfTzxGcaaKjTqQmUymUZF3ARcQKbSSxmfIuIlAC/BuqAJuAOY0xX+j1cmBwiFPhciAjxpKrtdzsJ+lxgDHFjcDgcBDwuugciKffzTlvvmDYhUbTbe06PUx/tGWLNwjJ6BsK4HQ4Mp1/zffNKKc33Eo7GeHpLCy/v7iBqnV8uQGm+h+P9IYJeJ7Ul2utWKtdNpAd+P7AbKLDuPwisN8Y8LCIPWve/Mcn5bO+yWUX0WosoD99vbO6mb+j0QcsVs4vZcrhrwhfipOrE+zxOjvWFeKetl+Onwuxo7WFeWYAZ+V4CXidrX2/ij7uOsuVw96jtrpw7g76hKKFIlI9cOpNDx/spL/BNKI9SanplVMBFpAb4IPBd4G+s5luBNdbttcAraAEfo617cPwnWboHIlQEvcwpz+eAdVaKCIQjMcqDXupLA2w8NHrVuvbeIZbXFiEiCOBxOXjdOuAZjZ0+eBqOGTYeOsmL73SMOqNlWCQWZ3V9MR9YPJOVdSV6AZBSNpBpD/yHwNeBYFJbhTGmHcBamb481YYich9wH0Btbe25J7Wp5bXF5HmcDIQzO8+7oy/ErJI8OvvGHvycVx7gkprCMe1OETZZhbphdvFIe/LslclDKTPyvTT43IAhbsDlEAYjMW5YUklDXUmG/zKlVLaNW8BF5Bag0xizRUTWTPQFjDGPAo9CYkWeiW5vd8UBDwsqgiMHMz2uc+/ZRmOkvPR+Xvnp8erNh7tGhmncVi863+tkdkke/UNR5pQGePPgCbwuB0uqC/G5HDgdwocvq2ZFUvFXSuW+TC6lvwr4sIg0AU8BHxCRXwAdIlIJYH3vnLKUNvcPty1hRiAxFe6mQ10sry2a1P0PhuOj7g+PflQV+7loZpDZMwJs2H+CroEI7T1DxA0sqixgU1MXbd2DzJ2RR3WRb0omnFdKTZ1xe+DGmG8C3wSweuAPGGM+JSLfB+4GHra+r5u6mPa2pLqQ980vZV1jGwbYeqSbZbOK2Gr1yt1OoTx4+gpJjytxP/msFUzieWX5Xs6ss0Hf6Lfx7SPdXDGnhJaTgzQnzcHidgrzKoLUlPh561BiyKXpxAC1V+azZmHKETClVA57L+eBPww8LSL3AkeA2ycn0vnpritms66xDUicPbK9pZul1YXsau8lHI2PGvOuTTEGvqSqgGjcMKcsQEvXwKjZCV0OYVX96bHrUDSO1+mgosBHccCDUwSHCA4HCAZjYOXIWLeh+eSA9r6VsqEJFXBjzCskzjbBGHMCuHbyI52fVswu5rpFFby8uwOAmIG9R3tZMbtopDd8NiKMnIGypLpgVAE/fipMW9K54PPKAmMuIAp4nCyqLODVfcdHnX4oAgsqgkRjcVxOnZxSKTvRKzGniYjw1evm89r+4yMzD4Zjhv0d/bgdQiTFgg1nbj/MJaML7fBCEcMqCnz43E5KAh5OngpTGvRyvD9EwOskz+OkviyA1+lgy5FuFlYE+fTqOi3eStmQFvBpdHFVAf/39Wt4bEMTj716kLiB7sEIQZ+LnsHo2TdOqu/bW7u5pKYQj9NBNG4QSYyrA5TkeXir6SSRmGFJVQE723pZNquQna29uB1CRaGPna2Jqzo/uaqWb9x00cjl9kope9ECPo1EhJKAj69eO5+g18UP/riPkoBnzFzhqbc9fTtuxp5OuGZBGX1DUfweBxv2Jy7k6Q8lfil0W78cInGDx+ppL6st4ju3LtELdpSyMS3g08zhEPweF3dfWcetl1Xjdgo/+Z/9PPN2C0OR0UMheW4HJdb83R7X2Yc4egYjbG3uprro9OXvw5fwt3QN4JBE4T94/BS3r6jh2x++WIu3UjanBTxLgj43QWvo4rsfWcrXblzIr95qZu/RXsqCXr587XzqZ+Rx79rNvNvZP2ZJtjMNz6NSXZw3coAzGk/8QvC5HCOLPgDctXo2Aa++9UrZnf4vzhFFeR6+sGbumPZffHYVt/xkA8dSXFqfbHjV+i1NJwn6XNbcKXl0DUTZd7R3ZEUggLllY+dCUUrZjxbwHFdR4OO2y6pY+8Zh7r92Pr/ceITWMybImlXs56p5M6gq8nO0d4gdrT088pfLWVCZmDjyjf3H6QtFeeRPB9h6pJuDx06xNMWcKkope9ECbgMP3rSI6xZVsGrODJbXFvOJx94ceaym2M8/ffQS3je/FEiMhR/tGcLrPj1mvnpe4rEFFUHW/OAV1jW2agFX6jygBdwGnA5h1ZzE6jhXzCnh0llFbGvu5uKqAn7x2VUU53lGnlvod1PoT31aoN/twO928uah1OtrKqXsRa/esBkR4es3LgTgg0srRxXv8ZQFfRTnuROLPaRZq1MpZR9awG1oZX0J1ywoIxTNbI7xYQ6HcN/752AMdPQOjb+BUiqn6RCKDbmdDtbes5LBDBeJSHbnylp+u7WV2pK8KUimlJpO2gO3Mb/HOeFtHAJP/tXykXPQlVL2pT3wC4zH5cSTr71vpc4H2gNXSimbGreAi8gsEflfEdktIu+IyP1We4mIvCQi71rfc3pBxYPH+jHmgluSUyl1HsukBx4F/tYYswi4AviiiCwGHgTWG2PmA+ut+zmrvjRAJGZ4t6PvnA7+KaVUrhm3gBtj2o0xb1u3+4DdQDVwK7DWetpa4LYpyjgpRASPy0F9aYC9R3tH5g5RSim7mtAYuIjUAcuAjUCFMaYdEkUeSLkqrojcJyKbRWTzsWPH3mPc987ldBD0u/m7dTuzHUUppd6TjAu4iOQDzwBfNcb0ZrqdMeZRY0yDMaahrKzsXDJOusrCxKIKKjOnQlE9fqBUDsqogIuIm0Tx/i9jzG+t5g4RqbQerwQ6pybi5MvzuCgv8I3/REU8bnjklQNss5ZsU0rljkzOQhHgcWC3MeZfkx76PXC3dftuYN3kx1PZ5nAID9y4kMtm5/RJRkpdkDK5kOcq4C5gh4g0Wm3fAh4GnhaRe4EjwO1TklAppVRK4xZwY8wGIN3iiddObhyllFKZkuk8OCUix4DD0/aCE1cKHM92iAzYJSfYJ6vmnHx2yWqHnLONMWPOApnWAp7rRGSzMaYh2znGY5ecYJ+smnPy2SWrXXKmonOhKKWUTWkBV0opm9ICPtqj2Q6QIbvkBPtk1ZyTzy5Z7ZJzDB0DV0opm9IeuFJK2dQFWcBF5HZrbvO4iDQktdeJyKCINFpfP016bIWI7BCR/SLyY+sK1axltR77ppVnr4jcmO2sSa//bRFpTfo53jxe5mwSkT+38uwXkZyaFllEmqz3slFENlttWZ+LX0T+Q0Q6RWRnUlvaXNl839NktdVnNC1jzAX3BSwCFgKvAA1J7XXAzjTbvAWsJnFR0wvATVnOuhjYBniBeuAA4Mxm1qRs3wYeSNGeNnMWPwtOK8ccwGPlW5zNTGfkawJKz2j7HvCgdftB4J+zkOv9wPLk/y/pcmX7fU+T1Taf0bN9XZA9cGPMbmPM3kyfb03WVWCMecMk3uWfM03zn58l663AU8aYkDHmELAfWJnNrBlImTnLmVYC+40xB40xYeApEjlzWdbn4jfGvAqcPKM5Xa6svu9psqaTi5/RtC7IAj6OehHZKiJ/EpGrrbZqoCXpOS1WWzZVA81J94cz5UrWL4nIduvP1+E/pdNlzqZczJTMAH8UkS0icp/VltFc/FmQLleu/ozt8hlN67xdlV5EXgZmpnjoIWNMupkT24FaY8wJEVkB/E5ELib1XDCTdvrOOWZNl2lKs468+FkyA48A37Fe9zvAvwD3TFe2CcrFTMmuMsa0iUg58JKI7Ml2oHOQiz9jO31G0zpvC7gx5rpz2CYEhKzbW0TkALCAxG/hmqSn1gBtk5HTeq0JZyWRaVbS/eFMU5p1WKaZReQx4DnrbrrM2ZSLmUYYY9qs750i8iyJP+c7RKTSGNOeY3Pxp8uVcz9jY0zH8G0bfEbT0iGUJCJSJiJO6/YcYD5w0PpzsE9ErrDO6Pg02Z///PfAnSLiFZF6ElnfyoWs1n/eYR8Bho/+p8w8ndlS2ATMF5F6EfEAd5LImXUiEhCR4PBt4AYSP8tcnYs/Xa6ce99t9hlNL9tHUbPxReINayHR2+4AXrTa/wJ4h8RR6LeBDyVt00DiTT4A/BvWRVDZymo99pCVZy9JZ5pkK2vS6z8J7AC2k/gPUTle5ix/Hm4G9lm5Hsp2nqRcc6zP4jbrc/mQ1T4DWA+8a30vyUK2X5EYcoxYn897z5Yrm+97mqy2+oym+9IrMZVSyqZ0CEUppWxKC7hSStmUFnCllLIpLeBKKWVTWsCVUsqmtIArpZRNaQFXSimb0gKulFI29f/vMcb0+2aZ+AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "states_gdf.plot();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "*Note: The extent of the Aleutian islands (Alaska) crosses the -180/+180°W antimeridian, which is why the extent spans the full longitude range.*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Check the CRS\n", "* Note that this was automatically defined during the `read_file()` step. Thanks GeoPandas!" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Compute the area (in $km^2$) for all states\n", "* Our GeoDataFrame of states is still in geographic coordinates (decimal degrees)\n", " * We could compute area in decimal degrees, but remember our analysis above about how the length of a degree of longitude varies? This will also affect area calculations.\n", " * Hmm, also we want to avoid the costly 3D geodetic area calculations on the surface of the ellipsoid\n", " * We want polygon area values in km2\n", " * What might you need to do to the GeoDataFrame before you proceed?\n", " * Hint you've already done this a few times during the lab\n", " * ..." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Answer: reproject the polygons!\n", "* Let's start by reprojecting the state polygons using the same UTM 11N projection we explored earlier\n", "* Store output as a new GeoDataFrame with unique name (e.g., states_gdf_utm)\n", "* Do a quick `head()` on the output to verify a change in geometry coordinates\n", "* Do a quick `plot()`, noting the new coordinate values." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAADoCAYAAADG166EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAA+eklEQVR4nO3dd5icV3nw/++ZXnZme+/qlmXJkmW54G4DNjYYEmJM7w5v6AkQAsmb/MgvIeElCfDiAI5DB5vYYCDEDYyNqyyr97rSane1vU6v5/1jVutd7dTdmZ3V6v5cFxfeeZ555sxKuufMee5z30prjRBCiMXLUOwBCCGESE8CtRBCLHISqIUQYpGTQC2EEIucBGohhFjkJFALIcQiV7BArZT6rlJqQCm1P8vz71JKHVRKHVBK/bRQ4xJCiPONKlQetVLqOsAL/FBrvS7DuSuB/wJu0lqPKqVqtNYDBRmYEEKcZwo2o9ZaPwuMTH9MKbVcKfW4UmqHUuo5pdSayUMfBu7VWo9OPleCtBBCTFroNer7gI9rrS8DPgP8++Tjq4BVSqkXlFJblVK3LvC4hBBi0TIt1AsppUqAq4GHlFJnH7ZOG8dK4AagCXhOKbVOaz22UOMTQojFasECNYnZ+5jW+tIkx7qBrVrrCHBSKXWEROB+ZQHHJ4QQi9KCLX1orSdIBOE/AVAJGyYP/xK4cfLxKhJLIR0LNTYhhFjMCpme9wDwErBaKdWtlPog8E7gg0qpPcAB4M7J058AhpVSB4Gngc9qrYcLNTYhhDifFCw9TwghRH7IzkQhhFjkJFALIcQiV5Csj6qqKt3W1laISwshxJK0Y8eOIa11dbJjBQnUbW1tbN++vRCXFkKIJUkp1ZnqmCx9CCHEIieBWgghFjkJ1EIIschJoBZCiEVOArUQQixySzZQnxkLEI9f2Lsux/2RpI/H4xrZkSrE+WMhq+ctqP/ec4a1DW6uXZk0LXFJ6xrx8+0/nOCZI4P85/s2s6bODcBLJ4a5/7kOtneO8s4rWqgrtXFyyMd7rmqjvcpZ5FELIVIpSK2PzZs362LnUY/6wpwZD3BxQ2lRx1EMR/o8vP5rzwJgMRp47cW1TAQivHB8iGRfMkrtZu5YX8/xAS/XrarmozeuWOARCyGUUju01puTHVuSM+qj/R7KHGZW17qKPZSiWFVbQonVhDcUJRyL8z97e9OePx6I8JOXT2M2KjY0l9Ex6GVZdckCjVYIkcmSXKNeXl1CjctGbImuUWdae1dKYTKqtOckE4lp7nu2g76J4FyHJoQogCUZqI2GRJCymo1FHklhKAXhaDzl8XhcYzLM/Y/2Hf/xMp/+2W654SjEIrEkA/X5LBKL8+f/tTvtt4GJYJTL/v/f8oHvv8KXHzvEbw/24wtFp47/Zl8vQ97QvMYxEUieMSKEWHgSqBcZk0FR67bxD/9ziEhs9qxZa43bZqK9ysnvDw/wnT908OEfbufyf/gd//LkEQAqnRbMc1j6mG7n6VGePjJANMkYhBALa8kH6nRLBIuRUoqP37SCn+/sJtnKg1KK7tEAlzTOzGbxh2MEwjGisTi1bhufumUVah6xetQf4QPf387b7ttKz1hg7hcSQsxbVoFaKfVppdQBpdR+pdQDSilboQeWLxbT+flZNB6I0J/ipt5DO7r5ycunZz1+5bJKTEYDLpuJrR3DGOcTqSft6Bzlkw/sSjq7F0IsjIxRTCnVCHwC2Ky1XgcYgbsLPbClKpuApzW8+Pmb2NcznvT4sX5P0sc//KPtPH9siO7RAMcHvETzlPWyvXOUf37scMqdjkKIwso2j9oE2JVSEcABnCnckJa2Q70TrG8qS3uO02rCaTXRUGZPevzzt63hd4f6icRmBmKt4T3ffRmXzYx32s3FfLj/+ZM8f3yI//74NZiN5+e3FCHOVxn/xWmte4CvAqeBXmBca/3kuecppe5RSm1XSm0fHBzM/0jnIBKLs7VjmPFFlMFQWWKd9zVaK51s+8ItvOGSulnH4jqxbFKIHPLDfR7u/OYLfPD7r3CkL/msXgiRf9ksfZQDdwLtQAPgVEq969zztNb3aa03a603V1cvjvoaZqOBK5dVYllEM8DGFLPkXJU7LXzx9rVsaC7Ly/WydbB3gqcOD/Cpn+1e0NcV4kKWTQS7BTiptR7UWkeAXwBXF3ZY+ROJxfGGFs+MOp8ay+x8652bePkLN/OVP14/tdFnIRzqneD+5zoW7PWEuJBlE6hPA1cqpRxKKQXcDBwq7LDyZ8wfwWUzF3sY8/biiSE++eAutp0cmfF4Q5md0yN+dnWNLviW+QHP/DbVCCGyk/Fmotb6ZaXUw8BOIArsAu4r9MDyJRSNUWYw0zsewBuMsvI8KdQ0EYxwYsDLT14+zfZTI5we8RPXYDMZuay1nBePD3HNyiqUUuw+PcYD27oWdHxKwTuvaFnQ1xTiQpVV1ofW+m+Bvy3wWArCZTOjgPpSO5wnFU+11nzuob384egggUhsxrGfbe/i4Z3dxOKav7ljLa0VDr7z7MIvQVy/qprWSqlhLcRCWJJlTqcrtS/+ZY9YXM9YX+4ZC/D4gb605wP8/W8OFnxsqbz7ytaivbYQF5rFkw6xQALhWOaTFthf/nwvP3rpFP5wIvc5EI6xrHrxzlYby+zcsLqm2MMQ4oKx5GfUZ00EwigUMZ2YvS6mreXN5Q7+5lcHmAhGuW1dHfc920HHoK/Yw0rpHVe0LGiGiRAXusUTrQrMbbfgspspc1j41jMnCl4VLpcMjLsub+KPNzXxR5sa6Rj08dCO7gKObH7MRsVdm5uLPQwhLigXTKCe7r1Xt3J0wMNEsHD51SO+cNbn1pfa+Ze7NlBfaqfUsbjX1F9/cR3VrvnvrhRCZO+CDNRlDgveYJRf7e4pWFW4uQazzmH/jJ8X065KgHfJTUQhFtziigILaF1jKaB47ugggTwXMBqcx0aQWy6q4c2XNuC2mdjQXDan3oeFsrKmhCvaK4o9DCEuOBfMzcRzOSwm3n1lK75QhHAsjk1rVB7qN8PcZ9OQmO1/7e6NhKIx7r5vK/5FlKXyzita8vY7EkJk74KdUZ/ltJpx2828cHyYYW+I0RzWlgspFI2zP0U96mKwmQ28ZVNTsYchxAXpgg/UkGhvdcWyCh4/0MeLJ4aKPRyOD3h4//demVVvupjeuL7hvNg8JMRSJIF6ktlo4K7NzVhMxqKOIxSN8fOdPezoHC3qOM71dqnrIUTRSKCexmw0sLGljIlghCFvcSrDHev3MjAR5JoVVbRWOooyhnOtqXOxcYHrXgshXnXB3kxMpWqyA8upIR/lDsuC78Bb11jKx25aiVEpnjzYx1efPEIwUtzGsu+Qm4hCFJXMqFNoq3JiNCh8oSjRWBytF269uL3KSUulg/e/pp11DaWYjQpzkdL0bGYDd17aWJTXFkIkSKDOwGk14Y/E6BoJcLR/Am8BdzOey2hQlNhM/OWta3JuCmBQYDcb5936S24iClF8svSRBbfNjNtmxh+OEokmAmb/RJBgJEZliZUSa+F+jV+/eyPD3hCRmGZrxzB/OJq5cfBHrl/GjatrsJmNxLXmu8+fZNupEfoncl93l5uIQhSfBOocOCwmtFlzYtDLIzt7sFuMNJbZePPGJh7f30tblZM1de68vmap3YzJoNjTNcbO08kzQQwKyh0Watw27n/PZtx2E//y5FG+/+IpqkqsXFTvmlPbLLmJKMTiIIE6R0oplleX8JnXrwbgV7t7+I9nO/jR1k6uX1XNzRdV47ZZ2NRazvEBLzs7R7lmZRUNc1yC8IejfOynO3n6SPKZ9OdvW8Pm1nIqS6y0VzkZ8AT59M/28LtD/QAMeUM8dyyExWRgQ1MpJ4d8DHmz29QjNxGFWBwkUM/TnZc2orXmrs3NDHpDrKgpoXcswIgvzA9ePMWRPg+f+/lePn/bGtY3luIJRXnl5Aij/ghXLqvgrZc1oZQiHtfEtcZkNBCOxnnu2CADnhBPHRpIGaQB9vWM85HrlwOJFl47O0c5OeSddZ7LauJPr1tGKBLjoZ09vNwxMqvN13RyE1GIxSNjoFZKrQZ+Nu2hZcD/1lp/rVCDOt8opSh1mKdKlNaX2dFa8/dvXgfAY/t6GQtE2Hl6lG2nRjne7+GalVV89uG9uGxmvvvCSV45NYLVZKDaZaW1wsnzx9PvkDQoeOOGBlZUlwCJ+teP7uvlnx47zEQwgtNi5JKmUq5cVsm/P3OCTa3lWEwGrl1VTTCaWO9O5/ZL5CaiEItFNl3IjwCXAiiljEAP8Ehhh3X+m75kcNsl9Yz7I8S05vb1DXiDEfomghiU4sFXTjPmD6M1BCNxhr1hgpE4dW4bvnAUTzDKNSuqeP26OlxWEzVuK7G4xmQwcNXySmJxzb7ucZbXOHnjhgauaK8gHItjMRood1owGw28+8pWnjzYhy8UZWfnKBaTgeXVJRw4M5Fy/G+7XJoDCLFY5Lr0cTNwQmvdWYjBLGWBSIy6UhsVTgsAy8NRTgz6+OzrVzPgCXGkb4IXTwwTjWn++vaL8IajidZhcU2t24bdktjafnrYjz8SpX8ixK939/DTbadZVeviS3cmZu81btus164ssXLNimqaKxzTHrPwj48eYn/P7GC9rNrJ5W3lhfg1CCHmINdAfTfwQLIDSql7gHsAWlokpetcdaUzA6jDYuKqZZUMeUNcVO/mono3b9zQOLUTsgIr+pzSq1pr3v/9bcTiGm8ohtNi5Au3X0Styzqrk/m5pgdpgKuXV/HpW1bxoR9u59y9PHdf3iw3EYVYRLLe8KKUsgBvAh5KdlxrfZ/WerPWenN1dXW+xrekrawtITatQt70QBsMz25mEIrGMSjFsC9MKBIjGI3hsBi5tKU8563uWmvW1Lv51jsv4z1XtVI+ub5uMijeslHKmQqxmKhst0Yrpe4EPqq1fl2mczdv3qy3b98+37EtefG4JhaPY86iYl/3qJ+eET9jgQiVJVaMBkVzhYNKpyUvs9+BiSB//cv9PH98iI/dtII7Jm8mLvYejkIsFUqpHVrrzUmP5RCoHwSe0Fp/L9O5EqjzIxCOEYrGKHMk1rU9wQgOi6lghaKGvCHefO8LdI8GKLGa+PRrV/HBa9oL8lpCiJnSBeqs1qiVUg7gtcCf5nNgIj27xTh1ExHAZSvs7LaqxMpjn7yW7Z2jfO+FU+ztHivo6wkhspNVoNZa+4HKAo9FLAIum5lLGks5eGYcfzjGqC9M+WSmihCiOKR6npilqsTK99+/hUgszndfOAkkbj7+ancPP335dJFHJ8SFR7aQi6TWNZbyr3ddyo+2dnJyyMeDr5zmO3/owG0zcfflzRgWuKGCEBcymVGLlG5YXc3Rfg9v/daL/GrXGSDRUGFHiip+QojCkEAtUnLZzHz42mUM+8LcdkkdkCi7+sA2Wf4QYiHJ0odI66M3rgASm3EubnDTVGbnwe1dvPOKVi5rlW3mQiwEmVGLjHZ2jvJ/nzrGXZubMRkVbpuZR3Z1F3tYQlwwJFCLjK5cVondYuTAmXEeP9DPjWtq2NE5VuxhCXHBkEAtMnrNyioub6ugqdzBmD/Ma5ZX0j3iZ3AO7b3E+W1gIsjPd3RzcshX7KFcUCRQi4wC4SgGBb5wlEuby6h12/CEoryUofmAWDqCkRgDniBff+oYf/HQHt7y7y9IsF5AEqhFRpe1VtAzFqTWZePuy1vY2z1Ge5WTAz3jxR6aWCC940Fe/2/PTmX8jPkjvP972xjxZdd/U8yPBGqRlWtWVOG2mfjV7h7+8/mTXNFewa6usWIPSyyQUruZUX+E+LQabqeG/XzkRzsIpum9KfJDArXIyg2rq3HbzNywpob3Xd1GVYmFzmEfh/tSt/MSS4fbljyTd9upET79s9189YkjhKNxsq3GKXIjgVpkZXNbBdVuC13DPk4O+TjU62EiEOWub7/Es0dTd0kXS4PJaGBjS1nSY4/t7+ObTx/nru+8xG1ff47OYVm7zjcJ1CJrG5rKqXbb+O+9vdx8UQ01biv+cIwP/WA7O2Vb+ZJ3zYqqtMd3d43RPRogHI0v0IguHBKoRdaGvCFMBoXWmkFPiOZyB1UlVsKxODs7JVAvdXdtbp5q2ZbK27c0s7LWtUAjunBIoBZZq3ZZMRsN1LhsBCIxyh3mqaa9lzaXFXdwouCaKxysShOE26uc3L6+YQFHdOGQQC2yFteJ6nl/srkJk8HATWuqqXRaKHOYaSp3ZL6AOO8ZUvTnrCqxcMtFNaytk9l0IUhRJpE1o0Fx3cpqLm+rYMQbpsZtJRDRfOymFVMza7F0+cNRvKFI0mMfvKad9Y2lWMyZGzWL3EmgFjkxGhQlVhMl1sRfnXdc0VLkEYmFcv9zJ7FbkoeM/T0TfOT65Qs8ogtHVksfSqkypdTDSqnDSqlDSqmrCj0wIcTi4QlG6B0PsO3kCOubSmcd/9Prl6FSLIuI+ct2Rv114HGt9VuVUhZAFiSFuEC8cmqEzzy0h64RP+sa3ZwY8NJYZqdnLADAR29YxvqmsuIOconLGKiVUm7gOuB9AFrrMCAb/IVY4oLhGF954shUg2MAk8GALxyjyqWwmhShqObaDPnVYv6yWfpYBgwC31NK7VJK3a+Ucp57klLqHqXUdqXU9sFB2akmxPnsSJ+Ht/z7CzxzdGDG475wFIDOYT9rGxJLIL6IbHAptGwCtQnYBHxLa70R8AGfP/ckrfV9WuvNWuvN1dXVeR6mEGIhhKIxvvn7Y7zxm89zqM9DIByj1P7qJpfp/73r9BibWsron5C65IWWTaDuBrq11i9P/vwwicAthFhivvjIfr765NGpbeC940FW15ZMHfeHZlbK23l6jGMDHsb9ydP2RH5kDNRa6z6gSym1evKhm4GDBR2VEGLBjQci/HJXz6zHD5yZoKncDsChvgmaJ/8bEhtdfvjiKV48MQQkcq0nghK08y3bnYkfB36ilNoLXAr8Y8FGJIQoij1dY0Tjs8uU+sIxxnxhllU50Rpq3InNTZtayojGNTEND+3o5sdbOzEoxWP7eqVGdZ5llZ6ntd4NbC7sUIQQxfTKqZGUx7zhGHWGRJ70qD/Muno3O0+PTR3//eEBfn94gF/u6uGjN64gEIlhk12KeSM7E4VYJLTWRd00cqg3fROI4wNeblhdzQvHhohMzryrSiysqXMRjmnG/SE+87pVOKwmAuEYUv4lf6QokxCLQDyuefbYUFHH8LW7N06tRafSOxacCtKbW8sJhmN0jQQ42u/hi7ddxKUtZaxvKqOhLP11RG4kUAuRZx/76c6Ma7QjvjCjvjD/s7eXPV1j7Ooa5fK2cgCODyTS4s4VjMT47vMnGfdH+PKjh/CFosSSrCnPlWmyjks6Rwc8rGtws6bOxfbOUbzhGJ0jft5yaSMb2yqwmeVLeiHIb1WIPOke9fP0kUF2nR7jW8+c4OrllZhNBv7zuZMc6ffwlo2NDHlDXL28iq8+cYQTg142tZTzH+/ZTOlkQf4jfR5+vLWTv3/zuhnX/sXObv7lyaP0TQT56pNH8IdjGAyK1goHd2/JT2GsX+85w+E+T9pztAar2cj+aY0i7rluGR96TSsuW/qmAmLuVCGaUW7evFlv374979cVYjHxhaJsOznC7q4xHt3Xy7EBb07Pv6y1nAc+fCUW06tfbN//vW1csawSXyjKjWtqWFXr4unDA3zywV3ENaysKWFDcxkbmkq5flU1LZWzNgnnJBqLc7jPwwPbTvPTbafJJhwoBa0VDk6P+Lnv3Zs5PeKnoczGrevq5zWWC51SaofWOmnShsyohciSJxhhR+co206OsLVjmL3d40Tjmo0tZTkHaYD/fcdazEY1dRPxkV3dPHN0kK0dIwQiMb759HEqHBaGfYnSOteurOLzt65hRbWTu+7byj88eog6tw2DUnzu1jXcuq4up9d//tgQf/Or/ZwcSt2M1mxQ1JXZ6BkNcHaVRWtw2Uy89+o2eieCvNQxzHfedVnO719kTwK1EElEYnGOD3jZ2z3G7q5xdp0e5Ui/J+mMs2Mw967bm1vLWVvv5on9vdy8to57nz7G1353DIDA5Pq21swI0v/xns0EwlFCsTgOi4lgJM6pYT8A9z59nKuWV87Y4p1Ox6CX931vW9K86bPWN5Uy5AnRNRJgU0sZkViccDRxvkLhD8W49/fH+c0nrsFgkBKnhSSBWlzQzjbqPT7g5fSon12dYxzqm+BwnyfrbtrjgQibWspm5BWnYzQo/vLWNfz5Q3sIR2Ps7h7nN3t7qSqx4LKZiUTjVJZYGPAE6R0P8UcbG/nsrauxmY2YDIohb5gDZ8ZnXHNfzzj/s7c360YOLRUOPv3aVfyfJ47MOtZW6cBhMbG3+9XX2Hl6jEsaSznSn0jhu2pZBYf7JvjFn11NVYk1q9cUcyeBWix5wUiM/okgPaMBuscCdI34OT3i59SQj44hH55goiLc5W3lvHJqbt3Ujw14cdtNTASiGc+9pLGUzzy0h84R/6xjQ97EDLp7stbz+qZS1ja48YYS1x3xh7j36RM0lNmZOOfGn9EAOzpHOdQ7wbuubE07BpPRQJ17Zvu0CqeFZVVOdpweTfrNQfPqg3VuG392wwpJw1sgEqjFgorFNb/e08PRfi/lDjPOybZeTosJu8WIzWzAYjRiNChMRoVBJdZwASIxTVxrQtE4oWiMcDSOPxzDG0zUl/AEo4wHIoz4wgz7Qgx6Qgx4QoxlWTDobMCeC08wyubWcrZ3Zg70o74QnSOBrK57ZixAc7mDnZ2jrKxxEYvDj7Z2zjrPbFRsainnz/9rD/t6xqlz27hlbW3K62qtuf/5RJ3pEouRixtL2ds9nnb8ncN+alxWBjwhHtl9hkAkzrffLWvTC0ECtSi4aCyOyZjIbHju2ACBUJRvPXMi6+c7LUZ84RglVtPUzLIQekZnz3BzcbZWcyZjgQhWk4FQFksrQ94wI/4wZZNrzzUuGy6badaHSiSmee7YEAcndxf+1SP72NxWTpnDkvS6v9pzhhMDHra0V3Ckz8PLJ1NvHz/LE4wSjempD6TfHx5g0BOi2iVLH4UmG15EwX3iwV08tL2LgYkgV7RXogy5/bWLT86ojQW+YeUJxagqSR7YsnGkz0OlM/PzV9a4sgrSkJgpP7a/D/PkB50CDCm2mX/pNwenNsAMekJ8+dHDSc/rHvXzlw/vxWE1se3kCOOB7KvdBSKxqT+HcCxOx2Du2S4idxKoRcFZTUY++/BetvzjU1z7lWcY80dozGFt82ygXojEgnPXbXMR19CYYQs2kFNluUhM8+zRwak6HAaD4rpV2TXmmJ6ffdaoL8w/PXaYUDSe9ZLQdBfVuTjW/+raeOU8PthE9iRQi4J706UNM37e3TU61Rg1G2dvbK2qdeVzWEk5MmyhTsdmMhCPa0rt6a9xqHcCmzm3f3rB6KvB/daLs8uXvvOc33swEuM9393GU4f6s07jm+7iBjcVJWbaq5zYzAbaKh2sqCn8n4mQNWqxAFZPC7CRWJy5lqfoHPZhNioisfzvpj0rnsPgXFYjbVVOHBYTY/4IJwa9nBkP4suwjh7TsL7Oza6usaxfa2vHq2vIt6+vp39iLV/6Tfr+Hc0VM8vX/eyVLvb1JFLu1jeVZbUuDdBelUjX658IYjTYGfaG+MX/uhp/knokojBkRi0KrtplZU1dIlh7Q1Gez7FK3Nkl2b6JEO1VTuwFrHM8nqI7ickAy6udXN5WzubWcloqHHhCMfb1TPDyyRGO9HuIxjUjvjCr69wZX2dP9xjLqpxc0V6B2Zh5TWfUH57x8/tf08b6ptKU51tMBlw2ExP+MPG45iuPH+bLjx2aOn6gZzxjAab6UhubWso4OeTnwJkJ3nBJPZ3DfurL7Nz1na38z77enD7YxNzJjFoUnNlooK7UxuE+D7G4JhCf+0zsaL+XTS1lHOydIFiA7te9owHKHGbq3DbcNjNxrRnxh+ka8XNi0MeJLHYhnm1d1T2aenknrqFjMo/bZTOxqcWddobbMejjyQN9vG5y2UMpxU1ramZsSjmrucJOjcvKnd98gUgsjlJq1jZxbzjGNSsqef748Kzn17isrK134wtHZ+SV//7wAHdf3sx3nu1gTV0J206O8PSRAW6+KHUaoMgPCdSi4LTWlFhNVDgtjPjCmZ8w6/kzf955eox1DW72n0lf6H4uvOEY1VZTxipymdSX2tIG6un84RiBSCLj5OyGl2S+/tQxXru2dqq5wNlMEIByh5mVtS5CkRh7usfpyiJPOxCJYTMZCE5moNS4rLRWOjAoRd9EEJvZyMoaJxVOK2ajgeePD3H96moe2HaartEAvlCMfd3jEqgXQFaBWil1CvAAMSCaqsKTEMkopTh4ZoJgODqn3X+N5Y5ZM0KHpXDLH7VuK4Oe0LyuEY6ln+3bzAZW17owGRVH+73s7R5nU0tZ0kC9vNpJpdPCkX4PB3snuLghseTRPeJnbb0Lq8nIvp4xtp0cmVpiysaYP8L6plK6Rv00ljswKUUwGmd31ygbmkvZPbWG7uOy1kSt7E89uJvP3boGs1Hx0PZuKl2S9bEQcplR36i1Lm4LCnHeGvKG8EfihCJxlILGMjtOq4lTQz7qS21UOC0oEptBBjwhzAaFwZDYmVjtstI57JtxE1KTSNcrxBJpPtbAkxVqqiu10VxuJxiJcbjPw55zli2O9nlYU+eic9hHfZmdqhLrrCWXd93/Mo9+8lp8oRjPHx+i65xZuz2HD7D+8SD9EyECkRi94yGcFiMVk3ngVtPM6wQjMW5dV0el08KQN8QbL2nAF4pR65p7OqPInix9iIKbCEaYmNxJt7dnnBKLcWpZwKDg1LB/qgpcMgOeEPWlNnrHg1OP+cMxVtSUMOILp10uSKXCYabcmSiCZDEZiMU1nmCE/on5zaTP8gSjrK13YTIasJoMnBkL0jMWoG/aeziXN5wI4CuqnYRjcbYlWbMe9Uf4xAO7OHBmImnWxd6usayXmJoqHDOWeHzhGL5wgIYy26z+iQfOTHBgcqmprdJBe5WTEpuJzjR/biJ/sg3UGnhSKaWB72it7yvgmMQSc+Sc9V7vtACTzYx4dZ1r1jXOBo0tbeVJA/Xaehd2swmjUYGGSDxOIBxjIhBh0BtixB9hJMWGD18oP2lnsbjmYO/sm32ZHJ+cPde6rPQnWYLZdXoUhyX5P93YZHOBTKl3dW4rE0kyXModZtw2M2fGUn+gnBr285XHj/DAh69gd5KbmSL/sg3Ur9Fan1FK1QC/VUod1lo/O/0EpdQ9wD0ALS35aQ0klobdWZb/TMWVJo3swJkJ1ta7p2pcALRXOQlF4xzsnVslvAFP6iCVi/m0plKKlFu7o/HEh1eqtf7O4cyZKQ1l9qRlWZsrHEkzSWafZ+f3hweoncdOTpG9rAK11vrM5P8PKKUeAbYAz55zzn3AfZBoxZXncYrzWMfQ3OtBtFc50lZ084Vj9E0E2dRShtGg8ASjdI34WVZdMufXHPKGKbEYZ8z80zEoaKt04g1FiWtNe5UTDZhzrGlyVoXTTEu5k93dYynPGU2ztNE3EZr14XWuVEsjFmN2Y97aMcKernFMkzngt10ibbgKKWOgVko5AYPW2jP5368DvlTwkYkl49xli1zE4qmXAM4a8YVnBZ5sA04qdWV2jqdor9VQaqPWbcNsUkwEolN1rQEcZsPUTNdmMnBZaxk7Osdyeu1yh4XjA+l/Z8cHfTSW2VNuxbem2KJuMiiicZ1yd2e2nVqck6VRD/SM8+OXO2mrcrKmzjWVOijyK5sZdS3wyOQfgAn4qdb68YKOSiwZwUhsaj15Lk6P+GmuyL04/TzjNKV2M26bifoyOy6bCUWiZ2L3SIAz40HOpLgp6J+2CScYjdMx6Mu4+eVcJwZ9LK924s2wuaaxPHWg3t89zpXtFUTjmkO9E9gtRloqHAx7Q7RUOlN/S8nwXdhpMbKusZRDfRPs6x7HYTFy27p6fneoH6VhVZ1L2nIVQMZArbXuADYswFjEEvTLXT1Zl/RMJd3X/FTmO7MzGRQTweisLiq5GvVHaK9yZh2oLUZFbaktbXbIWV1JOsScFYlrgtEYu7vGMSgIR+Ps9I4BEIzEcZiNBM5Z2mmtdHBmPPk4XTYTF9W7OXRmfOpGpUElCjX93a8PUFli4cbVNXhC0TkVfBLpSa0PUVC/2NlTlNeNJ+sllYNADqVIM9l5eowNaepyuGwmLmspY31TKRpoKXfgy2J9vHc8SENZ8pt5W9rK2d2VuCkY14nAfVa/J4TRoNjYXDYVVFfVlhCOxmd9oFSVWNjSXk5sMl3QE5qZsbO9cxSHxUiF08rqOtdUPWyRX5JHLQpGa033PLumzFW67trZmMtW93TOXRNurbBTW2pnIhDh2ICXHdMyMA73eaa62mTSVO5ImkrXnaGM7IAnRDSuKbObWVHtnPH6kMiVriyxsqdrlG0nU/8ualxWlleX8KMPbmEsEKaqRLJACkFm1KJglFJYC1jpLp1sO4in0jseJIuidlk7OeTjmhWVXNpcRrnDTOdIgG0nR6YKVU037AvTVuWkNosWV51Ds9ex1zW40+ZBn1XnttI54p8K0laTgctaylld6+LUsJ8dnaNk+jUOeEIEozE+8eAubGaZ9xWKBGpRUJe3ldNYZqfcYca0gDeZcumikkwsrqkvzV+H7UAkxolBH8PeEKNZdFY5cGaCEX+YK9or0p5XdU4wv6K9ItP9QCCxhf9gb2L9fXWdi+tXVWE2KnacHuVIf27r8od7Paytd2csmyrmTn6zoqCayh30jHVP/Ww2Ktw2MyVWE3aLAbPRgMmgcFpNhKJxFNOCuUr0CESDnvaw1hqtEzezonFNNK4JT3YmD0Xi+Car0c1XRYmF7rEADouRhjI7ZXYzxwa8OfUYhMRMdVm1E5fNTCAcpb7UziudI7OqAp4rEtPs7hpjebWTMruFHadnZ2o4rSYsRkVliYVat53DfZ6M4zMbFBVOC/WlNkb9YY70eTAq8M5hR6bFaOChj1zFusbUa/Bi/iRQi4JaWTNz40kkphn2hRk+Zw24rdKRtt5HMiYDKb+ax+K5LX1YTAZqXVbKHBbsZiMajS8cpbrEyqA3NJVTfUmjm3096QNhVYmFpnIHFqOBUX+YjkEvh3pfnaUuq3LiMGe3Bh2Kxjkx6OOy1uRV6oxK0Vhu5+SQn97xzHVKWirsNJbZ2ds9PvX6l7eVsyPNpqJ0PnrjCgnSC0ACtSios62fMpnLmnI0nthqnWxm6g3FUCrRsbvMbsZtT8ziLSYDRoNCa00oGscTjDLiCzEeiNI1GphVje5c9nNqbJQ5zDRNVgIMRmL0jAUY8qYvFNUxlMiTDkbj9GSZtheJxWmtcNB5TkpeIBzj5FD6D7jGMhuN5XaGvGE6Bn2cnlarekt7BdtPjcy5CuHdW5rn9kSREwnUomBicc2zxwazOjdT/eZUrCZDyk4vNpOBQCQ+NYNfUVOS9QdHKvF4nCvaK/CFovSOBxn2hefUzfvEoI8tbRVZB+q93eMYDYqGUhsaPTV7TlWXpL7USnO5g7FAhKP9XnqS3FxcXetixzlBusJhYXmNk3hcs//MOJc0ljEWiOANRmmtdHCs38vItLZg5vnuLBJZkUAtCmZrxzD7e7LblTjXhrVmY+pAHTjncU+Kfoi5GPKGc16iSWV6Z/FsxOKaM+NBLm8rx2Y2Uem0MOh9dbmjwmlhRXUJQ94QHUO+tEshbZUOBr0hzv7aNzaXEY7FOdQ7wSunEoHYaTHO2MHYNxHEaFBsaCqlvcrJF95wEWWyuWVBSKAWBXNRvZv2Kues7izJzDWdLpeaHtlkW2TSMxrIW8OCjkFvyqWbdLZ3jnJZS/lUEC2xGGkot3NswMu2U5k7izeU2ega8RPTYFSwqTV5151ka+hnPywevOeqnJoUiPmR7y2iYCqcFr5058VZnZvr7PIssyn7v8LhaJySeQaXSFzTWJ6ftD1vKEZ7pTPn52mdSPe7pNHN5tZyTCYDR/u9WQf8pnIHDquJLW0VXL2iKufWaNevqpYgvcAkUIuCaq/KHIjMRpXzrHL6c3NR6pj/V/UqZ+aNKFlfK4tNLWe5bKapnogWo4F9PRNs7xzNeo3cZFCsbyolGo0TDMfYdmqEEV+Yza3lOeVAR+Z4P0HMnSx9iIIyZFEcyWY2EolF53T9XGs+l1jNwPwaA+Qyi88k08acZVVOqlxWJgJhjvR58QQjGBSEcvgGsqbORZnDzKHeiVlNAc5WNlxW5cRpNWZsReawGHnzxsasX1vkhwRqUVBVJdZZ/Q7PpbXGbpldzS0bphxn1KnqNOciMsdlmrNKLEbaqpw4rCYC4ZkfUFUlFlornWitp+pcd0xb44/FNRUOC+kmtQYFq2pduGwmOgZ9HO7zsKW9gvFA6g/DjiEfBgUbmkrxhWMpa3Ff1lrODauqc3vDYt4kUIuCspgM3PvOTbzr/peTNmOFxFrtipoSBiaCU01ws2XMcVv6fBsKADk3020ut1PjtqEUDHlCdI742T+tRvdrVlQSisbpnWyAm+76fRMhKpwWTp9T7MpkUKxtcGM2Gjg24JnRtBYSfRZrXFYG0jRgiGvY0z2OxajY0lZBx5B3xlhsZgOffu0qaQ5QBBKoRcFtainnQ9cu4xtPHUt5zvEBL60VdsxGw6xdi+nkGqhzPT+ZM2OBqU4p0ymgqdxOtcuKyajwBqN0DvszbqSJxDTbc7ihZzEqxgNxSqwmVtaUoBQc7fNgMRpSNgSIxDTNFfa0gfqscEyz7dQINS4rLpsJz+SH5z++5RI2tZRnPU6RPxKoxYJ404YGBj1Bnj06lLIrSedIgPpSK3VZFs6HxBbqXOSjXnJMw5raEgxK4bQa0RpG/eGpgJxpd+O5jvZ70m6HP5fbZqLcaeFIn4ddXWNTjw950wfhHZ1jtFY66MwyD3zAE6KhzEa1y4onGOWmNTXZDVDknQRqsSBW1JRw9fIq+saDKQM1QO94iEqnhZYKB6fTdDA5K9e2T7lkLJRYjdS4bJTazVgmbyAO+8L0TwRnLC2YDImUt5YKR8q13XTG/BE2Npeyqyu7XZNOm5ldSTqId40GMBtV2s1DpTl2Rj8zFqSlws77rm6jzJG83ogoPAnUYsE0lNl5+kjmLeXDvjCReJzl1U5OZOgbmE1WyXRndzGWOcyU2syU2EzYzUYM0+p/TAQiDHnDeENRvKGZr7+yxsnKmhLMRgOhaJxhX4gzY0FODftZVTv3zue5rPvqFLmMsbimvcbJ8YHUv7O9PeOsqi3haH/2HyinRwJSeKnIsg7USikjsB3o0VrfUbghiaVqQ1Mp772qlQde6cq4E3EiECUajXNRvWtG5blzOcxGLm5wYzIoDAaFUalE0SUADTEdJxpLBOBAOIrWcQwqMYudS42OvvEQx1IEwlyXPGZcdyK7pZ4alzXttvzErDf9h1sgHMs5y0b61RZXLjPqTwKHAHeBxiKWOJPRwGdvXcPTRwazWtbwR+IcH/Cyvql0Vv7vWaFobl3OS6zGeW3/ri214UmxvBEIxzKmIqZyZiyIy2qc0ZMwmRp3+syNbHSNBtjQVMqeFL/TZOaSOinyJ6tcJaVUE3A7cH9hhyOWOl8omlMfxUhMs79nnE0tZclPyHHpwxuKzSvzw21LP7epyWGn4blas9hObs/Q2izbbwm5NlbINV9d5Fe2SaVfAz4HyN5RMS+1bhv/9Mfrc3pOXCc6eV/e9mpqWKXTwhXtFYRTVM5LZz4V30wZ8rBt8+gR6cxiG/eJQV/aD4vTI36yCaneUDSr5Qy72cjm1nL2ZHmjUxRGxkCtlLoDGNBa78hw3j1Kqe1Kqe2Dg9nVIBYXpj/e1MQ1K6pyft4rp0Zn9BB8+eQIu7vHcr6OK8OsOJ1ohqyRMX8Et91ERRYZEpVOC1vaKriksXSydKmRtfWulOdXOCy0VdqpKkk9aw9H4zRVZC4adWYsyMbm9DnRZqOiosTC8UEv3/7DibTZOqKwVKo7yFMnKPVl4N1AFLCRWKP+hdb6Xames3nzZr19+/Z8jlMsMeP+CG+776VZO+iysaW9nG0nR3Fasmtnda619W4O9ma/rj3dypoSjmVIwbOYDGituaSxFINSeIJRbBYDVpMRtGYsEMFtS9TeSDb+pnI73aMB6kttNJTZUCj6JoJ0T96svKK9gpdPpi5nurG5bEZ+dSrJ1qnbKh3UuGz4I1GO9Xtw2cwEIzG8oRi3XlzHt961SXYmFohSaofWenPSY5kC9TkXugH4TKasDwnUIhtPHerngz+Y29+Tza3ljPhDdAzmXsR/Y0tZ0jzkbJTaTWlrZuTD9auq2N8zkXKHZonFSHmJha6R5DPcy9uS15c+q7nCTkOpnf6JIDUuKzHNVG2RkQxr3P/2tg28ZWNT9m9GZC1doJY8alE0FzfMPTd3e+co6xrmloBkmsfNxPFAdM4z+Wz5QrG02+iNk9vTUzk24EUBZ6dgJgOsrnPjtJroHvXTNRKYCvK5dqv5/M/30VjmYMu0JShReDlVqNFaPyM51CJfSu1m/uyG5dy+vp4VNblvFvGGotjnUA0v100y56qeR2ZHNnoz5FS3VTrTdqsZ80e4aHKtu7HMhs1s4sCZCbadHOFMkt6JkFiPfvCeK3ngw1dyc5qt4qFonA9+/xVeOD6UxTsR+SIzalE0douRj9+0gmA0jsWo+NrvjvG9F07NKnaUykQwSq3blvOsMD7XLgWT3AXuE9gzGqC1wk5niqUNa5LMEqNBzahj4rSaKHeY8YVjrK5zsev0KG++tJGbL6qlzGHm+ICXx/b3su3kCCaDgW+8/VK2tFVgMCiuWl7JD186xT89djhpxUNPKMp7v7uNv33jWt59VVve3rdILac16mzJGrXIVjASo3vUT3WJjVKHmVhc80+PHeIHL3Zm7Ey+pb2CbWluqqUynzVqyLwGnA8VTjPj/gjJynZc3lbO7q4xlleX4LYnzrOYFPum7ViscFrY2FzG9aur6Rz28d6r2mmpdMy61q929dBc4WBDc9ms/PIzYwH2do/xkR/vTDpGl9XEnr99Xc71VkRyskYtFi2b2ciKmldT0gwK/uyGFfzxZU38rx/vTNsYNzbHzuVzbaR7lsoqU3l+RnwRNreWJy1beqQ/kSkzPWPGZTPRXuXEYjTwiZtX0FLhYGVNCSajIW3u951purU0lNmpL7Vx7coqnjs2e6nDE4py//Md3HPd8lzempgD6ZkoFgVfKHFzTKlEnec1dW4e/shVaXf6nRzO3N08mVQNDLKVSxus+djeOUprkpzoiUB0VoU8TzBKdYmVf7lrA69bW8uqOhc2iynjBp1MlFJcn6ajyz8+ephHdnXP6zVEZhKoxaJwdlee1ppoPDHjrSyx8vqL61I+Z1l17h284dUPhbmab6DPRSSHwiRuu5n/+/tjaFReZ/02s5H6UlvK43/1i30cOCM7FwtJlj7EoqKUor701VnkWzY1otHUumzUum3UltqocVmxGA289dsvzuk1JgKpMybMBkVliYVSuwWHxYjZaAAF4WgMTzDKkDecccNLPuVSDOl3h/r53vsuJxyL59RVPJONzWW868pWvva7o0lrXQcjcT70g+385uPXUJlm16SYOwnUYlHb1FKesv3Tti/ewksnhnl0Xy9PHOhLm7I2XTAan1Fgv9xhpsJpodpl5aJ6Nz/f0U3fRO47Jguhqdw+63197MYVTAQj/Gr3GcYnP3SUgr+/cx2H+ib458cP87W7L2VNXX4KXV7cWMrpEX/ahgS940HuffoE//uNa/PymmImyfoQS0IkFufljhF+e7CPJw70Z6zvXOm0MOwL8423b+RNGxpmHPvD0UG++Mi+qS3bxWJQcMf6Bl67tpbKEguHez2YTQa2tFVQ67Yy7Avzd78+QIXTwvtf005jWaJfYzASm1dxqFTuffo4X/vdUaJxTbKwsabOxeOfui7vr3uhyNsW8mxJoBbFpLVmb/c4Txzo48mD/XiCEVw2M26biVK7mVK7mbpSG3azidevq0068xwPRPjMQ3v47cH+BR//525dzbNHB/nr29dm1VklFtd5adqbidaaX+85w3f+0JG0VopBwcEv3VqQD4kLgQRqIeYgHtf8994zfOXxIwtaOe5Pr1vGp25Zhd2y+AJeLK555sgA33jqWNLGAz/+4BVcszL3yogifaCWrA8hUjAYFHde2shX/2TDgrWiKrGa+MA17YsySENiB+TNF9Xy5T9aT4nVNNX096z2qtmbasT8yc1EITK4ankll7XO3o1oMRl471WttFU5cViMvNwxwoOvdM35dexmI994+6XUulOnwi0WaxvcbP/rWzg17OPt922duuE56ovQmL7MtZgDCdRCZOGTN6/iA99/Zca29jeub+CLt7+a5fDmSxt53cW1fO7hfQx5s+9r+JoVlaxrLOVNGxrmVVFwodnMRtbUufmbO9by5ccO80cbG6lNk28t5k7WqIXIUveon288dYxH9/XhDUX55js2csf6hlnnbe0Y5u3/sTVpZsS5qkosfOjaZXzwmvZEzvZ5KBqLE4lptNY48pi/faGRNWoh8qCp3MFX3rqB7X99C99+16akQRrgymWVvDeLqnIOi5G3Xd7Cu69sPW+DNEDfeACtNVaTFGcqlPP3b4cQRWIzG7l1XX3ac/7idatYU5e6/yHAusZS3r6lKaumtotRPK7pHQ8QjMZxWE0YjYvzBuhSsKgCdTAS41DvBF0jfj79s91SnFyct1w2M7/86GvY2FKW9rxq1/m7phuNa+pL7TOqH4rCWFSBGhK7m2rciVoOpQUu0C5EIdnMRn74gS28fUtz0uOXt5YnGt6ep85NzROFs6h+0zazEaUUVpORf37r+qx2ZQmxmLlsZt53dXvSY2ajgXgO1fHE4jYRjBTszzNjoFZK2ZRS25RSe5RSB5RS/19BRiLEErWypmRWPRGA/957hhF/6ia2YnHrHvXzw5dO8fmf7+W3B/sZ9YUp1MduNncxQsBNWmuvUsoMPK+UekxrvbVAY0rqkV3dPHd0iH9926UL+bJCzJvBoPjSnRfzUscwg55X86tPDPrY2TnK69LU3BaLS/9EkKcODfDwji52Tmvn9p6rWgEKVnMlY6DWiUTrswV4zZP/W/Dva6tqXTxxoJ8BT5Ca8/gGjLgwlTksbPvCzezvmeCZIwOcHvETjsV5eEc3N19UuyBFlcT8DHiCXPnlp2bkxxsNivdd3caaOndBe0dmteFFKWUEdgArgHu11n+Z5Jx7gHsAWlpaLuvs7MzzUBPVuwBODftpqXDIX25x3luoyndi/mJxzccf2Mmj+/p4wyV13LG+gauXV1LmsOTl+nmrnqeUKgMeAT6utd6f6rxC70w81u/h2aOD/NGmJsqd+fklCSFEMmP+8FQw3t01httmYll1Sd5fJ287E7XWY8AzwK3zH9bc1bhsuOxmvvLEEV7uGC7mUIQQS5zD8uoK8aXNZQUJ0plkk/VRPTmTRillB24BDhd4XGmVOsy8fm0d166o4gPff4X9PdJYUwhRGIshXzybrI964AeT69QG4L+01r8p7LAyK3WYecP6em67pA6lZI1PCLF0ZZP1sRfYuABjmROlFHu7x1jfVFbsoQghREEUf04/T55ghHt+uIOfvny62EMRQoiCOO8D9Z98+yX6JoJ84ZF9/HxHd7GHI4QQeXfeB2r3tMJNjx/oK+JIhBCiMM7rQB2NxTkx4EUpaCq3E4rG8QQjxR6WEELk1flZsXyS0aD4wDXt3LG+ntZKZ7GHI4QQBXFeB2qlFB+9cUWxhyGEEAV1Xi99CCHEhUACtRBCLHISqIUQYpGTQC2EEIucBGohhFjkJFALIcQiJ4FaCCEWuZw6vGR9UaUGgfz34kqoAoYKdO3FYCm/v6X83mBpv7+l/N5gcby/Vq11dbIDBQnUhaSU2p6qXc1SsJTf31J+b7C0399Sfm+w+N+fLH0IIcQiJ4FaCCEWufMxUN9X7AEU2FJ+f0v5vcHSfn9L+b3BIn9/590atRBCXGjOxxm1EEJcUM7rQK2U+oxSSiulqoo9lnxRSv0fpdRhpdRepdQjSqmyYo8pH5RStyqljiiljiulPl/s8eSLUqpZKfW0UuqQUuqAUuqTxR5TISiljEqpXUqp3xR7LPmmlCpTSj08+e/ukFLqqmKP6VznbaBWSjUDrwWWWlfb3wLrtNbrgaPAXxV5PPOmlDIC9wK3AWuBtyul1hZ3VHkTBf5Ca30RcCXw0SX03qb7JHCo2IMokK8Dj2ut1wAbWITv87wN1MC/AZ8DltQiu9b6Sa11dPLHrUBTMceTJ1uA41rrDq11GHgQuLPIY8oLrXWv1nrn5H97SPwjbyzuqPJLKdUE3A7cX+yx5JtSyg1cB/wngNY6rLUeK+qgkjgvA7VS6k1Aj9Z6T7HHUmAfAB4r9iDyoBHomvZzN0ssmAEopdqAjcDLRR5Kvn2NxKQoXuRxFMIyYBD43uTSzv1KqUXX12/RtuJSSv0OqEty6IvAF4DXLeyI8ifde9Na/2rynC+S+Fr9k4UcW4GoJI8tqW9CSqkS4OfAp7TWE8UeT74ope4ABrTWO5RSNxR5OIVgAjYBH9dav6yU+jrweeBvijusmRZtoNZa35LscaXUJUA7sEcpBYmlgZ1KqS1a674FHOKcpXpvZyml3gvcAdysl0b+ZDfQPO3nJuBMkcaSd0opM4kg/ROt9S+KPZ48ew3wJqXUGwAb4FZK/Vhr/a4ijytfuoFurfXZb0EPkwjUi8p5n0etlDoFbNZaF7ugSl4opW4F/hW4Xms9WOzx5INSykTixujNQA/wCvAOrfWBog4sD1RitvADYERr/akiD6egJmfUn9Fa31HkoeSVUuo54ENa6yNKqb8DnFrrzxZ5WDMs2hn1BeybgBX47eQ3hq1a648Ud0jzo7WOKqU+BjwBGIHvLoUgPek1wLuBfUqp3ZOPfUFr/WjxhiRy9HHgJ0opC9ABvL/I45nlvJ9RCyHEUndeZn0IIcSFRAK1EEIschKohRBikZNALYQQi5wEaiGEmCel1HeVUgNKqf1Znn+XUurgZCGvn2Y8X7I+hBBifpRS1wFe4Ida63UZzl0J/Bdwk9Z6VClVo7UeSPccmVELIcQ8aa2fBUamP6aUWq6UelwptUMp9ZxSas3koQ8D92qtRyefmzZIgwRqIYQolPtI1BC5DPgM8O+Tj68CVimlXlBKbZ3cjZyW7EwUQog8myzSdTXw0OQOY0jsOIZE3F0J3ECi7s1zSql16cqrSqAWQoj8MwBjWutLkxzrJlEaIgKcVEodIRG4X0l3MSGEEHk0Wer2pFLqTyBRvEsptWHy8C+BGycfryKxFNKR7noSqIUQYp6UUg8ALwGrlVLdSqkPAu8EPqiU2gMc4NWuRk8Aw0qpg8DTwGe11sNpry/peUIIsbjJjFoIIRY5CdRCCLHISaAWQohFTgK1EEIschKohRBikZNALYQQi5wEaiGEWOQkUAshxCL3/wCRQCp8rrg0YAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Compute the area of the polygons in the projected GeoDataFrame\n", "* Compute the area for each state in km^2\n", " * Don't use a loop - this should be straightforward to do using geopandas: https://geopandas.org/en/latest/docs/reference/api/geopandas.GeoSeries.area.html\n", "* Compare your values with the values in the `CENSUSAREA` column\n", " * Calcuate an area difference between your values and the `CENSUSAREA` values\n", " * Note: `CENSUSAREA` values are in square miles (sigh), so you'll need to convert to square km\n", " * Convert the area difference to a percent difference\n", "* Do your numbers agree? If not, any guess about why not? (discuss with your neighbor)\n", " * Try sorting your GeoDataFrame by the percent difference column\n", " * What do you notice about the states with largest difference - how far are they from the UTM zone center longitude?" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Sample function\n", "def gdf_area_analysis(gdf):\n", " #Convert area from GeoPandas (m^2) to km^2\n", " gdf['myarea'] = gdf.area/1E6\n", " #Convert area from source data (mi^2) to km^2\n", " gdf['CENSUSAREA_km2'] = gdf['CENSUSAREA']*2.58999\n", " #Compute difference and store in new column\n", " gdf['area_diff'] = gdf['myarea'] - gdf['CENSUSAREA_km2']\n", " #Compute percent difference\n", " gdf['area_diff_perc'] = 100 * gdf['area_diff']/gdf['CENSUSAREA_km2']\n", " #Return a new dataframe with index sorted by percent difference\n", " return gdf.sort_values(by='area_diff_perc', ascending=False)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Repeat for your Albers Equal Area projection" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Repeat for Web Mercator" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### For each projection, create a choropleth plot showing the percent area difference for all states\n", "* See https://geopandas.org/en/stable/docs/user_guide/mapping.html#choropleth-maps\n", "* Specify common vmin and vmax values for intercomparison (e.g., 0 and 100%)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABLoAAADiCAYAAABJCq7pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAC/nklEQVR4nOzdd3jkZdXw8e+Znt7LJtkk23tfYJfeka4iKIqvWMDeu48++Nh7RxRRQUUQFUSQjvS+vZfsJpveM+llyv3+8ZvspkySSZ1kcz7XNdcmv3omyc6Zucu5xRiDUkoppZRSSimllFIznS3aASillFJKKaWUUkopNRG0oUsppZRSSimllFJKnRS0oUsppZRSSimllFJKnRS0oUsppZRSSimllFJKnRS0oUsppZRSSimllFJKnRS0oUsppZRSSimllFJKnRS0oWsaE5G9InJulO79LhF5YpKu7RaRfSKSPYZzV4vIy5MRVwT3PldEyqNxb6WUmkiaX8KeG7X8opRSavJp7gt7ruY+dVKa9Q1dIvKsiDSJiHsK71koIkZE2kKPGhF5WEQu6nucMWaFMebZCK/lmIB4jl/DGHO3MebisV5zBDcDzxtjqkP3f6eIVIlIcd/kIyILRORlEbH3iWsX4BWRKyO5kYhcLyL7Bmx7cohtXxr7Uwp772dDP9c1A7b/K7T93Im8XwTx3CgiL07lPZWazTS/nNz5JXSdZ0Wkq8/Pu01EHgrtO1dEgqFtrSJyUETe2+fc94vIgdC+GhH5j4gk9Nm/MfS7axIRb+hDzLdFJGWIWM4Tkd2hYxtE5AERye2z/0cicjh0vwMi8v8GnG8XkW+JSGXomO0ikhzat1JEHheRehExYe79MRHZIiLdInJnpD8/pdTJR3PfyZ/7+lzvThHxi0jOgO1fFxHfgNzoHXCMiMjRgZ/JlJoos7qhS0QKgbMAA1w1wrH24faPUbIxJh5YAzwJPCAiN07CfYY0nhfxcfgg8Oc+9/8esB74OPCrPsf9AviMMSYw4Py7Q9eIxHPAMhHJ6HO/NUDsgG2bgefH9GyGdwg4/mFCRNKATUDdWC4Wpd9X1O+t1Eyj+WVW5JdeHzPGxPd59P2wUBn6PSQCXwR+JyLLReQc4DvA9caYBGAZcF/vSSJyOvAs8BKw1BiTDLwJ8GP9TsPZB1wSOjYHOAzc1md/O3AlkAS8B/h56D69/g84HSsfJgLvBrpC+3yh+N4/xL0rgW8Bfxhiv1JqFtDcN3tyn4jEAdcAzcC7whzytwG5MXnA/rOBTGC+iJwymnsrFYlZ3dCF1QDxKnAn1pu+40It1LeJyCMi0g6cJyI5IvJPEakLtZB/os/xp4rIK6Ge1CoR+ZWIuCIJwhhTbYz5OfB14PsiYgtds0RELuxz/S0i0hLqpfhJ6PTexhlvqLV8s4jYROSrInJMRGpF5E8ikhS6Tm8Pw/tFpBT47xDX6Df6R0ROF5E3RKQ59O/pffY9KyLfFJGXxOoFfkJE0sM9VxHJBxYAr4U2pQEVxpgq4Clgfui4t4W2vxrmMs8CF0TSU2SMqQSOYr2YgvWivxerAazvNhuwRayhvz8SkdLQz/k3IhIz4Dl8Raxe7RIRCffC3tfdwNv7JPPrgQeAnj7Xs4nIl0TkiFi98PeJSGpoX7jfFyJyk4jsD/2894nI+tD23uv0bn9LaPsy4DfA5r69KiKSFPr7qAv9vXy1z9/fjaHf6U9FpBHr71MpFRnNLyd5fhkNY/kX0AQsB04BXjHGbA/tbzTG3GWMaQ2d8gPgj8aY7xpjakLHlBpjbhlqNIIxpiaU83oFgIV99t9ijDlgjAkaY14DXsBq1EKsUWKfAm4yxhwLxbvHGNMVOvegMeb3WPkz3L3vDz2/htH/dJRSJxHNfbMn910DeIFvMOB3HaH3AA8Cj4zxfKWGZ4yZtQ+gCPgIsAGrtzKrz747sVqoz8BqBIkFtgL/C7iwXjSOYvWeErrGJsABFAL7gU8Ncd9CrJ4Ox4Dt80Pbl4W+LwEuDH39CvDu0NfxwKahrgW8L/Tc5oeOvR/484Dj/wTEATFDXONG4MXQ16lYb87fHXp+14e+TwvtfxY4AiwOXe9Z4HtDPPfLgb19vrdhjXrKw+ppfiMU847e6w9xnRZgdejrdwK7hjn2j8DPQ19/DusF+aYB2/4b+vpnwL9DzzkBeAj4bmjfuVi96T8B3MA5WD3kS4a477PAB4AngEtD217H+mBRDpwb2vYprDcFeaHr/ha4Z5jf17VABdYHJcH6IFMQOv5arJ58G/D2UHxzBv5O+8T4J6wkkxC61yHg/X2O92P1BjmAmGj/n9WHPmbKA80vsyW/PAt8YIh95wLlfWJ5S+hvYQnWiIdOrFFUZwDuPufFYTVSnTvC31g+1oeM/DDbgqF73TjEuTFAFfCm0Pdnh877IlAd+rl9NMx5C7Ha7YaK6VvAndH+/6cPfegjOg80982K3Bc65mmsTpksrM8L6/vs+zrwl2HOjQ3d7zKsBrN6wBXtv199nFyPqI7oEpE/hFrF90Rw7E9FZEfocUgGzPMdw73PBAqA+4wxW7FeTN454LAHjTEvGWOCwCogwxjzDWNMjzHmKPA74B0AxpitxphXjTF+Y0wJVmPFOaMMq7cnNjXMPh+wUETSjTFtJnxrfK93AT8xxhw1xrQBXwbeIf2H0n7dGNNujOmMIK7LgcPGmD+Hnt89wAGsF89efzTGHApd7z5g7RDXSgZ6e6wJ/Ww/DPwDq8HpJqyGqF8Cq0TkGbHqgqwccJ3W0LUwxvzVGLN6mPj7jt46C6sX+4UB254TEQnd/9PG6l1vxZpa8o4B1/uaMabbGPMc8B/gumHuDVbi+38isgRrSPUrA/Z/EPgfY0y5MaYbKzm8bZjf1weAHxhj3jCWImPMsdDP4u/GmEpj9dj/DWvqyqnhghJrlNnbgS8bY1pDf7c/xkq6vSqNMb8M/d4j+VtRakijec0PHX+dWCMT94rIXyc7vomi+WVW5ReAX4RGHPQ+vtlnX07o/Uo9cAvWh6qDxpgXgLdijSj+D9AgIj8JvS6nYH1Qqe69iIj8IHTtdhH5aii2UmNMsjGmtM9zLjXW9JB04KtYP8twfgPsBB4PfZ+HNaVxMTAPeBvwdRlQ30apk8VsyUdTSXPf7Ml9oVFk5wF/Ndao46cZPCrrugG58Zk++94KdGMNBngYq7Hv8qHup9RYRHvq4p1YNSdGZIz5tDFmrTFmLdZ/1PvHee/3AE8YY+pD3/+Vwf9By/p8XUDoDWvvA/gKVis2IrJYrKKH1SLSgtVAEnaI6TB6i8Y2htn3fqw3oAdCw1uvGOY6OcCxPt8fw3oByeqzrYzIDbxe7zVz+3xf3efrDqyeg3CasEYPHWeMedoYs8kYcw5WL/RGrL+NP2P1fnwTuGPAdRKwep8j8TywWqypGZuwposcAOaEtp0ZOiaDUO9Sn9/xY6Htx+M3xrT3+f4Y1s9nOPcD52ONjPpzmP0FWDUEeu+5H6s3f6jf11ysNw+DiMj/CzUG915rJUP/HaZj9aAN/Fvp+3sdzd+JUiO5kwhf80VkEdYbyTOMMSuwRj7OFJpfIjfT8wvAJ0INTr2Pr/XZVxnalhp6D3Nvn9geNVY9r1Tg6lA8Hwg9jyAwp8+xXwg1YD2A9fMeljGmEbgLeHDABzFE5IdYueE6Y4wJbe79YPYNY0ynsYoT34vV267UyehOZkc+mkqa+yI303Pfu4H9xpgdoe/vBt4pIs4+x9w3IDee12ffe0L7/aFO/vvR6YtqgkW1uLQx5nmxihYeJyILgFuxGhc6sOpFDOyRvB6rZ3RMxKq5dB1gF5HeFxE3kCwia4wxO3tD7HNaGVBsjFk0xGVvA7ZjFZZtFZFPYfWIjsZbgFrg4MAdxpjDwPVizTF/K/APsQqbm4HHYvVeFPT5Ph9rSGkNVq8tA84Ld43hrtd7zcdGOC+cXVhFBx3GGH/fHaERVb8CPoGVyOzGmGOh39HqPsflYDXQDPo5hWOMOSoilVgrkpSGemLAGrJ8M1bieBWrZ6ETWGGMqRjicikiEtensSsfGLY30BjTISKPYvWuLAhzSBnwPmPMSwN39Pn/MfBvcdB1RKQAqyfsAqzGvICI7MCa3jjwGmCNMPBh/W57VzzJx5oWyRDnKDVmo3zNvwm41RjTFDq3dorDHRPNL9Yl+15+hLhmdH6ZCKHe96dF5L/ASmNMu4i8hvW7eGb4s4flwCr0m0joQ56I/B9wKXCOMaalz7G7esMZx/2UmjFmQz6aSpr7rEv2vfwIcc303Pf/gPw+v2sHVm2wS7FKwAxJRPKwBgCcKiLXhDbHAp7Q6Lr6oc9WKnLRHtEVzu3Ax40xG7CGW/66787Qh/l5hIpyj9GbsUbMLMcaBroWa8WjF+izQt4ArwMtIvJFEYkRaxnulXJilYgErLnGbSKyFKtRIyIikiUiH8NqvPty6E3vwGNuEJGM0D5vaHMAa/W+IKFCgyH3AJ8WkXkiEo/VA/K3gS9+fYS7Rl+PAIvFWqrWISJvx/rZPRzpc+xljCln6Ol0HwC2h3oHGoAYEVmONTT2aJ/jzsWqqdU9ilu/AHwm9G+vF0PbtoR6sINYDUU/FZFMABHJFZFLBlzr/0TEJSJnAVcAf4/g/l/B+mBREmbfb4Bvh/62EZEMEbl6mGvdAXxORDaIZWHo3DisxFoXus57sXrte9UAeRIq5GmsFVfuC907IXSNzwB/ieD5KDVRhnrNX4z1uvOSiLwqIhH1vE8Db0bzS1+zIb+MmohcLSLvEJGU0Ov4qVhTcnqnznwBeJ9YC4z05qM8rPc/Q13zrSKyRKyiyRlY9SS3h0Z3ISJfxppGdJExpl/ReGPMEay/0f8Ra1GWZVhT2x8OnSsi4sH6IISIeKRP0eLQ784D2LE+6HpEV+pVM8/Jlo+m0pvR3NfXSZv7RGQzVof7qZz4Xa8k/Ai+cN6NVUNsSZ/zF2PVL74+gvOVioyJcpEwrGJ9e0Jfx2ONqNnR57F/wPFfBH45zns+Bvw4zPbrsIaJOrCGd35rwP4crBe6aqxhoq9yoqDh2Vhzq9uwXtS/wYDC3wOeswkd247V0/AIoaKwfY4r6XP9v4SOa8Na9ejNfY77BtYLqhdrap4Nq7BjWWj7X4CUAfceWKxx4DVu7Bs/1vS+rVhFJLcCZ/bZ9yx9ivEOPDfM8/8ocNuAbelYI6MS+2x7V+hnXQKc12f7f4CrBhy3d6j7hY75YOh5v7XPtlND277bZ5sHK3kdxUqu+7GmpUCosDDwP1ijoUoJFbEc4p79fi4D9vUtRm/DamA6iDU//gjwnRF+Xx8KHd8W+rmtC23/NlbPfT3Wh5znemPA+oDyn979oW0pob+PutDfy/8Ctkh+j/rQx1geRPiaj/Vm7wHAifXhvhyrxl3Un8MIz0/zyyzKL6H4ukI/u97H1tC+cwkVow9z3tlYNU3qsV73DwFfGHDMaaHfnTf02IP1Gt9brDg/dL/80PcfB4pDv/dqrKmHBX2uZ7BGLveN9St99udi/f22YeXAD4b5u+r7KOmz/+th9n892v8f9aGP4R6c5Ploin+WmvtmSe7D6qD/Z5jtp2LlmFSsnOCjf75pwxplfACrQXng+V/AGnwQ9b9nfZwcDzFmpJGVk0usYcMPG2NWikgicNAYM2eY47djrQT08lTFqCZWqBd4O3CBsZa+Hc25q4DbjTGbJyU4pdSkivQ1X0R+A7xqjLkz9P3TwJeMMW9MZbxqZtH8opSKlOYjdbLQ3KfUYNNq6qKx6kUUi8i1cHyo/Jre/WKtWpeCVVtJzVDGWrFw+WhfiEPn7tYXYqVODiO85v8La2g9IpKONaz9aLjrKNVL84tSaiw0H6mZTHOfUoNFtaFLRO7BarRaIiLlIvJ+rKGS7xeRnVjDSK/uc8r1wL0m2sPQlFKK8MuTi0iqiDwpIodD/6b02fdlESkSkYMyuPbbSW+Ur/mPAw0isg+rIPfnzYC6QkoppcLT/DQ8zUdKKRU9U5Gjoj51USmlZioRORur5sCfjDErQ9t+ADQaY74nIl/CquHwxVDxz3uwahjkAE8Bi421KIBSSik1YTQ/KaWUmq6mIkdNq6mLSik1kxhjnscq7t/X1cBdoa/vwlqJqHf7vaHh5cVAEeFXyFFKKaXGRfOTUkqp6WoqcpQ2dCml1MTK6q2REPo3M7Q9F2u1nl7loW1KKaXUVND8pJRSarqa0BzlmPDwIpSenm4KCwujdXul1AyzdevWemNMxkRd75Lz4kxD49AjXrfu6t4LdPXZdLsx5vZx3FLCbJs1c8f1NV8pdTKb4TlqVuUnzUdKqdlkqvMTTI8cFbWGrsLCQrZs2RKt2yulZhgROTaR16tv9PPyY0N3BnhyiruMMRvHcOkaEZljjKkSkTlAbWh7OTC3z3F5QOUYrj8j6Wu+UupkNkNylOYnNB8ppWaXqc5PMD1ylE5dVErNSgYIYoZ8jMO/gfeEvn4P8GCf7e8QEbeIzAMWAa+P50ZKKaVOTpOUozQ/KaWUGpeR8tN0yVFRG9GllFLRZDD4xrmgVGh58nOBdBEpB24BvgfcF1qqvBS4FsAYs1dE7gP2AX7go7qilVJKqXDGm6M0PymllJoMM+UzlDZ0KaVmrXGO3MIYc/0Quy4Y4vhvA98e102VUkrNCuPJUZqflFJKTZaZ8BlKG7qUUrOSAXwEox2GUkopNYjmKKWUUtPRTMlP2tCllJqVDBAwJ+2iUkoppWYwzVFKKaWmo5mSn7QY/TRk/MWYGfDHo9RMZjD4hnmok0dtpTfaIUypnm4fXR09g7YbYwj4teyOUjOB5ig1nRXvLQv7WSXgD9DS0BaFiJRSU2Wk/DRdcpSO6JpmTLAJ0/B2sM+B+I+Ccx1iz4h2WEqddIwB3/R4HVaT7J9/eJ63vf9sMuYkRzuUSbfrtSPc8f1HSMlI4HPfv46E5Fjqa5r53Xf/w87XjrBoZR7L1+VTVdbI5ddvYsnquQQCQTAGu8Me7fCVUiGao9R0ZIzhkT8+y2+++FdWnr6Y93z1rSw9ZQGBQJDbPvcXnrv/dbrauzn/HZtJn5NCU10Lq89cyjnXnIqIRDt8pdQEmCn5SRu6phFjgpiWb4PxQsAPwVZMwzWQ/EvEtQZjugC3JgqlJoQQQP8vzQbX3XQuLs/sSHdVZY0c3lsBwE2X/pjsvFSOFdUcH+G15fmDbHn+IADPPLSDtZsWcPRAFTd+9k1c9JYNUYtbKTWQ5ig1/YgIC1cXYIKG7c/sY/sz+0ibk0xbcwfdfUYSP/6nF45//cgfnuWfv3yMNWcvo6KomtVnLuUtH704GuErpSbEzMhPs+Od/zRm2v8CtjgINmK6ngbfFmuHuDBdD0OwGtNxJ6a9A3peBYmBpO8h7nOjGrdSM50BfGb6v0ir8Tmyv5I5c9OwO2fH73rRytzjXzc3ttPc2D7ksX5fgC0vHCIpNY7drx9l8wXLiU+MmYowlVIj0BylpqslG+dz5c0X8MCtTwDQUOUd8ZzD20s4vL0EgKbaFlKzk9h8+XpcHuckRqqUmgwzJT9pja4oMh3/xLR+A9P8RUzr9080cgEEG6HnJevrrv9A9zNgOq3twTaM6YxO0EqdJAwQCPVIhHuok8OCZTnExrtx2E+OaXnB4PCr3Dico++/am5s58XHdrPr9aP4evxjDU0pNYE0R6np7MoPnI/NPraPkQfeOMJ33/sbdr1wwJo6r5SaUUbKT9MlR2lDV5SY7pcwLf87tnObP4Np/Qmm/fcEG/8fwaYPE6x/M6b9LowZXIBYKTWY1RthG/KhTi4zqf5UU33rkPtsNhuv/ncftZXesI1ejbUtY7pnZ0cP3/zon3no7lfGdL5SamJpjlLRNFKnSs6CLAqW5Q57zEi+es1PeN/aL/L0vS+P6zpKqak1Un6aLjlKpy5OIWMCmLafQNALnfcD41j9quOuQesZmNZ90H4bxH0MPOeD6QJ7LiLuPjEYrfGlFGAQAtrWr6aZmvJGvvvpe/jJ3z6MzRb+7/Ohu19h24uHiYlzs3RtPpvOX8aFb95AbLybR+97fVz3d7r0bYFS04HmKDXZgsHgkHnGZrPxnRt/TUtDG0npiWQXplO4LJc15ywnNSuJYDBIa9P4V1esOVbP/b96nNOvWE9MvGfc11NKTb6Zkp+mf4Qnk/bfWY/OvzOuRq7hBBut6ZB152Lq34SpOQXT/gdMoAHTcQ+m7jyCTR/C9GybnPsrNUNob/nsEm4Z9OkoKy+Vt3/wXG65+c5B+3qfw9X/7wwAOtu72f7SYW775r/5xkfusva9+wxi492Dzo3UXT99nFv/71/UlDeO+RpKqfHTHKUmU/HeMu78v38Oud8Yw3Wfvpyincd47p+v8bcf/4fvf+B23rnoU3znxl8D8K37P8vcxXPGHcuRXaXc+tk/89pjO2dMrlZqNpspI7qmRxSzgPEdwrTfHoU7d2Fav4ep24xpuQWCldD9X0zTezEd92GMLwoxKTUdCAFjG/KhhicinxaRvSKyR0TuEZFp3RUb8M+cOiDxSTFhp1qKCL4ePz//n/4fTuwOG5/53nUAtDS1c+4Va8d87/bWLh7+66t8/obf0t7aNebrKKXGS3OUmjxz5mWSkZfGV9/6E1obB4/MEhGyCzI4/crBq/GuPnMpNpuN3AVZXHnT+eOewgjw1D0vc8t1P+OmjV/h0bueG3HqpFIqmobPT9MlR02PKGYB03kfmPEP8Z0wphPT8lWM91MY/9FoR6PUlDOAD/uQDzU0EckFPgFsNMasBOzAO6Ib1fAczpnzO01KjSc9O4mKkvpB+x7+66s01vWv4RXwB/nh5+/F1+PHHevikXtfG3cMdVXN/OJ/79cPG0pFieYoNZk8sW6uvOl8AA7vOBb2mNamNp78y4uDtv/pWw/w/ANv4HQ5SM5IpOxQ1YTFVX64mp9//E5+/KHfE/BP0uwXpdS4jJSfpkuO0oauqRKojnYE4XU/Cf7iaEeh1JQzRnvLx8kBxIiIA4gFKqMcz4xQeWxw49VA+Qsy+djX30xuYfqgfRe9dQMJybGDtu/ZUsInrvkV9/322YkIE4DnH9nFh6742ZgL3Culxk5zlJoK5167iUf++CxVxbWD9sXEe8hZkDVoe0tjG995z6/5zo2/ZucLByaltuPT977MZy76Dk/99SVt8FJqmhkpP02XHDU9ojjJGX8J9LwU7TCUUn1ob/nYGWMqgB8BpUAV0GyMeSK6UQ2vraWT/dvD91pPpWBgfPVH4hNj+O6dH2Dj2UsG7Ss5VM2OV4rGdf2Byo7U8r3P3sNfb3067AgzpdTk0Bw1M21/dh+BwMwZCXvh9afz5T9+iPjkuEH7kjMS+f7DX2DRukJstsELWT1//xv85/fP0N05OSu+H9x6lB996A4+dcG3aKj2Tso9lFKjpyO6FAAm2IjxfgZMe7RDUUr1YRB8xjHkQw1NRFKAq4F5QA4QJyI3hDnuZhHZIiJb6urqpjrMfuITY1i2roDurujWJcybnzHuayxYlsPXbn0385ZkT0BEI9v9ejF//sWTfPUDf8DX45+Seyo122mOmpk6WjvZ//rEdjiMld8fiGj6ud1hJyFlcEMXQHpOCr987hZue/WbLD1lwUSHGJHD20u4ceXneffyz/K1t/10QqdKKqVGb6T8NF1y1PSI4iRi/GXQ9S+M8YNvL/h2gmmOdlhKqTACZnAPpYrIhUCxMaYOQETuB04H/tL3IGPM7cDtABs3boz6Uko93T6rjpXHGe1Qxs3lcvDFH19PV2cP2148xJ9+/uSk37O6rJF/3PEc13/kgkm/l1JKc9RMtPbsZXjGsfLtRCo/VEVWfjox8eNfK6ZgaS5f/uOH+OPX/4HT7eTQtmKO7a+YgCgj4+vxU1feSF15I4e3l/Cdf32W+avyp+z+Sqn+ZkJ+0oauiRasxrT9MtpRKKVG0NsbocakFNgkIrFAJ3ABsCW6IY2suamDjOykaIcxal0dPfzzD89js0m/RqaCRVkU7a2gvnrqamiVHhlcx0UpNfE0R0UmtOLv84Ab63PNP4wxt0QrHm9dC5kxadhsNkSi+0GwYFkubU0TN6MkKz+dL/3hQ3R1dFO08xjfe+9vqK9smrDrR8pb18IXLv8+337gsyzZMH/K76/UbDdT8tP0j3AGMaYH0zWty9QopUIMENDZ22NijHlNRP4BbAP8wHZCI7ems4DPKmi7Z0sxKzfOi3I0w2uqb+X5R3bx6n/3c2BnKV0dPbjcDi59+2lUlNSTlZtCenYSe7eV8Mjfxr/KYqQuv37zlN1LqdlMc1TEuoHzjTFtIuIEXhSRR40xr0YjmNyFUzOlPBIiQkJq/JjOrT5Wz22f/wupc5L55M9vxO/z0+btIDkjEU+sm598+PdRaeTq1ebtICFMXTGl1OSbKflJG7omlA1xLsdgB3SFEKWmM6s3YnoUS5yJQj3mUes1H4ve1QqneyNXXZWXL9xwO7WVTQSDJ2Z89nT7uf70bwFwxsUr2HDWEv42gassjmTekmxWbCiYsvspNZtpjoqMMcYAbaFvnaFH1KfKz1Sv/GcbT//tFV57ZMfxmozzVswFY2isbeGGL11FZ2sXlUejO7p33sq5YVeEVEpNvpmSn7ShawKJOCDmLWCfj2n7ma60qNQ0ZgzTZvlbNTXiEsZfp2QyeBvbSO7T675v+zGqyxuHPeelJ/by0hN7Jzu0fi6/flPUp+IoNVtojoqciNiBrcBC4FZjzNQNcx2G3+fH4ZwZH7W6Orr5xSfv4pX/bKezravfvl9/7kT5zWfue4X25o6pDm+QM65cH+0QlJq1Zkp+mv4RzkDiWoOk/BbcWrBXqemqtzdiqIc6ufl6/HS2d0c7DADu+fV/+c4n76auygtAYkocDuf0+huMiXVx3pXroh2GUrOG5qjIGWMCxpi1QB5wqoisHHhMNFYBnimNXAA2u40dz+0f1Mg1UM2xetq80W/oOvPqjdEOQalZa6T8NF1ylDZ0TRIRF5L8S4i5LtqhKKWGEMA25EOdvFqa2gn4g9iddmoqoldjpNeGMxfzwmO7ef3ZA7z69D5+8qW/4/dNr+nv51+9nthpspKYUrOF5qjRMcZ4gWeBN4XZd7sxZqMxZmNGRsZUhzbttDa109LQdvx7u8POis2LohhR5HIXZFGwLDfaYSg1qw2Xn6ZLjpoeUZykRBxI/CcBneqh1HSjveWzV2JKHJ5YF/XVzdRWeiftPt4+HyKGs+70hXz/TzfxputOpamhjfrq5kmLaawuv35TtENQalbRHBUZEckQkeTQ1zHAhcCBqAbVR/nhappqp99rendnDx8/9//40lU/pL2lk4qiasoOVUU7rIiccfUGnUavVBSdNCO6ROQPIlIrInuG2C8i8gsRKRKRXSKik6b7EHsGONdGOwyl1AAGCBrbkA918svJT8MT46SiuI5gMDjh109Oi2y1K6fLwerTFmC325iO792Xry9g3pLps5KYUrOB5qiIzQGeEZFdwBvAk8aYh6Mc03E5CzKJS4yNdhiDpOekcMUHzmfXCweoKq5l23/3UrK3PNphReSMKzdEOwSlZrWR8tN0yVGRRHEnYYYA93EpsCj0uBm4bfxhnVwk9V4k4zkk/tNI8q3oGgBKRd9E9JaLyKdFZK+I7BGRe0TEIyKpIvKkiBwO/ZsyyU9FjcPc+Znc/8cXOby7gsbalgm7bltL55jOE5HjPdXZc1OxO6L/ZkFHcyk19TRHRcYYs8sYs84Ys9oYs9IY841ox9SXzWYDgfYx5oTJ9JaPXMS9RT9n/qq5bL58ZtRgzMhLZfH66b1yslInu4kY0TUV+WnEd9DGmOeB4ZZ/uhr4k7G8CiSLyJzxBHWyERHEPgdsqZielwF/tENSatYzZnwfIkQkF/gEsNEYsxKwA+8AvgQ8bYxZBDwd+l5NU55YFx/536twxziZyOFUnhjXmM675G2n8LvHPstnvnctzY1WLbFoSkyJ48w3rYpqDErNRpqjTh7tzR04nHaqimvp6fJN+v38vsg+ZzicDhLT4rHZbCSlJeDyOI/vS85InKzwxuWMK3XaolLRNlJ+GilHTVV+moiu4lygrM/35aFts5YxBtP9HMGmDxKsuxQTtObmS+zbEfc5YNeeCKWmg4CxDfmIkAOIEREHEAtUYjX+3xXafxfw5omOW00su8NO4eJsUtLjOVZUMyHXHM+qibmF6eTNy5gWq0Je/NYNuFw6ClmpaNAcdXJITI2nub6V1Oxk7FOwom5n6/ArJ4bjiXPz5T9+iNOvXM+my9ZOuwVRep1+pVbIUWo6GC4/RZijJj0/TcS713DN6ibsgSI3Y01vJD8/fwJuPf0Yfymm5X+g5zVrg70AsSWdOMC5HjyXQfut0QlQKQWcGHY75vONqRCRHwGlQCfwhDHmCRHJMsZUhY6pEpHMiYlYTTYRITk1nn/d9SJJqfGcd+XaqMRRfrSOe2/7b1TuPdClbz812iEoNStpjjp52B12MuemTdn9ElIjqw850ObL17P58vX4evxcmX7TBEc1fskZiazYvDjaYSg1682U/DQRDV3lwNw+3+dhtcgNYoy5HbgdYOPGjWEbw2Yy03k/pvnrQJ+elEA5weYvAwZscyBQBl3/jlKESqleViHFYYe/p4vIlj7f3x56DQMgNG/8amAe4AX+LiI3TEKoagolpcZx2TtO48j+6K0+dd/vnuX1Z6O/aNjazQvJKUiPdhhKzUqao05ezY1tJKbETcoUvEAgSLu3g8QIF0MJp7WpfQIjmjibr1iH3R79upVKzXYR5CcYJkdNVX6aiIaufwMfE5F7gdOA5t6WuJOdMQHABsFGTNvPoPNvYY4KQOc/pzgypdRIIuiNqDfGbBxm/4VAsTGmDkBE7gdOB2pEZE6oJ2IOUDthQasp4XI7SUqNo6uzB5vdNqVT97a9dJjG2lZyC9Opq/LS0x29mo6XXqejuZSKFs1RJ6c2bwex8W6qiuuoKKrmlItXT+j17XbbuBq5fD1+btr45QmMaOLoaotKTQ8RjugaLkdNSX4a8d27iNwDnIvVKlcO3AI4AYwxvwEeAS4DioAO4L3jCWgmEbF+wab7Oeh8IMrRKKVGKzi+MoWlwCYRicUadnsBsAVoB94DfC/074PjDFNFQU6+Nc2k+EAV85ZO3foq689YREJSDLmFGXznk3ez9cVDU3bvvpJS49h84fKo3FspZdEcdfKJT44FILswHZvdxuHtJWQXpI95uuFE8vv8vP74Ttqbp98KkXFJMaw5e1m0w1BKhcyE/DRiQ5cx5voR9hvgo+MJYqaT2LeCazV0P4/p/Bf4oz/lRCk1PGPAFxz7i7Qx5jUR+QewDWsp1e1YU7PjgftE5P1YL+TXTkC4Kkp6G7k62rpxexzYHZNfSHjRyjwAPvb1N/PeC39AXIKH9jEUFx6Pi966EacWoVcqajRHndxsNhvZBekc2XWMPa8cYtUZS1i4piCqMTmcDpIzEvnoj24gKSORu7/3IMf2V0Q1pl6nvWmt5iSlpomZkp/0FWOCiGMhRmKg/Y/RDkUpFQGDEIx85arw1zDmFqxRrn11Y/VMqJNIbLyb8qN1pGTEU1/dQt78jEmvFdJY18rNX76CR+97fVQNXenZSSSmxNJU30ZzYzvBQHDU9770ulNGfY5SauJojpodzrhyA8FgkNamdlqb2nG6HbhjXJNSvysSKzYtYunG+dgddubMy+Cb7/oVtWUNUYmlrzOvHm6WrlJqKs2U/KQNXRPAmCAiNqvYvGMh9Ay3PL0TPBdC9/NgpmexR6VmAwP4xvkirWaXvPkZ1hci2GxC8YEqOjt6sDtsLFk9d/iTx2DZunyWrctn+foC9m4t4S+/fIrO9u6wx9rsNvLmpfP2D55Hclo81eWN5Bak8ctb/kVFSf2o7qtF6JWKPs1Rs4fNZiMpLQFjDAfeOMqWp3Zx8Q1nkZUfndfh3pHLi9YWMnfxHC5//3nc/b0H6enyRXS+0+1g44WruPLmC0jJTKRkbzl/+8l/qDhSg28MdSfdsS7Wn79i1OcppSbHTMlP2tA1AURsJ/71XIjxH4VgFeAC51IItgMGHHORxG+ALRXT+D7wvRHVuJWa3cbfG6Fmp7h4Dx1t3dTXtABQcayegoVZPP7PNyhclM2qU+dhs43/b0tEMMaw89Uj/PkXT+L3Bfrtt9ltpGYkkJqRwOrTFvCeT19MbUUTX77xDmorvaRmJGALjTpzOO2Dzh+KFqFXajrQHDXbiAjLTl3AnPkZVB6pjVpDV1/v+dpbSc9NJRgI0ljt5fE/vzBsg9eSDfP4wLffzqK1hXztmp+y99XDbLxwFTa7bUyNXACnXLQaT6x7rE9BKTXhZkZ+0oauCSax70Ji34XxF4HEIvYcjPFZI7hcGxBbMsHWH2kjl1JRZszM6I1Q01NsvJtTzlkCwML6HF797z62vXiY0qJaurt8pGUlkr8gk7tvfZraiibOv2odG89eMur7/PXWp/nLL58Ku+8DX7iMcy9fQ0pGAgBPPrCVX3zt/uMNWo11rQCs2bQAX7efQ3vKCQbNsFMZtQi9UtOD5qjZKzk9EbfHRXdnD+WHq1mwOj9qsSxePw+A7MIMHvvT82EbueatnMuZV20gKT2BUy5eTXxyHLd/5V52v3QQgNcf34nT5cBmE1ZsXkxVcS31lU0Rx3DGlesn5skopSbETMlP2tA1ScSx8MTX4gTPiemmEv8ZTMfdOnVRqSgyCP7g5BcWPxmJyBLgb302zQf+1xjzs+hEFF0p6Qmce8Vazr1i7fFtDbUt+ANB8ualE/AH+f5n7+HtHzwPX4+f5x/dRW2ll/TsJD7z3WtJSolj95ZinC4HmXOS6Wzv5j/3vEp7axd7t5UMed97bvsvV7xzE2CtDllX6SUhKYam+jZEBLvDht8XYOXGeVx8zQYO7irjV7f8ixZvx5DXvOgtG7Tgr1LTgOao2S0m3gNwvJGrs62L7q4e3B4XrhjXpNeI7Kt4bxm/+5+/0VjtHbQvKT2BL/3hgySlJZCckQjAn7/zL156cEu/43w9ftyxLs699jSyCzM4tr+Ce3/4MC2NbcPe2+lycOolaybsuSilxm+m5Cd9Nxsha3HJICLj/6WK2DCuU6D72XFfSyk1dkGiU+x1pjPGHATWAoj1olgBPBDNmKabtEzrDf+Fb94AwBXv3ERcgofnH9nFqlPnM3/pHO74/iM8+rfXeO2ZA3gbTrzZd3ucdPfpNU9MjsUASSlxpGcnUVXawEduuZr8+Zk4XQ46O7rp7vZRUVLP5gtXkJgcy6nnLaOqtIFXntpHwaIsOju6sTvsZOamDNvQdcm1WoReqelCc5TqFRPvwRXjIuAPULSjhPylObjcThqrvex84SDnXbcJEWj3dpCQGj8h96wqrqUk1CAVrpELoLm+lV988i5+/PhXANj+7D6O7DqGzW7DHesiOSORc992Gk/f8zKJafF0d/WwZOM8CpflcnR3GU/99aVhY1h7zjLikmIn5PkopSbOTMhP2tAVKdOEabsVnGsxvh3YEr82utONwfj2YHOtwgTbwF80SYEqpSJhYEb0RswAFwBHjDHHoh3IdGZ32HA47LzpulPo7OjB6bSDAVeMk/nLcnjy/i2UHKqhcHE251y2Gp8vQFN9K10dPbz3s28iMTkWscnx2l8tTe1seeEQrz93gKtuOJ2la/JZuqb/9JZla/NZuXEeR/ZXkJ6VjN1m55K3nUJtRVPYxq5Vp84jb17GlPw8lFLD0xylBrLbbdjtNpZsmE8wGKRoxzGO7CpFBF56cAtdnT38/aeP8MXff5Dyw1WsPmsZdeUN3P+rJwgGg5x51QaWn7aQzvZuXn54G0U7j5E+J4VrP3Up3R09vPTQVlqb2rHZbRhj+NuP/zMoBpfHiSfWTWxiDPHJsXzx9x8kuyCDYDBId5ePJRvn884vXIW3roXU7GRyF2ThiXPzri9ezbb/7qG9pYOSvRXUlTVw9ltO4bVHd9DaNPQMlzN0tUWlpp2Zkp+0oWs0AjVgb4CuJwkG6xHPZeA6FbGljHiqiGC6HiLY+i0I1kGgfAoCVkoNyQhBM/17I2aAdwD3RDuI6S49K+n413HxHowxrNg4D4MhPTOJS67ZSFO9NaorPTuJrs4eYuPd/Yrav/7cAf5669Nk5aTgcNlZvCoPb30bAX/g+CpZA2XmJJOZk2zdN8FD7rx0fD0+bv/u4A8wb3qbFqFXatrQHKWGYbPZWLx+3vEaWu0tnRzcepQbvnw1cYkxnPnmU6grbyQ1O5lNl66heF85zz/wBlXFdRzeUcK+Vw9z5tUbeeSPz9LR1sWBN45QeqCy3z1iE2PAGDpau1hz9lLe9/VrSUyLJyUrCXeMC7BGdD3115fY9sxePvebD+COdx+PqS+Xx8nGi1YRDBhcHidstrb/7Omv8v0P3M6hbcVhnqOw6bK1E/uDU0qN3wzJT9rQFSGxpSIpv7K+cZ+Naf4KBJvAdA15jul+HuP9HBJ/M+CCjruw2kCVUtFmAP8MKKQ4nYmIC7gK+PIQ+28GbgbIz49eMd3pSESIS3BTX9OMJ9aJzWYje27q8f0enINWbtz+0mHKjtRycGcZMbEuChZm8Z5PXzLq+5596RrKjtbx2n/3Hy9YH5fg4YxLVo7/iSmlJoTmKDUacYkxrD9vRb9tcwqtEbrnXbeZ84DO9i48sW5K91cQCAaJT4xl3sq5dHV0s3LzIl741xZqyxporm/l63/7JHaHndh4N0npibhinLjcTgB2PLePf//2aeJT4ujp7GHR+nmsOG0hdRWN5C3MHjJGh9MBzv7bchdm89Ef3cA33vVLGqq8/fatOnMJyemJ4/7ZKKUm1kzJT9rQNQbimA8pv0FsycMeZ9p+BcaLaf3B1ASmlIqYgRnRGzHNXQpsM8bUhNtpjLkduB1g48aN2so/QGpGIna7bVCDFoD02RYIBCk5XM2m85eRlBpPT7ePRStymTs/c0z3TctK5BPfeCvm/wzPPLSDX93yAFm5KTQ3tpMxJwkR/X+hVLRpjlITLeAL4q1roWB53vFt81fOxe60M3fxHM56y6kEAwFEhNiEGMAqvTIwJxzYcpSXH95mjcwCyouq+ckT/3P8+9FauK6Qvxz4CVXFdWz77x7+8t0H8da1sGSjNUUzXI5USkXPTMlP2tA1RiM2cvmPgf/w1ASjlBo1a8UQffM0Ttej0xbHJWmIosF2u43GulZSMxKw223kzE2jLSmWNZsWhj1+LESE869aR/7CTD7x1l/xkat+Rkycm5///aOkZmovulLRpDlKTbT45MFF3eevyqdkXzkNVU3kLhg8GsvX7cPlcR3/PhgMsvy0hZx+xXriU+KYuyibJRvnY3eOvV5P7wqSOfMzyZl/Pme95RR+/dm/cN9PHmH7M/vIyEvlypsuYN25y8d8D6XUxJkp+UkbuiaBMQbT8g0wQxdXVEpF30xYMWS6EpFY4CLgg9GO5WSVmpFw/OuYODcxce5Juc/C5bn84C8fpKKkjj/++DHqa1q0oUupaUBzlJpsLo+TvEXZ9PRZ6bf/fldo5Xmrc6R4bzki8LW7PzZpo3+T0hL4xC9uJDEtntryRmpK66kprZ+UeymlxmYm5Kfp3xQ3E3U/CT0vRDsKpdQwjAF/0DbkQw3PGNNhjEkzxjRHOxY1fis3FpKUGkdzYztPPbA12uEoNetpjlJTJTYhhuSMoTs3vHUtBINWY9eCVfmsOmPppE9xj0uM4aM/fjfv/8a11Bxr4E/feoDuzp5JvadSKjIj5afpkqOmRxQnEWOCmO7nox2GUioCwdCqIeEeSs02m85fzvUfPp/H/v4GjbUtABTtreDe3zxDT3f43n6l1OTRHDUyEZkrIs+IyH4R2Ssin4x2TCeblMyk49MLp1r+khyu//wVNFZ7ueeHDx3f3tPlo7qkjvaWzqjEpdRsN1x+mi45SqcuTrRgIwSqpvimdpAEMN4pvq9SM5dBCEyTHgelposbPnEhxQer2PHKEVweBz/43N/w+wKsP2MRi1fljXwBpdSE0BwVMT/wWWPMNhFJALaKyJPGmH3RDkxNjGs+/iacLge/+5+/ce2nLiMm3s0tb/8Z25/Zx1s+cjEf/N710Q5RqVllpuQnbeiaYGJPB/d5mJ6XgOAk3ywF3OdBsB56XuyzPQaM9nAoNRxjZsbSuEpNJZvNxmnnL+NHX7yPvPkZ2B028hdm8sKju7ShS6kppDkqMsaYKqAq9HWriOwHcgFt6DqJXPXBC3n63lf43ntvo7GmmaO7y0jJTOTonlICgWDURpwpNRvNlPw0/SOciWLfhiR+k0ltR3SuR1L/AK7TwH0OOOZb2x0rwZ4Lzo3gXDd591fqJGCMDPlQara68M0bWHlKIZ5YF9l5qSQkxfLMwzvobO+OdmhKzSqao0ZHRAqBdcBrUQ5FTYIbvnw1W57aQ8AfYPVZS1mwpoDdLx7kv/e+HO3QlJp1hstP0yVHaUPXCILB0Rc+FPGAcxnWaOp+eyYkJiQJSbwF0/oTaPkitH4T/EXWPsdCSPguJN2KxFwHDl2KV6nwrGG3Qz2Umq0cTjuf/OY1bDhzEWdcvJKCRZk01LRwz23/jXZoSs0imqNGQ0TigX8CnzLGtITZf7OIbBGRLXV1dVMfoBq3Uy5ezad//T4SU+NZuCafni4fBcvz+PN3/kVDtTfa4Sk1iwyfn6ZLjpoeUUxjYhoxPVsxJrJpiMZ3EGP84C8dvNOePzFBxX8aY58H/gOD9/m2gOlAbG4QQeI+EBrlNfK9jenGBJsmJkalpjmDFvpVaiiBQJB7b3uGrS8ewhPjYv0Zi9j6wqFoh6XUrKE5KnIi4sRq5LrbGHN/uGOMMbcbYzYaYzZmZGRMbYBqwpz2pjW0NLZRX9nEhdefztzFc6gta+CBW5+IdmhKzRoj5afpkqO0oWsEYs8G53qsX+nQjO8gwcb3YBquxHg/icRchiT/ln6juOzZ4w/IsQKJfRvi3wfBvj1SztD+BYDfWvnRfS4ScwWS9jck5bfgvtg6xpYK9oITsbd8i2DDDZj6qzCtPxt/jErNBAYCRoZ8KDWb5c1LZ/n6AkSgpqKJwiVZVJU20KYrXCk1NTRHRUREBPg9sN8Y85Nox6MmV0JKHAF/kF0vHKDscDWvPrKdzZev4/XHd0Y7NKVmjxHy03TJUdrQFQERQcQ+/EGOxUjsu626WI7F1nme8yDuI+BYhMR/Ekn6IdjSxhFInNXIJS5M28843rglyUjyj5HUu5H4L4C/CPFcjNhSQ/E7wT4PSfgUkvkqtsxXsWU8iWS8jCR9H4IN4HvdqvPV9RCm+6VBtzYmgDGjn8ap1HRl0PonSg3FZrOxZtN8YuM9dHX2kJaRhMvjZMcrRdEOTU2wRw8c4srf/4W73tge7VBUH5qjInYG8G7gfBHZEXpcFu2g1OSw2Wxc/ZGL2HDBSgD8PX5Ou3QtdeWNHDtQEeXolJodRspP0yVH6aqLE0REwHMhuM+n7yguW8InIeGTJw6MvRHT9uMx3CAOSfgaxFxlfRv7Loxph0A1Ev8ZcJ+PiMva51wUJj6bVb+r7zZ7OsS8JbRyYxP49mC6n8Y0fx5S/4KECtwb3wFM8+fAsQBJ/vnoY1dqWhICwenxQqzUdFSwMJs9W0pYf+Yilq7Jp6fbz5bnD3LmJauiHZqaAK3d3fz0uZd5pugo5c0tfOupZ8mMj+PSZYujHZoCNEdFxhjzIhNWBFfNBA6HnSN7yjh3SQ6p2cnkzM8k4A/w4oNbKViaG+3wlJoFZkZ+0hFdE0zEZjV6DcH4doztukk/AveZiDgwpis0xdANKbcjsdccb+Qa07VtyYhjHrgvgLibINiCafx/mIDVM2Lafgr+Q+DbjfGXjfk+Sk03070nQqloyp2XTkpaAnu2lPCTL/2d865cS111c7TDUhPE43Dw5607KG8+Ubf78w8/xvaKqihGpfrSHKXUYJe8+yw6W7twuux86pc3UlPaQGp2Mi8/vDXaoSk1a8yEEV0RNXSJyJtE5KCIFInIl8LsTxKRh0Rkp4jsFZH3TnyoJ4nQKCkcS8BeCLit721ZoQMEGDhN0obpeQlMOwDG+JD0B7Gl/RWbc8WEhSa2WGwJn0fSHgB7Iab9LoJNH4ae160D7HMxje/EmK4Ju6dS0WIM0361EKWiqWBhFuvPWkRqejyLV+chAnWVXjrbu6MdmpoATrudOJez37Zuf4CP/PPfvF5aTkXzoIXr1BTSHKVUeCLCunOX44pxc8+PHua3X7qHdectp7G6mc42/Yyi1GQbKT9Nlxw1YhRiFae6FbgUWA5cLyLLBxz2UWCfMWYNcC7wYxnPEKOTlLVyowNib4LEbyCpf0FSbrfqZ8XdCK7TrTpeDFzhMQgd94L/EMYEEXGPawTXSMS5CEn6DnT+HbqfB/clYMsFSYBgDabpw5hgx6TdX6mpYszQD6VmO6fLwbrNC1l96gIaa1txuhzUVnn5zDt+TW2lN9rhqQlQmJoyaFt9ewfvuvvvfOC+B7jlsad5pSTMKtJqSmiOUiq8DRespGBJDuvOXc4F79iMiFC4PJdn//latENTalYYLj9NlxwVSXPbqUCRMeaosaqR3wtcPeAYAySEVj6JBxoB/4RGehIQsSHxH0USPoE4VyD2TMS9GYl9O8S+D1vqnZiOPxFuhUdJ/jniuQQ6/gw9r0x+rI58JPVua+RZz0vguRwQcJ4KPS9h2n4w6TEoNZkMQjBoG/KhlILktHgSU2LZv/0YyWnxzJmbxrHDtXz+ht/QWNca7fDUOF28eOGQ+4rqG/nr9l08duDwFEakemmOUmpoZ169kdjEGBJS4ji0tRh3jJNj+yv5xSfu4u8/f5SAPxDtEJU6aY2Un6ZLjookilygb2Gm8tC2vn4FLAMqgd3AJ401fKkfEblZRLaIyJa6uroxhjyzibgGjciSuPchIhgTgEDNgDPs4DodXGdgul+xpjD6S6dkRJU4lyOpfwbPleDfA64zrZFd7nOh45/Ha3gpNSMZCBoZ8hEJEUkWkX+IyAER2S8im0UkVUSeFJHDoX8HD5lQaoZwuZ3UVXlJTo+n1dtBUkosyenx1FZ4eePZA9EOT43TJUsXEecaeoR4nMvJBzZtnMKI1HGao5QaVt7ibFIykzi49SjJGUkULMvBGMPvv3Yff7jl7/h6dMyFUpNihPwUSY6aivwUSUNXuEgHDjm6BNgB5ABrgV+JSOKgk4y53Riz0RizMSMjY5ShzgLBWgj2aeiypSKpd2FLvRN6XsN0Pgg4wHM+YoudkpDEFgemEXpeg857QQxIIjiXYVp/MSUxKDVpzDCPyPwceMwYsxRYA+wHvgQ8bYxZBDwd+l6pGSs9O4mEpFiqK5qYuyCT9EwrvS9fXxDlyNR4LUhLZUV25pD7r12zkrnJSVMYkepHc5RSQ3K5nXjrW0jPTaXySA0JKXHYHXbSc1J48DdPUVfeGO0QlTp5DZefIstRk56fImnoKgfm9vk+D2vkVl/vBe43liKgGFg6nsBmJd+uE1871yApdyKuUwm2/hDTcSd03Q++3eAvmtKwJOFL4FwL9lyw54P/ILg2QdfDGN+hKY1FqYkUDMqQj5GEGvPPBn4PYIzpMcZ4saZ23xU67C7gzZMSvFJTZN6SOZxx0QocDjtrNi0kpzCdjDlJJKfHRzs0NQHCvdrFuVycPb+QTflzw+xVU0VzlFJDExESUuKJTfBweEcJy05bSEy8h5h4DzkLssiZP3QjvlJqfIbLTyPlqKnKT5E0dL0BLBKReaEC8+8A/j3gmFLgglDgWcAS4Oh4ApvOTKB+4q/ZcR/G++nQd04k6aeIcynGGOjZZj0kGUn4AuI+Z8LvPxyxJYPnzdCzA0w3uC9FnMsBP6b9d1Mai1ITxTDi0u3pvVOtQ4+bB1xiPlAH/FFEtovIHSISB2QZY6oAQv/qOy01oyWnxXPdB8/j5i9dzukXLeecy1bznT98gISkqRlZrCZPa1c3LV2DV9H0BQLcsH4Nmwq0oStaNEcpNbxAIMiKTYvYcOEqutq7WbJ+Pu/+nzdTXVJH2pzkaIen1ElrpPwUQY6akvzkGPGJGOMXkY8BjwN24A/GmL0i8qHQ/t8A3wTuFJHdWJ2DXzTGTHxr0DQh9vQJvZ4JtmPafgb4wZaFxH/CGj2F1VtB3E2YrseQ+I8jjui86RTPmZjuh8GWCLgwbbdD7Huh82+YQCViz4lKXEqNmQEzfI9DvTFmuOI0DmA98HFjzGsi8nNm0RQQEUkG7gBWYuW89xljJn+lDBUVdruN1NCUxc0XrohyNGqi3PPqDhKM0/of3Ofl0BhDalwscW5dQDtqNEcpNSy73Ubm3DSu+fibWH3mUpZsmIfD7WDtOcv4xC9ujHZ4Sp28Rs5PMHyOmpL8FFFJfGPMI8aYxcaYBcaYb4e2/SbUyIUxptIYc7ExZpUxZqUx5i8THeh0Y4KN1mir8VzD+DHtv8fUboZgPXiuhtQ/QczbrAYurDebxpYCce+NWiMXgNhzkZi3WzXEuh8G8YBvC3jeimn5JmZQEX2lZoDxzS0vB8qNMb1rWf8D60W7RkTmAIT+rZ3YoKeNcHPrlVIzxLH6JrYcqWB7cSWnzOnfWbVhbi5rcrKjFJk6TnOUUiNKzUritDetwe6ws3htId/852fIyE2NdlhqCjXWNtPT5eOzV/2Yr7z9l3S0dUU7pJPf+Gp0TUl+mh5rP85AYks93hg1FsYYjPfDmNbvA13gvgQSv4nNMQ/ouyRuAHEux+ZcNt6Qx89zKeJYZtXr8lwGzrMgUAHdz2DqL8O0/SraESo1CoIJDv0YiTGmGigTkSWhTRcA+7Cmdr8ntO09wIOTEX00DTO3Xik1zQWDhrtf3sE1P7+blw4dY0N+DnuKq1mUYn0wXJSeyvcuuyjKUSrNUUopFZl/3PoUHz7/2+x74yjbnz/A3T/6T7RDOskNn59GylFTlZ9GnLqoJpYJVForGNrzoPtlkBhwngqxN2CzeaxjjEEEjOlGxM10+TWJ2CH2Gkz3Tuj8E/hrwbkI7AUQqMK0/QITqMeW9PVoh6rUyAy9c8jH4+PA3aH6hUexFuawAfeJyPux6hdeO96bTEN959avAbYCnzTGtEc3LKXUcGq8bXz/oWd5fM/h49tq29rxB4O0ebtIcnuoaG4lI0EXGog6zVFKKRURb30rlcV1x7//1x3PcsG1pzF/RV4UozqJzZD8ND1aUGYJ07Md4/0U4AeJQxK/iXHkg301YnMeP87W+7XpBHFHJdbhiGs1JrAZum4B9zqw51gju2xpYNM3x2oGGeeLtDFmBxBu/vkF47rw9DfU3Pqv9T0oVHjyZoD8/PwpD1IpZTHG8NTOw3zjvqfITUvCYRP8QWtuQVZ8HGVNzdS3dbB0TgaVvrZxl2ZQE0RzlFJKjailsa3f98FAkF9/5T5++K9Pj2sGlhrGDMhPOnVxiphAHablFnCfDnGfgLgPYJzrwbEWm90V9j+h2JKnPtAIiAgYv1Uwv/tFcJ0HjsWAHfzF0Q5PqciNr/7JbDbU3Pp+jDG3G2M2GmM2ZmRkTGmASimLLxDgk3f8m8/d+R9aOrrZX1bL+rwTNbn8gRMveAeq6rB3QqW3JRqhqoE0Ryml1IjmLc8dtG3v60e48dT/Zc+rRXR19EQhqpPc+Gp0TQlt6JpEJtiB6X4R03E3pvUHEHMNxLwbYt6CeC5CTB34j2DMzPvPZ4t7B7hOt75xLoXY/wfBBsRzaXQDUypSBgjK0A81pGHm1iulpplHtx7gub1H+22rrGshyWONGK9qasFuO/GalxoXw5f+8zht3TPvvclJRXOUUkpFJCElLuz22vJG/veGX/PBs79Bc0Nb2GPUGIyUn6ZJjtKpi5PEGINp+wF0vwau9Ujil63pisenIrowzo0QbAecw11qWjImgMRcBjFXgS0dXBvAng2u06IdmlIRM8FoRzCjhZtbr5SaZl7YVzJoW7W3lUU56ThsNmpb2lk/P4etZZUUpqfQbQ/S1NzKG2XlnF6YT7nXaggrTE2Z+uBnOc1RSik1sgvedip//Hb4uuWd7d0sXJ1PTPz0Kwc0k82E/KQNXZMgGGgDibVWKEz4CiIuTLARjK9fzS0RQewzs6aViB1cp/bf6N4UnWCUGqvxF1KctYaZW6+UmiaCQcOhyrqw+w5X1rOqMJuGjk7aOnpYPz+XLdUV9L53/eB9D7IhL4dNBXO5bt2qqQtanaA5SimlRlRX2TTkPrfHyce+/3Zc7pk3sGRamwH5SRu6JpDp2YaRJPAdBdcyiLkWEWt2qNhSoxydUqofAzIDeiOUUmqs9pXXUFI79AeA3SXVnLmygN2tddRX1wOQFhtLXnoiJgD5KUkUpiZjF6G1q5sEj/aITxnNUUopFZGO1q6w2zNyUnjHp99E/qI5UxzRSW6G5Cet0TUBTGjsnmm7FboewhZ7ETZH3vFGLqXUdCRWb8RQD6WUmiAtLZ2UljVM+X1XzM3iM1efPewxLa1d1Hd2IAZOmZNLT6sPR1CYn53CR848jQuXLCQzIV4buaac5iillBpJdUkd9/30P4O222zC+772ZjZeuCwKUZ3sRshP0yRHaUvMOJlAFcb7eUznf5C4G5H4j0U7JKVUpILDPJRSKoz9u8t4+pGdwx7T3tpFS3MHb7x8mKryRg4X1TA3L5VAIEh5eeOg44NBw2OP76Kjo5u/3vMKgUAQY8a/bJGIMC9z+NpaRRX1LElJZWlSOtuOVtDR46O0wsupuXnkJycT53KNOw41RpqjlFJqSG3NHfz7jmc48FoRC1f0X3nRHeMif3E2mdlpUYruJDdcfpomOUqnLo6BMT5MsBOxxUHng0jyjxCZHi2XSqlRmCbL3yqlpr+AP8C+3eU8/+QeXnxqH5nZSfT0BDh6qIrH/rWNsy9aSXtrFyvXFfCX3z1LxbEGzrt0FZ/+6lXMybPKF9x625Nce03/+pY7d5Xyy189Scmxem799dN0dftwux1kZydxxumLxxVzj9/PrY++MsIxAdKCMbxWUwFAUoyb777lYtbm5+h7m2jTHDUiEfkDcAVQa4xZGe14lFKTr6O1iwd+8xQP3PYkbd4Olp8yn7ryBhwuO/6eADabcPmNZzN/eV60Qz15zYD8pA1do2QCVRhiwbQDsUj8h6IdklJqLAzINFn+Vik1/RhjqCyuY8cLB9l7uIZXXzhMe9uJOiCfu+mP/Y7/6x3PAfDg314D4MLL1/DZW958vLGotLSBHTtLSU9PIOAP8uarN7Brdxk/+NF/aG3tYuGCTNatK2ThwkyWL80hJycFY8yYGptqvK1sO1rJLx5+kcrGlhGP31tcTUZaLDEeF7/7f2/hZw++wMZ5c0d9XzWBNEdF6k7gV8CfohyHUmqS+X1+HrnzeV55dAfbn90PgNiEloZW6sobWXXWMvZsLeHMq9bxvv+5OsrRnsRmSH7Shq4hmK4nwX0hIoLxHwX7PKALsc/B+rUmRTdApdT4zYDeCKXU1AgGg5QdrmHfG0fZ8+phdr1ymPpKLwArz1nWr5FrJHa7jfd/4iL8/iBOp53mlk6++/2HKC1t4I7fWw1if/nry/h8AQDOPmsJ737X6WRlJ/He991BQ2MbMTEuXC47v/vN+0hPT4jwORh+9chL3PXMVvyB8HMH3A47izPTqWxuoaG9E7BGda1ITOHd563n6399gpsuPo1YXaEq+jRHjcgY87yIFEY7DqXU5AkGgzz+5xe57+ePUlVcR1ZBOjHxHjrbujCB4PEOoYNvFJGem0Z8QqyOSJ5sMyA/zdqGLmMMBOvAlgymEwK1mGA7OJcggRKMpCG+XRh7LuKYHzorJpohK6UmmMyAF2ml1MQzxlBX0cSRPWUc3lnKwe3HOLSjhLbmzrDHt9Y0j+r6F16xhu5uP3ueP8CajfP4wAf/QENDW79jfL4ALpeDjRsK+cTHLiIuzk1Xl4/k5FgaGtvo7OyhsxNuve1pbvnamyO67+uHS/n9U2+E32kMa/LmUFvdwoFD1eSkJ7Jo3ly6nVaDWJzTyXfufZrrzljD5iUFo3q+anJojlJKKXjqnpf5+adODNqsOVbPslMXsP+NoyBCXFIsAD1dPjwOG4kpsdEKddaYCflp9jZ0BbyIzYHxHQIxiL8I8VyOiAtsy9A2YKVmgWmyKohSanIYY2is8lJ2qJKyQ1Uc21dOS2sPO14porWpPeLrHDtQyeIzl3LoaP2Ix8bGuTnjguV89kN3kpaRwL/+/gZzUuPJS09Aet9dGKj1tpGYGsfnPn0pScmxdHX5qKtrxevt6He95184gNfbQXLyyG/cNy0p4MNv2sRtj73ab/uC9FQcPth3sOr4tsr6FuLj3GzFek4X583nY5edwVs2aZmjaUNz1IQRkZuBmwHy8/OjHI1S0XFoxzF6un2sPG3hqM7r6fbRWOUluzBjkiIb3v23PjloW5u3HREwBpyuE00aZQcraa5ppruzB3eMLqYyaWZAfpqVDV3G+MAWg9g8iMsqEItzVXSDUkpNLcO0WRVEqZNV78qBkzGFwBhDm7eDptpmmqq9NFQ10VDZRG1ZA7Wl9VSX1FJVXEd3R3e/85afvWJUjVy9mo5UA3YY4bnkFaTxtc/eC0B9XeuQxxUuzKQgL5XS4npWry8gGAzys188jj8Q6HdcbIwbgJs//Efed+NZbBrhA8qhyhONcVmJceTEJrCnqCrssZ1dPvBYX3c7gywqiM6HGBWG5qgJZYy5HbgdYOPGjTNgLIJSE6uproW9rx/hxYe28eOHPgeAr8fPga3FzF2UTXKfKfKNtc10tXfT1txJ7oJMXnloG+e87bSoxF1dWk/J/opB28sOVbNi8yL2vlpEXZX3+PZ5K/J47K8vc/n7z2PBqrkEg0FsNtsURjwLzJD8NCsbukSciGjtCaVmu5kw7Fapmczv8/Piv97g1k//mYSUOGITY4iN9+CJ9+COceHyOHG6HNiddmw2G8kZCTTVNJOQEkdTbTP+ngDdXT34un10tXXT0dpJe3MH7S0dtDa2E/AHRg5iALttbI1uDVVe8k9dSGm5d9jjykrqsduFQGD4F5iSolrOvXAF5aUNrF5fgD9gOHCwimCw/3mnnjqfXbvLKCqq4Yc/eoQ7bn8/KSlxYa95qLKOp3cVkRTjYXFqKnuKqmgMtIU9FqCitpkzVuVysKuB54pLyN6WwMrLs4aNW00dzVFKqbFoaWjlyK5Syo/UsPu1oxzcXkJteePx/R85/9s4HHY8cW52v3KY+ORYFqzIo2BpDu4YFw/89mmCgSA3fP4KFq3J58J3ngHA8/e/Tmp2MivDrAj87D9eY/Pl6yg9UEl6bgopmRNTz/q+nz465L69rxxmzrxMqoprWXn6Yjo7fRzZU46I8Ptv3M/7vvYWbDYbDped/MVzJiQeZZkJ+WlWNnQppRQwI3ojlJppKo/WEPAHmbt4Ds11rbQ1t9PT1UPlkaEbXHqtOmMxu57fz4rTF7Pv1cOTEl9Xa8fIBw0hyWUf8Zj8+ZkcPFgJERRB6OzoIeC3XoiSEmPIzEykurp/PbAXXzrE1m0lADR5O/jJzx7jm/93zaBrdfv8/Ob+lzl1bi77j1Szo25wD/hAQWPYtauclUtyqKeKh/cc5BuXXzjieWqKaI4akYjcA5wLpItIOXCLMeb30Y1KqanR1d5N2aEqyg5WUrKvnOK9ZRzdXUZ9hdWolZAaT1vP4NV7i/f1zw9t3g52vnSInS8dAsBmt/HNez7G+nOWHT+moqiah3//DN9/+Av9VgTe8dw+7vjafRTtOMbcxXOoOFLDNR+/hLmL53DB9Wdgt49vNNWNX3sLz93/Ou0t4WtopmYl4o51s3dLCWCNIM9blM3O5w/wvZvu4Jy3nsI1H71oXDGoMGZAftKGLqXUrCQzZGlcpWaakr3lfPtdv2T9BSspXDGXrIJ05i6eQ9GOYyOe29tBOJmrJTVWNY353JJdpaTkZdDkHbqxzOl2YAyRtHPx73+8wRnnLgWsqZixYeqJ+HwBfL4Tb/C3bT9GfX3roJUY73r4NZ7fcSSyJ9KHTYQmZw90QY/fP+rz1eTQHBUZY8z10Y5BqckSDAZprmuhrryJ6mN1VJfUUVVcS+XRGiqKqqnrM0ornNbGNtIX5NBY2zKq+775pvP6NXL5fX5++rE/0t3ZwzVzP8q8FXn8v/95C4e2FXP39/9NV3s3qdnJZBdmsHh9IevOXc6681ZMSC53eZxk5adzdE9Z2P3HDlTS1tqNiFC4JBuCAbpNkIvffSarNy8kLTuF9pZOYuM9445FWWZKftKGLqXU7DUDht0qNdOcdula4lPieP2xnbz+2E7OuXYTbcM0DIUjY5xeGImGyiZi5qTT3TX6Rp32lk5WpsUO29C1f0cpYhdMBK8vfUd0iQhnnbWEo8V1w55z+uaFgwrT/+nvr/DCi4esqryj+GDhcthZuT6Pl+rKATi1MC/ic9UU0Byl1KQLBII8fuezvPH4LtJykklKTyQxLYHE1HgSUuOIT4olNimWmDgPsQke3LEuHM7Rf4QOBIJ0tXfR1dZFe0snHS2dtHnbaW1qp7WhleaGVry1LTTVemmqbrbqTlY04uvxs+iUhRTtLB3T85uTlzyqhq6ElDje9tGL2PnSAeYunENLYxs//tAdHN5ecvyYva8c5otX/OD496e9aQ3Xf+FKClfO5def+TN/+8kj7Hh+PykZSVz2vnPHXBTeGMM/fvn4kI1cYI1GW3XGYjq87RTtKAZgySkLyF+ay3nXRKeu2KwwA/KTNnQpNQFMsA2xxUc7DDVKMgOG3So109gddvKX5OCtbcET56bN205z/dBF2cPZ8+JB4pJihpyqMF6Zc5IpKx55BUWAmHg3ufMy8cS5aa5vxQSHf+EIBILkFWZSVtoQ0fV3bT8x0u0d153Grl1lbB9m9FtBfjoOx4kplPsOVfG7u18EYNnKbPZXD99QBlZb2IrFOVQ6OvB5DOfPm8c1G1fR0DH2aZ1q4mmOUmpyeOtaSM5IBOC1R7ZjgJcf2hrx+StPX8ThrUdYtH4+ZQcrsTtsiE0QsR7BYJCgP4ivx0/AF8DX7cPXM/YRs27P2GtLH9l2lITkBFq9keXTj3737fz7t0+x77Uizn7LKTx653NDjsiOTfCw+fL1fORHN2CCQXydPkr2VXBoWzE7n98PgCfezaXvOSfieI0x7HutiH2vFfH8g1v7NbANJejzU7TDOi4uKZZrPnEJG87XFYQn00zIT9rQpaLKGIMJNiGmDbDRv3m4b6+0wYgNTCC0p88+GWLutzF9rjd8D7fB9L9mREefmJtiWr8NyT9HRJexnTHMzCikqNRMdOqla9n1wgG62rs5tq+CzrauiM7rfRU2xpBdmEl5URXdHT0THl984tBTGLIL0kjNTEKwVqmqKqmnaNeJnvScQJD83GRKK7xDXsPf2cOq1XNpaenkWMnwDWot3g6CQYPNJrjdTr7+v2/h+ht+TccQz9sT46TH58dus7H3YCU/vf2p4/ts7SMX5186L4uG2B5eaavizAUFbDlWwYqMDP788jY+fK72fk8bmqOUmhTGGD5y2le54ubz2XjRatacvYyXH9qK3WGPfIETY+hq76a7swdvbfPIx4/TeKYAdrR2sWLtfPbvGHlEWO68DH7z+b/QFBoBtvP5A8Qnx5I9L4NgwBCXGENPt4/k9ATKDlZx0bvO4O2fvYK4xBgC/gAVR2o4tK243zX/eMs/uPiGsyKq1dXe0sn33v9b3nhqz7DH9a0RBnB4VxlxSTEs2TCfm757PS8+uJUzrzplxPupMZoh+Smihi4ReRPwc8AO3GGM+V6YY84FfgY4gXpjTORNt2rWMsEO6HwB0/YlYPjk4neswufbgtN1Gg7fjokNxLkR49sS+fH2RZjAgELJHfdiPBeDuEBiEdG54NPeDOiNUGomSs9JPf51b1Hc0SraUcLS0xZyaOtRTHBi31HZMDjdDrLyUklMjcNms9HW3EH1sXqqS6zHUCqP1rJshNWkqiu9VFd6cThsLFqURXunj8qK8LXBfL4Azz65h/MvWQVAQoKHU0+Zz7PPHRh07KLF2WzdX8be4mq6uv28vqOEnj6jBI4W17F4VRaHqgbHvzg/g9TUOJ5tKsXXZv08G9s7eevaFTy8+wAOv/DTp17it+9+M/Fu97DPT00RzVFKTTgRIXdhFnf93z+56//+iSfOzTu+cBWZ+WlUHa2N9CIA2CZxmn1f/h7fuM4PRni+t6GV9rr+I7DbvB2Dyg9UFNWw6vTFFK6cS2VxLYmp8VQereWBXz9BfHIcbd7248d2tnXhrWshMTUep2v4poeAP0DNMHXH0rKTycpJpPJwNXMW57BvSzEiQk+Xj3UXr+Tid5/Nb750L1/83U3jLoKvRjAD8tOIfwEiYgduBS4FlgPXi8jyAcckA78GrjLGrACunfhQ1cnEdL+MMQGrNV4AiYngrMlMJqP9EDU4YZjWb2HqL8XUnoOpvwzT9QzGBDBm4kcjqIkhZuiHUmrsuju7mTM/c9TnDfyvd+C1IuatzJ+YoProau3E3+2nvKiGfa8fZc+rRZTsr6QrwtFj1UdqiKQIl98fpPhQDTlZicMed8evniLYZ0pkXNyJhqasjETWrctnzsJ09lXU8eIbR3jqhQO8+HpRv0auXtkx/et3LcxPZ/W6ubix09HQxZlxeWxOy+X03Lnsq67lnIWF+IIBxC1sqazkSP3YGibVxNMcpdTk2HjxmuNfJ6TEc/CNI5E3cnHiE0lbc8eUNHZ1tEY2KnooZQcrIzouLiEGV4TTJI/uKSMhOQ5/t5WHSg9W8ugfn+vXyAUwZ14mHS2dXL/wk7z44PCDChJT47nqA+cN2p5TmM6S1Xk0lFSz54UDNFZ72ffCflZvXkjB8jwWbZhPY10rv/nSvXzk++8kLTs5ouegxm64/DRdclQkI7pOBYqMMUcBRORe4GpgX59j3gncb4wpBTDGRP5KoWYl0/ptCDaALRNcp4BzHfS8ENm5Zhq00AeasNLcgP/JJvTiHijHeD8IjhVgWjD2XHBuhNh3Iv594Nqk0xyng2nyQjwTiUgJ0Io1FNNvjNkY3YjUdNLR0kljZSPLT1vAvtciXwkwGBjcRTie2iRDaahoxERSLX4ITXUtZK2dR01dW9j9Ho+TeYXpSCDIsYPVbH9qHws3FFI0oNB8Wno8OXPTqK1pZseWEtafOh+A2tpWli2Zg98XoOhwDR63g9KmyKbHdLb3UJiZgtvpwB6AY55OMksClFU1YTIddDVYo6cXzEkD4BuPPcMXLzqb6pY29h+tId6uuWna0Byl1KQoWJZz/Ovuzm5soxz90/tfs/xgJUtOWcDBN0a/4u1otNSPbtXEgdq87aw8ezn7tg8/fTExwU1NZ2QdPjnzM3n63pf52E/eDUBqVnLY4065ZDXP/v1V2rwd/PbL97DxolV4YsOPGvb1+HngNms6vjGGhSvzwO/n8IDpkL37jTGUFtXgiXVx9fvP5a0fuYjEVK2ZPCVmQH6KpKErF+i71EE5MLCIw2LAKSLPAgnAz40xf5qQCNVJSeI+iGn+HAQbwXREOKLL4vfvwzG6haUmQTM4loD/4PCH+feCLRWJuQ48FwEuxH02xvRgTDci0Z0eMnCO+6wyjXocZrDzjDGRVfRWs0pTTTNd7d2U7q8gPiWWxJR44pJjqS1rICUzifikWLrau2iq8dLR0oXNYcNut9FY1URWQQY1x040CBkDDqcdvy/C2ikR6GrvwhUXT0/X2KeDZCTHnGjoMoasOUlkpiXQ1drFsYPVHKzr/8bc1u1jbk4K7d0+cuemWvW7jtbR0GB1kHzjy3/nl394P/UNbRw6UElL84nCwaXHGihckklJ1cijrTrbe6hvbaOr23pueXOSKatqIjcrmaIe7/Hk2dXj45Lc+STFx9BY2861p67ktvJWspL0Q8K0oDlKqUlTuHIuSekJNNe30tnWzZYndo3uAn06Svy+AAkpcbQ2tQ9zwvh4a1uwedxhO4MivkYE+QO7feRjQmpKGziyu4yP/ugGAFqbwnf8/PMXjx3/uq68kXt/9DA3/u81YY/9xy8fo6asnmUbCmmqaODw64fDHtfLH8pzPl+Aoj1l2sg1VWZIfoqkoSvcp+CBT80BbAAuAGKAV0TkVWPMoX4XErkZuBkgP3/ipyKoGcS1OfSFDbBbDV4jCv0pmmb8zk04fNui20gTSQ0uSUZS/gSORcdjNT07MR1/RRK/AlFs6DLdr2A6/47BgcS+HXFtiFosUTMD5pcrNRPVllntn61N7dhsQmufVRe91d4hz2uub2XVWUv7NXS1NLSSkZdGV0c3TTWRjWoSEZIzE0lMjScmIQany0EwGKS9pYummmaa61rInTeHqtJxTNPr8rFs6RzsWG/46w7XUnd46AHtR/ZUICIsP20+xUdqaW3r7tdj09HRww+++SAHSuoIhqlJluyObKRVXKKHrj7TD8urvADEpLmh+sT9KhpaqGhowSZCXnoSy3OzSIhxU9XUyqIYrdE1LWiOUmpSxMR5iIn30Fzfiq979B0efUcEH9lRwvzV+bR5O8Y1Unik+6VkJdJQ6Y3o+Jh4D1n5acQnxWKCQZrrW4lkhmVTXeQrJLc0Wg1bXe3dkAGrz1yKiIz4M3jhX1vCNnQ9/49Xuf/HD+EmyN7n94U5c7B9Lx1kwdpCWjsDbH1mP7XljWTmpY58ohq/GZCfImnoKgfm9vk+Dxg40bccqwB9O9AuIs8Da4B+DV3GmNuB2wE2btw4A9oB1WQRewbGdZY1XTEweDjqSPy+V5HJKEo/KiNMp7HlQOL/YboeBudVYDeYrn9Dx5/BfS50vwAxVwBgTMBq7BMPYkuY9MhNsBXT/CUIVlnf0z3rGrqEiemNCNUx3AJUGGOuEJFU4G9AIVACXGeMCV+FemYzwBMiYoDfhl7flQLg0Jajx78O12gzFJvdRvmhqn7bKoqqAVhx+uJBDV2pc5LJXZhNMGDo6fbR2dZNu7cdb30rTbXWIywREpNiqWLsDV0dLR2U7K0a1fBiYwx7Xz3Cik0L2HW4ZtD+wweqiE+LoyVMPZaiA9XEJbto7xp6WsmyxXPYXTb4ukvmZ9LQFb7GS9AYSuu83P3cdj7/1nOI8+jUxelAc5RSk8db30pqVhI1pfVjWuxk4DlHd5Wy8oylVJfUjnkBlpEkpsT1b+gyhqT0RFKzk4hN8CAidLd301DVRGO1l5Ld/UeYZc/LJG9eOuXFQw/Eb6htYc68TKqKI69C1FjTTHZhBq4YJxsvXMkbT+4e9vgrbzp/0LaX/72Ff/78EZrrI29o6+Wtbaa52/p9HN5Vqg1dU2Cm5KdIJiS/ASwSkXliFRV6B/DvAcc8CJwlIg4RicWa2rh/rEGpWWLUDTr9/0f5el4n4Fg1cfFMNHs2eG+C9juh7fOYppug/bfWVM2uRzDNXyTY8l2CzV/B1KzG1J2Bafsppv3Pkx9b1xPHG7kAMDOgWX6iGZDg0I9R+CT9X+++BDxtjFkEPB36/mR0hjFmPdZCJR8VkbMHHiAiN4vIFhHZUldXN/gK6qTU3dlzvHFqtBavnzfkqK0jO4+xfNMiwGpbSslKomB5HrtfPMTeVw5zeFsJ5YeqaKptieiDi9MxvnqPJfsqcIywgtRQBpeQtwQDhsK5aWH39fT4WZyXPux1nR4HPWGmeDaJjzLv0DVeRKDH5+efL+/mmd2TW2tGRUhzlFKTxuWys/el/cwpSCO7cPjX1bDCdHDseekAsQmRl2IZrbTsZFZuXsSS9YXkzsvA43HSXOuleNcx9r50kD0vHuDw9mIahxg1XV1ci9OMXAKgrqGdglUFLN4wL6K4ekd22Ww2vvSHD5G7MHvY49ed129NO7Y8sZNvXPtjfN2jX7wrY24ac1cVHM/5cwrG8LtUozdCfhpFjprU/DTiOzRjjF9EPgY8DtiBPxhj9orIh0L7f2OM2S8ijwG7sAay3WGM2TOewNTJr9W2kHZySbG7cIcZ1RUgAZ89G4MNMBicA+bRGiQYfj74qBkB25x+1+6/34S29dkeHG4FFM+JwvR0WbW6ELAvAlsiBKohWAEdf7S2OxaC61Tw7cQEKsGxEHFvHub642O6Hh6wZeJq38wo42zfE5E84HLg28BnQpuvBs4NfX0X8CzwxfHdafoxxlSG/q0VkQewFi55fsAxOop3Fio9UDHmc3vfMIfT1d5N+eEqFq2bR9nBShqrvGPqie/VE2HB3bQ5yWTkpByvE+Zw2mn1dhCXGEPAbufg3qqRL9LHss0L2XNw6JFg3mGmjnhrW618FOZcj9vJrmPhGxibhxjN1csY2FlSxaHKelYVZrNsbgbr5+cNe46aApqjlJoUdeUNAFQcrmLlWcuoLqk/PuWut9SI0+0gd0EWMfEe7KGOERM0BAJBYuLDly9pqo1sev1YdLV3s+elEWoDj6DqSA3G5hy29EvAF6C0qAZjDAWrC+hsaqO2rGHoa/YZ/RWXFMtbP3oxv/x0+FLdNpuQkBJPIBDEbrdRfqiS2z57F8GgoWh7CZkFGdSWDn2vXg6Xg6WbFmOPiyEpNY7lp84HhPkrNG9NmRmQnyLqijTGPAI8MmDbbwZ8/0Pgh2MNRM0+/kAVPf4DtNo2gr2QThKxA34M3YFaevxF4O8/SzbBvRmPf+vx743YCNqysQXHNnrgOAn2H+EUCVvh0O1DzlXge2PARgOBw6Fz4sBeCK6N4LkSm3szQV8lmD+CaxW4No32GUTM+PaBb3v/jcFaTLARsc2u4b4jDLtNF5G+6yDfHmZ63s+AL2AtwtEryxhTBWCMqRKRzAkIdVoRkTjAZoxpDX19MfCNKIelpomju46N+dyUrGQqjwyeeterua6V5j4NQa1N7WNeVCPcKlbpOSmkZSXi8jjpbO+hurSehiovDaE6VwMlZyTgiXHS1Rl5jRfbEA1VvSpKG5kzL42q6sEfmCrKmyhcnMGxmqa+tZBZUJhOSVkDHpcH34AGvNSkWCo6Ooa9p9vpYEVBFoeq6tlZWsWxOi9xHjeL56TP3gVLpgHNUUpNjr6jjo/uLGHxugIqDlficDnJmJtGu7edxupmineVhD3fE+dm4bpCiraX9Nvm6/YRmxhDR0tn2PPGI+gff6d0R2sn2Ssyqa3wjnisiFBd2sCKDfnDNnT9/eePcsm7zzo+mm3RusKwx7ljXCzbWMi/f/0YYhNcbid3ff3v/QrsZ+anDdvQFZsQw4JTFlJe2cLho40sXV9IU10ra89YzAXvmLwBAmqwCKYujpSjfsYk56exjblXagIYrB7mjp4tdER4jt109/u+x78fh/PU8Td0hV1zYQSB4T7MjZSM2sGxCWLegThXEQx2IcFiTNeD0HkXpuNPkHIHYksefVzD8Hc+iq3jTmv6ZF++XdD98vGaYbOCYaTeiHpjzMahdorIFUCtMWariJw7obFNf1nAA6EPwA7gr8aYx4Y/Rc0WW0eozzEcWyTVcvvw9/hxx3voGUVDU6/asgZWnruKYDBIq7eD2vJG6iubqK+MvByEt66VRWsLOHw08poskYxCy0yJD9vQBZCREEtDawcLCjMwBlraOjlSUs/qFXlsPTa4w8YYg8Nmwx+mQHCMy8Hy/CwOVzewtbiC5DgPl21YwXN7j/L0riK+/c43kRQXwcIrauJpjlJq0hzdeeI9fEdLJwffKDr+vTeCUVld7d0MfEnt6fIxf3UBLo+Tfa8cCn/iKDlcDlIyE4lPjsMTPzGLhKSmxw/Z0GV32MgrTCcu1klbfTOl+8rZ/kg9qfmZNNYM7hwSm5CcGs/BLUdZd94KgH51thJS4pi7MBMTDHJkewnbntjJtid2DhlbR3MnTrcDX3f/Cf5puSnMX11IdW0b+/Zan/nik2JYsraAx+95haO7nuT1J3bx0ye/jMOhzRuTbuT8BMPkqKnKT/qXoKLG7x/d9Ba7LQOHf++ANimD37cNu30utqB1PWPs7OEU2gIdmND/Qul3kiAI5vhURCFL4pk/2icQrMWazRuuUSuC5XkdyxHTaq1Q0n43puc5MF5rn28XBOpgDA1dze1309r+TxAbdkkgi2YQB8bY6AmW4wmGLzBpWr4KnouQKK4EOdXGWUjxDOAqEbkM8ACJIvIXoEZE5oR6IuYAkVf0nCGMMUexFhxRqp/Gai/P/f3VMZ8/ltFD8UlxNHZ6R32ev8dP9bE66odoUIrU0T1lLFg3jyMHh/6vHhPnpnBJNnaXg5buoSp0nVBV2hB2imJiYgwBY2ht72bH3vJ++/YfrGL98hy2Hak4fl5achw9iYK/rf+LXUKMm8W56RysrmNL8Ylc7G3v4m8vWR9C3nPeBoLGjHnEnBo/zVFKTY4dz+0d1/lZhRkc2VHSb1swEKRoezGuGBcZc9OoGzAKyu6wkTE3DYfTiTvWhcNpx+6wY7PZELE6Qfy+AL5uH51tXbQ0ttHa2EZtaQO1pQ10dYy+hlU4tj4tdJ5YFzlzU/C4HbQ3tFB2oIIjVYNrqs6Zm3a8oSsxNY6ceZkQCFC6v5yirUf4+48fYuUZS3C6HBTvLWfZKfPobu3k6M4S9lTWk7ckh6724afQgzUifMXpS9j7ymEwhnlrCohJTcIhQZqqG0mK85Cyag4Bm53So/XkzMvA7rSTsyKfro4eyg7XMG9Z7oT8nNTwZkJ+0oYuFTXB4OgWUYhzLkT6TFs8wYdPbNic6zHGTzDYQEtPK96eyAvqJtjXjWlQ15B8B8C5EXxbhjjACT0vQvxHrJoA7b8cPMrKjK7+mDEGb9tt1Dd/6/g2hz0XxPoQZ+zzMcEBw4FtWYAD3OdA7I2zqpELRl3Qtx9jzJeBLwOEeiM+Z4y5QUR+CLwH+F7o3wfHG6dSM8WWJ3ZO2vLqQ4lJ8MAYB/WmpMaNu6Er4A/S420f1DCVlpVIdn4aXb4AxUfq2HfACnLBqpFriDQ1tZMYZvXFvII0thUNXPja4vMH2L2rjOULMrGnuhERDrc00th24hoZSXHMTU9mb0VNvwauXiIwLzOVDQvyeOdZa7HJ2Bof1cTQHKXUxOvp9lFxaJTlSgZIz02lpiT8Ijs9nT1k5KXR2thGV7s1E8XusDN3SQ7Fu0vHfM+mIYrMj1awp4ely7JorGyk6kg1h8KMBB5o17N7yCrMIKsgg90vHsRb0f/zxJYndnHn/97Hko3z+fMt99I9YAp9ckYi5QfD566BfD1+Vpy+GG+tl/jkOCDIrv/uZvmZy9j7urWis9PtICY7g4fufJ7z37KR6rIGiveW09U2cmOamhgzIT9pQ5eKmkBw6OVtw+kKehmqGSboLyLIiWHHwoZxRDYaQ32ga7UauZynhKnVBeADeyEidkz3i4MbuTxvBvyYQA1iz4ooko6u//Zr5AJw2BLBNGOMoTtQA6YLg8P64CIxEPdRsG3AFrMoonucdCbn8/j3gPtE5P1AKXDtpNxFqWkoJSt5yu/p9jjHfK7LPTFvg8oOVzNv4wJcsR4cbicNDW1UVTRRv3fwG/sObweJiTG0DFPDJRgwFMxJYXdr/w8g3RHMFTDJDl6v6X/e0rxMnE4bu0urqW1rH+JMq63uaE0jC7LT2FdWywWrF454PzWJNEcpNeGKd5XiD7M6baRyFmSxd4Si8PteOcTKM5digkFA8Pv8+H0jj+YdTmdbF/GpCXS0jq/+V11ZI3Vl9f1qY0WipqSOlvpWFq0v5PC2kkH7H7njaf75s4fDXrfsYKU1ai2C17SGikYaqqzBEA2VTccXgaksPtGw6HA5WHtKAfEpcWTnJXPR20/hHz95lKUbRz0/R43VDMhP2tCloiJouggEhi44HI5dJm/J3rEIGhs+4uk3Sblvx7cBevbjsM/DHhy8qqS4QjO/wk0ltM/BNN6IxH8M4j8cWUAyeLpkINiOwRB0LAf/jtBWJ3g+hMRfjTgKIrv2SUjMuIfdHmeMeRZrZRCMMQ3ABRNzZaVmltiEqa/n5BxHY9VEFPft1VnfTIOrm+aWUI/yECOhqsoaiYl1sXplLrt2lw95nM1uO/51fLybggWZHK4ZvhZYYUE62+qsnJKfmEh6RgLlTc3sr4p89H+s28ne0hqu2LAs4nPUxNMcpdTk2Pfq+OpneWtbKFiex7F95cMet+fFA/2+H2qlxtFIzhh7Q1fvNPSmupZRN3L16mzrwuEMn3PbWzpZsCZ/0JROgOa6FhasLQy7r69VZy1l9wsnfm69I+JWn7OC3a+eGNDQ2drF8/+wyiTMmZfB4jUfpqOlg/bmjtAoMDWZZkp+0oYuFRWdXc8wcsH2gSZz+sTo/7d2kMHvvSM3vl2YPJcVMrihC2eoPp9z9eB97bdZUfmPhH3WPn8pdd7/JWg68bjWEzStNLf9efBxgVKwxxG0nYjTeM7DlvRhRMY+CuKkMbUzrJQ66S3euID41DicLieeWBfuWDcutwOHy4HdYefE67jBBAIEg6GvQ/8X3bEulp26EMRq/xERawSqTRC7HSFUAzVoCPgD+HoCuDyuMcfb0XxiNK3dYSMzJ4X2lk5avJEukWLxxLmJT4whOy2Bntxk9u6rGnaVw86OHva8UcLK9QWITdi9d/A0wq4ePzabkJIaR3peMtuPDj+9RARIc7LaZOBuM9Qea2Z/dwcd/tGNIkiK9fC7j1zD3PTkUZ2nJoHmKKUmlDGG5+57eVzX6GjtHFNDUSQ1qkYSlxQ75D5jDEnpCaTNSSE2wYMxhramdgK+AMnZydQU19LmbWfukhxsDjv7x1Awf/HG+ZQeGLrG8nCNeZ7Y4XN1VmEGe14cPFJu2aZFtLcM/bOrKq7jwdue5IyrN4beZ6gpMQPykzZ0qajo6dkR7RD6OeZL5umO845/L0M0qqU5Y1no7iFgbMx11AAj1xlrDboxtjCfeUL1ssSxEGPLgGCYuf5D1DGzSRwdXc9i6KGz+4Whb25cdNgXEAzaMJJDQBIIui4gQRu5gPHNL1dKDeZ0OcjMS6N4T9mwx8XEumhvjrwxyeVxEnCEf5O88rTRTa9LyUoiOSOR2MQYHC47i2JdeGtbqCtvoMLbysqzl7Nv23Cr6kJqVhKZeak4XA68jW1UHK2jaF8VUEXugkwcTjt+/8gvMPu2HWPF+vAjaxOTY0mdl0JDcwdVR4cvQpaYEMOShVmUFNdT39CG02FnwfocShpGX4fmq9deoI1c04TmKKUm1p6XDrDv1cPjvo63bvS1HY3Byg3jmDbp8jhJykggOT2RmHjP8eu1N3dQX96At9qLN0wtr7I+9bEOvnGEzPz0UceSnJlI+eEaOoepg1V2cOicU7K3HLvDRmCI3Jg5Nz183TObnaP7hq5t5nDaaaptoa2pnZrSegqXj1wHU43fTMhP2tClosIxzabM+YJQ3xO+qGRfdT1wIFTeJNmZSqwtQE9w8HK7fb3Wcpgyzw1UdYFdDL2TUa6Ii6XADcZ0QTBMwrRlIknfG7S521dKbdMnMIy8+orNUcjhrn39ti1O0tVIjpsBvRFKzSS+Hj/lERT5HViodiQ9XT5scc5hC6N7Yt0kpMYRmxSLJ9aN0+VAbELAH6CrvYcWbxve2haa6ltp6rP8+SCB/m/8E1PjyMxLIybeTXeXj5oKL40NbTQ2hK91VXGklvkr86jr8NMyTC90r1ZvB3PnplJW2tCvR6TL56Oybuj8Eh/rpnBuGn5fgMNHa9mytQQAl8vO3LXZvDqGRq68tCTOXFo46vPUJNEcpdSEev4fr03IdXwRrJ4bjivGhd83jhpbxtBU2URT5egW9BqotrSelWcsYc8Itcb68ta2sOKMpcM2FDbXtw45rbO9uYPFGxdwaEv/xcJEBGMMnW3hfy6dI4yE8/sCbH9mLwe3HGX/60V85rYP4I4Z+0hvFaEZkJ+0oUtFhcO5mf803kzQ2DAGgtiwSwCbGARIdPkISBDBYBAMgq0jBqdZc/waRsBBkBiHj4CxYfp8/omxjX1Vk0h5fY1kxi+isXv7iMdWdr7K/o4VNPtOfLhKiy2hIGENtN8FYRqtJP6TiD2jzzWqebXhWSo7djHXVQCcaCw0nJgQlGkvJl2s1R7bmUuTbTECxNshJrif+vZ7cTsX4rSnjeFZn0TMzOiNUGom2f7fPfh6hv8AYIwZU4+2w2kP2xN8YHsxzjgP3b4A3bWtmJoW7KEGrrFo87azcvMiujp6qKtuprm+lZaWyFaL6nV0TzlLz1gSUUNX6dE6bDYhIz0BW6yLmppmEpNiOFA1uB5XfKybgrw0CBoOHqlh7/7BcS1aPoeXGk6MALPbhKW5mXhcDkpqm5iTkkAgaKjxtjEvK4WyumZqW6xVfuM9Ll1lcbrQHBUxEXkT8HPADtxhjBncS6gU1ojeiTDazppeLo+LjmEWIhnJSPl1NEr2lZM5N43asoaRD8aaNtkYwcqPiWkJQ+7zxLpZvnkJrU1tdLZ2kp6XRnenj6T0BI7tCz8SvKZ0+NqUCalxFC7LpWjHMfa9epiDW46yYHX+sNM81TjNkPykDV0qKlzOAh6oyKC0vW+PxIl51WfNyeNI18BeBt+g68TY3cS7Bveqvy0rhtgpeK/eHhgc00BCDHbHapp9/UeMbWncTUVnE/ubjwFvA2BxfDqdQS89wSDLu4XT047hM36eqX2RZ+teYn5cIk2+avaFuU+vVGc+1ycfwiUttARdFLVbP8fC2KVkeC7AafPQ2XMQZ8zpY33aJ42Z8CKt1Ezy0G+fHPEYp8tBzxgaoVxuB53+wR8u/D39ryUiJKTG4a0dfrTtUGqO1XOsvOVEg88YG35sgcifYzBoaKhtYfm6fBJSYyHeSVutlR+dTjuLCzMJBIIUFdex78DQjW7LVuTwWpu10EtaQgz56akUVdezt8za5rDbaGg9MWW0sa0DEViWl8l5Kxfw/gtOGctTVZNEc9TIRMQO3ApcBJQDb4jIv40xw71VUrNUR8vo6i+GY7MJweDYhrOMZ/EUsIqwT5S2pnbyl+YO2dDliXNTsDwPl8dJZXEdc5fksPPZkf9bVR8beoZMm7edo3srjufXhhprAEBMvIfY+MFlVQpXzqWqPPzotayCdNJzUji09Si7XzxI3qJs1pyznL985wGuuPkCNl26dlw1PNXwZkJ+0oYuFRV2sU3IiMehPn4EiCFgUgEbQRFM0DrSiFj1t0wQCCKh0WI9xGCXlNA1BX/QG9H/4KrOMtKdToJhGuF62W1reLFh8IpXfhPg+bot/bZl+tMp7rB64o92PMHDVU+MGMNA7YEuXu6+hNWeKpy2NM7MvIIY6SbVvZpE9xKCZpgpO7PMRK0YopSyXP2RS3jjsZ2YYdYQd3lc9HR0j/ra1kpPkfWixyeNvaGrs62L9IXpNA43vTECdaWR9ZL3tW97KUvWzWVbaS0YWL0sl8NHatk3TN2TXoWF6bzSWQMizM9MobWrh+3F/YsG+8MUUDYGPE4HH7z4NB3NNc1ojorIqUCRMeYogIjcC1wNw/YJqllqw0Vr2PfqYcQmmKDB1+2jq6ObtsZ2vHUtEY0EdnqcdHeMbUTXUCsWRspbO/raYMMp2l58/GfhifeQuzCbuMRYWpvaKD1YxaFtJceP9ff4cce6RnzuzXWtuGJc9AwY9TZ/dQGlh6rD5pnOti6cbgfLNy+mZG8Z/h4/havyKdpdTr+3E8Ywf1U+DpeDQ1uP9qvpVX64mvLD1vU/c9sH6Grv1oauSTQT8pM2dKmoqO5oobpj/C/WQxWNf6DGANbS6JmufN6I6ANL1vGvLst14jM1I54RJIDTVkhXwIu1iqQNwQ7iwBgn0EJ7cPzLCQNghGE+Ox6XFzOH2u7tVDqXcYqrBCeGxJjriHEvB8BG8sTEM9MZYAb0Rig1k2y8aDWbrljPKw9tHfIYp2dsbz1G0xMeE+8e0z16pWbEj7+hq7KJlIVzaPKObppKTIKHNdl5VFZ52b1v6NWtBnJleVjjzCbYHaTbBKlrCV9DLJxTF83VRq7pRnNUpHKBvnOeyoHTohSLmuYyC9LZ+0r4GlPGGOJT44lLiiUjL42u1s7jKwaL7cQnDqv2YxATNBgTegQNJnQNDNjsNmw2Qew2a/Vgm7WCsLfGO674m+tbcbgc+CdoCmNPl4+Nl6yhoqiG6pI6ju4eeiGZloY2lm9ezNFdx+hqH7qzqqfLx6ozl7D7hf39tsclxw1ZiL73+skZiSRlpRAbH8PhXSfqfLlinCxaU0hTbTNHd4cvT+OOdbFgdQGX3ngu8cmxxCTEhD1OTYAZkp+0oUtFRWl7Ez4zAf9DpsH78orOBTxaGX7++IqkVfTY9oY/MWyj1dAtWQ6bk57AyMvmlndWMdeTicsxl7zMH454/GwlzIzeCKVmGodr+LcWLvfYelgdo1g23Oke38qybvfELFGenZU4YkOXJ8ZFwcJMnG4He7eWUNPZxZESb8T3KCxIJzbVw8HKBlq7rB70nPRETpmTw576Wjp9I38g8gdnwDvWWUZzVMTCvRMc9JMTkZuBmwHy8/MnOyY1TQ3X0CIitDd30t7cSXxSLEXbisd0j/isFDrbwjcEFSzMCLt9NFKzk6ktrT/+fVpOCo3VXswYp1PueGYvizcsoDrciocD7HvlEKnZyRQsz+PgG0dGPB6s9wTJGYlUHR08u6Uvp9tBa3MHTb2jsY2hcMVc4hI9HN1dxt5XDg17fndHD0d3l3JsfzmnvmkNdrtt2OPV2M2U/KQNXSoqTs0o4KbFm/ndoVcm/V5j6aUubV1Ne6gWTO9qIENd1xhYk1zATu/g5eirO9tIjZWwrwbh4hpqhBpAmmMedukkRtJx2gLYxLr3iWsLToknyxODt2sLbntcBM90dpMxvilQSg0tJXP4Yr9O19gakezOyM+zO8b3BjfQM3L9xZHYbIJniJhzC9JIyUigvbOb4uJ69h+upqAgjUUrcmm3jRz73JwUUlPjIMbOKyXlMKDsTGV9C5X1LeRnpxCT7mZPVTVmiPySlRzPu85aN+rnpyaf5qiIlANz+3yfBwwqZGeMuR24HWDjxo36g52ldj+/f+SDAMc4OkuG+9hhH0WHDYDL4yQ5I5G4lDhi4jzYnXZr0a60eFoa2misaqKhsok587OoOjryTJRecclxzJmXSUyCh+6OHsoPVbJwTT5H95QTDDPFva/Gai8isGLzYppqm6k8Mvi+LY3WiOjYxBjmrylkz8uHR/w8tmj9PPa9foTMuWlk5qbSUO2lZO/QI8zCcbgcdLR2kZAaP6rz1OjNhPykDV0qajam5w/Z0BXpf53hGobGo7yjjZquyOu7rEsJ3zvY0NPOvITVtAR2YwbU/LIR5sPMEE8n3TmPo62G8o4uIJ7LcmMpbY3HGAe5Cbvx00iSM5V4exYmcIAYRzzrUy6NOP5ZyTAjlsZVaqa5+N1n8+jv/zvk6lCNNc3kL8uldH/k0/JgtI1X48sNrQ1toz7HHeMkZ14m8cmxdHb6KD/WSGWoiG56ViKZOSkEMZRVNFJW00xZTf/p+8eONeD2OJE5g9+gi8C8/HTiEzxU17VQWuOltMZLelo8TrsN3xAfTEqrm6AaFmSnYGKEIw2Di/q+9bSVpCdqx8i0ozkqUm8Ai0RkHlABvAN4Z3RDUtORr8fPv259LKJjHePoLBmuzEhMQgwL183D4bJjdziwOWw4HDb8PX4C/iC+bj9dHV10tHTS2thGT5fPKhY/wsqIiWnxQzZ0peekkpqTgifWRXdnDw2VTdRXNFK0vf+INZfHSVJGAk3VI5eWaajy0lDlZcHagrD74xJjWb55CW0tnex9pWjERq7CFXk43U7mLc+leHcZTqedmj6j1iL14R/cwIXvPGPU56lRmiH5SRu6VNQsSBx6+G7QRNrjMT3+l21vKmVxYhZH2gYnmS0NFZyVtYJ630H85kRhRrtt8HPs6Ikj3b6S+sCe49synQt5oaZ/o9tjFV2sSspit7eSVt9S1qUfY2H8AorbvGxIfy/z4hNIdedM4DM8Oc2EFUOUmmkWrZ/Hx3/5Pn7ywdvD7u9q76a+ysuCNQUc2Tl4JOxQRtMTHhihR3okNaV1GFfMkG/ObXYbcwrSSEpPRGw2vE3tVJY1UlzcAJz4QNJV0UPhxnkcLa6jtnnk1b6ycpI53NYKCHaB+XPTSfS4qWpp50j54A869Q1trF2TxxtlQ6/ECFaDl9NhY31hNgeaGujwWSPWTl9awHvP15UWpyvNUSMzxvhF5GPA41jLd//BGDNEzQg1m5XsLaN0mFVr+7JFMLJ2LPa+MXg6ZP78dIqHqDsVKVeMi6zCDJLSE3DHuAkGgrR526kprae+spH6IUqs9FVf0UhKdjJ5i+ZQfnjkBVAAYuNjjhez78vvD3J4+/D5XQTmrconJt7DkZ3HKNlr1eTKXZRNa1P7iCPLBjr1kjXayDWFZkJ+0oYuFTX58Sl8de0lfGvH44P2vVxdwRnZyznatW+sK7ufYEZ/gbGMFHPI0ElxS309hQNm87hs/evUZNlX82xFLd1BPwsSVhLrcJAd18k+b/8pNHkxaaS7E3mj3kqKDV2dBDHYxU6QDl5u2MrZmR8Zdfyz0UyYX67UTHTOtZu485b7SMtJ4XCYOidd7d2UFdWw5JQFEdf5GE29je4xrOrYV0+nj4z8LBpqWolN8JCVl0pcUixGhBZvB1UVXiqqWqmoGrlgffwopmr2dPlYuSAbCUBpcT0l+6xVeBevzaOiLnwve/HhOuKSXLR3D78Sls8fZE9RFSsWZFPS3kxTRxcfungTnhFqqqno0RwVGWPMI8Aj0Y5DTW8L1hT8//buO07uuk78+Os9fXvvNZtk00MaSUggIL0jSEcExUP8AbbjFNE7vbPdnaeiHuohFiyICKKoKCgqPRgCpPe22U12N9t7m/n8/phNspvdabszO2Xfz8djH9md+Zb3TGa/7/2+P4217z6dV3+zIdqhjDLZOSUBjNtDw8Fjo1YhnIjW+jZKq4MvdG15ZSeZ+emUzSlmy8s7ASickX9ynq1TWKwWqhaVYXfZqd11lP2bRxf4coqzOHrwmN8iV9mcYuxO25h9T7/otKBiVuERD/lJ/7pRUXXrzNP5Q802jvV3UdvdNuq5V+vrWJU/j9qBnRgfv03BFKTMFC0L4e/33WW1k2xJp8Pt7YZrw8b+rgZsYifbVoSNdF46euTEMfZ1tgzvV05z//6T5zBgxX6iyAXQNtjL3ra5rM2ZR7FzgAxHdrhfWmIy8dEaoVQ8ciU7+cbfP88PPvOLcQtd4F2qfO/mGuavqWb7a/4nmYXQCl29flaE8iWnKJPMvHSSMlMRm41+A267k7amTg4cbAHT7H/yFR9qdx7FYhWCme89tyiDTZvGDul0+GlI6e7pZ9GsMv5RG9xQ0G376plZksPKxWUsmaE9f2OW5iilwspisfCBL9wQVKHLM4ULdARawCUYPZ19YYjEa6A3tDkq2xo7aGvsoHxeCQ6nnaRUF1tHrGzpTHZQtagcj9vDoR117H1n/J5edqcNZ4oTT733vc/MT6e0upj25i5aG9uZMb+E1sZOaofnBCuYkU9+STYHt9dSMrOAmYt1kYkpEyf5SQtdKqpEhB+tu4UPvvzYmEIXwBuNR1iSU02z2YfbTGwpXTOB4Y3hXmW9daCH7a12FmUX0jpUT7q1kDcbLVgQdg314jl1JuFhW1qPUpaay+Feb4FscWYFbzXXjtlue1sDb7eUk2FfzKUVa8IbfCKLg9YIpeJVdmFGwN5axmPY8Y99LDpr3pilyE9lsQR/Ye7pGL3Sod1pIzMvjeTUJJLSXNgdNozHMNA3SGdrF01HvBP6Nh9pJf+0mQwMGnLy0ygpz6a0Ioeerl6OHWmjvLqIbW8FP9wSoL2lm5mnz2DP/sAt7W4fk7v2d/vvrbVrxxGyCpNo7fa/wuNx++qaueD0OUFtq6JIc5RSYWUPsqjkHnBHOJKTQp2gfjwt9W2TD2TY0f0NGGNCXszLPegmKT+dra94G65mLa3EZrOyf0sNO97Y63ffrIIMHMkOjuxrQERYeOYctq3fy7b1J/fb+vroYzQebqHxcAunX7SYf/vZ3dgdk+8Zp0IQB/lJC10q6pJtDr99rt5prmd+5gx6LTX0m9Bb6SM1Yf2pAhXUet2DOKWYPFsO21sG6B4KPORlTno+nYM9nJZRRedg37hFLvAW5tLtLuZkFJJkc4y7jRpNiI8VQ2KZiFiBN4E6Y8zl0Y5HxRaHy8HpFy/h+Z+8yECf7xZiEWHr67tZfPZ8Nr+43ed2VpuVtMxk7E4bdqcdh9OG3WHDZrdis1kQi/dq73F7cA8MkZWfRm9nHx0tXfR09HLscOA5SgBSUxwc3HuMjqbxhl5M7JqRHMSKkWnpSeyvGX/C4Yb6du+5fdx4DAy6mZeSTmtXT9AtNflZuipVLNMcpVT4BVtUGuif/Mq7wZIQGnF8aWtsx5nsoL/Hf6NIMDqaOymozPdOgh+Cur315JRkM2tJJa4UB7W762k7FtzCXqXVRWx5dRdVi8pJy05h86t7Au807N0fOl+LXFMsXvKTFrpUTHjkzJu45oVHONg1/o3I9rZGZqWXkGyvp8dzsveTe9DCpg3VAJgRy5wYwDL8x/7snBxaW05erGX4OTPiZwN4jGFZZREb2+toATwmw7uoxPBxA7VsDLoCJ89d7d3UdHbjEBsVSXlgvLEMeIZwGw9u42HQDGG32KhKy2VvRz0Wi3Csr4F+zyDGx33OoMfN0zVv89/LZwWMQQ2Lk263Me6jwA4gPdqBqNh0zzdvp6Olk5eefMPvdiLC1td2s+js+WzxUewyQ0O0Hwl+FabUvAy624Pr4TSS009R6tSeYsHq6wo8rCQzO4WDjePPw9XR0Ut2WQYtHb4ntN+x8ygrTyvlHwEmpj+up2/yN0QqgjRHKRV2qZnJZBdmBuwBNTCJ62PIo0LCNIwktySHuiDn1gp8rKygC10ZeenY7FY8HsOBLYfpCmLhlZHyy3KwOW3klWSzf0sNC9fOJacok+ajbUHtn5TmCul8KgziJD9poUvFhBSbA1uAFU72djRTnppHmquFTncnggWHOPD4WMf3+OMGM2Ybt499nB0WShrSRj1WmJvGeqkdVUgbj707E1ub73yVVdCLrSeLlH4XxsCOVn/L1w9yqPEoxsDcrFzq2loZ9FgRwDpirpbjvcisYqHOaqGxsw90iq6gxcNFOlaJSClwGfAl4BNRDkfFKBFhZ4AhCyNte203C8+ax7ZXdo655oZ6L5CakTyhQpfdT+t6Y10rPlsc/Kg/1AxWi9/9UtJc4KPQBVCQleK30AXg7g9+uI3NOvnhMiqyNEcpFV6uFBf3PXIX//rur+Ie8n29dLgcOJIcDPRGvkHg1BULJyotOyUsxwH/jfs2h42KeSUkZyTT2thB7e6jLFo7h6P7G2ht6whqyGNmXhplc0tob+6kZkcdjXUnOzpsfXUnVpuVuafPZMc/9vk9XsW8EspmF4X24lRYxEN+iszaqUqFSET4zhnX47L6r73WdLXR2ZNJhi2DYlPGvi1pfrcP1dCQh2Od3aO+BvqDmxvMAI093TR0j/1q7+snc6CIrU2NHOvtoakvcGtHdUYulWlZ7GxpYtDjPnGOIeM58eU2BrfxFvJmZmRT29mOewon0Ix34vH9pQJ6EPgkTNFqDypuPfCze0OaX2v7+j3MXT37xBCT5PQkFq+bR3+IE+QmpThD2v64IT+rF3Z39pGZG3re6WrvJTfAfnWHmklL9R1zsi1w22R//5C3EBfAwjlF7GkJbViKmnqao5QKv+XnL+LC963zu82BbbWUzS3BkRT56UB8NdiHajKrNzqSHFQtLmfR2fOZs2o2fSNWLrbarFTML2XRunnMWjYDi83K/q21bH11N3V76hER2po6SM1OxeJn0ZisggwWrq1mxsIy2pu6MB5Dzc4j4zYAuYfc7Hh9N/klmcw9vQqrbfzjvueeC0nLCl+BTwXPX36KlRwVVI8uEbkY+CZgBR4xxvynj+1OB9YDNxhjngxblGpaqEzL4aEzrueOVx7zu92Rng48Jo2UlCF6B8M9Pnji3Yf9RdLnHqLHMxjU4bOdSWQ7U9jV2owYsFus3kKXn32TbDbK0jJYVVTGkPFg1Rp2YN5xqdGOIi6JyOVAozFmo4ic42e7O4E7AcrLdTWc6Wreqtlc/ZFLeOrBZ4PeZ9eb+5m1pJKD2w4z2D/E5pd3hDwxrsM1sRuU7vZuv8+XVeZgsQj9vYN0Hx+SeLyX14h/S2fkkZmTQltTJ5m5adhSXaQk2TlU2zrmmPlFGeSWZNLe1U9n1/hzUQ72BW502XfgGFVzc9jfOPYcAA6blcLcdDqdbn6yYzNXHF3AwqKCgMdVUaA5SqmIOevqlTQcOsa+TYdobxp/ztwDWw9TtaiMmh11Ee3ZNRhkg3og/nqojeRw2SmqKiA9JxVjoO1YB0cPNHJwx8lh78YYlpy7gM7WHmp3H6Vm11HY5XtYZO3uehaunTOmd1phZR55pTm0NrRRu6ee1oaTvZa3r99DQUUuDYd8T0nQWNNMY00zc1ZUMTjk4cDWk3MVL1pbzTnXrQ7qNaswi5P8FLDQNTzZ8EPABUAtsEFEnjHGbB9nu/8CnotEoGp6OKtwJmcVzOTlBv8rddX3dmIxGVjEHbaWkEiqTM4ktdPJalsFAMkOG90Dg94bt+F7N5fdRt/gEDYsDPV5KM3OZEtTAy1dvdjFxpKiQto9ffS4B6jtGT25o4jwrtKZzMrMwRmgV5w6KVZaHOLQWuBKEbkUcAHpIvIzY8x7R25kjHkYeBhgxYoVsf+LqiLmji/eyIEtNbz1wtag99m76RAV80poONBIRn46zSOGNgTD7pjY0LyWo21g8z3nx5Y3vPkpvySL/KJ0BvuHyMxLw3gMYhGOHmoiMyeVAzuPUrvXe5Gp3dcIwMxFpVgsQnFZNun5aQxY4XBbJwe6+zjQ0MSyykLwMSF9S5O/4e4n5bmS2c/JQld5YRZZuSl0WAfY1dnMDk8bmX0uPMbwH3/8Kz+/7XrsOowxJmmOUioyll+wmMGBIX7+lad9FroA9m8ZLnZtr/W7qMooITbK9IWpiNZzylB9i0XIK88lKz8DR5KDwcEh2ho7aKxp4vCeevAz37uI4B70sH9zTdDnF/F+lc8rIT07hWO1LTQeaqS9qYPecRpwPG4PGdlpfgtdx+16cz8iwuzlVex++yBWm5VPfv9OHJPoxaYmJx7yUzB3xCuBvcaY/QAi8jhwFXDqbLH3Ak8Bp4c1QjXtXDtjCaUpmbzZVMOeDt/LsR/pa2f5jFls2O9/4sXQVl0cey9e39rFyqoSNvc10Gd8t7r47G1gIM+ksPHAyZaSxcUFbKpvGLXZ0pIi3q47+VrmF+XTP+A9n9sYNh7xPifA8rISNrbUAXDznNP4+NK1ZDhdWuQKgQCipZcJMcZ8Gvg0wHCPrvtOLXIpNZLVZuWu/7mVO5d+KqT9Du2oo2RWATabJeRClwSY99GXzpYukivT6Ovxf1PTWNcKdd6CUu3+xlHPNdePP9fWkf3H8JxWxK6BPqgfO0H9rvoWcvPSaDo29sarsbGDvIpMjrWN7XGWnuaidGYO7alu/t59hFWnlTIgbvb0tLFtoA262kZt3zLgPfemunr+79UN3LNOW8VjjeYopSKr5WgbtbsDT94+oWJXCAYmuVJiVkEGGXnpZOSmsfjsBQwODtLR3MWxw80cq2vlWN34PXwDaWloC3pOShFwOO2kpCdxaNvhUc8VVuaN6ok10u6N+6lcWMrB7XUBz2GMYfeb+1h05lyKZxWSV6KTEkdLvOSnYO6KS4CRn9haYNXIDUSkBLgaOBctdKlJOr9oDnMzCrhn/jr+eHg739v5Ck394w8l6e4JT3dff9p7+2jf1kd+ajK5GSk4Mq0c9XRhE6FpsIciRxqDxu1z7OLijAI2768f9Zh9nOWNbaeMa99+tJHllSWsbz48atiiATbVNnBO1QxyUpP58poLQx7SowBj4mJpXKUSRU5R1oT2q9vbwMI11aHvaCbe3Jidk8qRnondHPjT291PbpKD7oHxb5bsVgudfiacL8tJP1HoKivLJq04mXpbP7t6mtkr9dADCLzafvKmoSQznbo230u8f/vF1ynOSOOa0xZM7EWpyNAcpVRELTxrLu6h4PJEJItdfT5WeBSBtOxUUrNSSUlz4UhyYLFaMB4P/T0DdDR30ny0ldI5xWx7fc+JoYWuFCe5JdnMXjoDm91Kb3c/e985GHJcR/bWUzqnJKhiYHJ6Mlte3TnuEM+UjGS/+3rcJqRFXra8spMLblkb1LYqQuIkPwVT6BrvU3fqK3sQ+JQxxu3vhlvna1HBsFutzEjLAeC9s07njPxKvrX9RZ6r2zlqu1SLiwPN4b0R8TcKsrmrh+auHqgDq0VwewxOm5XDQ21YRMivSKHclU5N3+gbimT32G614/2e9A2OLdptPFjH6qpS1jeNbgmZl5vH/134blw27bI7KbF/jY55xpi/A3+PchgqDqRmpvDtV79A3d569rx9gKe//Sc87uBuMg5sPUxRVT5HT+k55Y97cOKFrtSUyE1AnGe1ccjHc1X5WWyv8V2Uam862egjFU7+3nMUBiHJYSfV6aSpq3vUZe3es8/gnnWrqW1r5/7fPseGmvFbzR945nnaevp4/+pl2nASSzRHKRUx5XOKeaL2u1xb9CEG+wMXr04UuwLM2VVYnstQ/yCIYLEIFqtgsVi8/4r3X+T4eBOD8XgoKs3EPTBEf+8AvV19dLV109PRS0dTBx1NvnMCAB4P81fPprujl9aGNtqPdXJ458lRJAvPnBPcGzKOrPy0oApdDped3o7xOyUEmjusZkcd81bNYscG/9PWjFQ+tyTobVWExEF+CqbQVQuUjfi5FDhyyjYrgMeH/zjKBS4VkSFjzG9GbqTztahQDHjcWBBKkjP5xqr3cMnz3+VQ18mhKy6LHSxWeglfr65Tl7P3xT1cxe4fvnh7jGHzwXrOWFpBQXoamOF5+jA4Bsb23hoaZ2XEpu7xW/G31jQwryiPHe3eYZx5ySncv2adFrkmy4C49TKk1FQqnJGPMYYVF57GvJWzeOuvW3n+0RcZGvT/h3BBZd6Y4RCBBHPj4ovdxwpP4dC+s4HcygyaesbOWWIZ0UJqt1spr8ylr3eQulpv7jtc00xuRQaLF5Tx1pYaVpxTzJ1nruTMqgqsFgvN3T38accevvvyeq5buoi7z/J2wC/NzOAHt1zDzzds4tntu9hyZPTQeQP8119eoq23l0+ce2bEXrsKgeYopSJu4583h5Qr9m85zIyFZRze6bvYdXTXYbpa/S9qciqHyz7hnmJ9Pf3s3eQ7P546d1co+oMcVlk6u4DW+vE7H7TWtwXc/9D2WkpnFVC7tyHgtgCdLaG9vyrM4iQ/BVPo2gDMFpEZQB1wI3DzyA2MMTOOfy8iPwZ+f2qRS6lQOSzeApFF7FhEuHPOGmq6WslLSiXHmUJbRz//eeCVKEc5WnN3D5vbR/c4OCO3dMx24/XeOtrRSUlGGnXto+dm6R9yYxsQMLC2vJx/P/s8ZmbpuPSwmMQ1WkTKgJ8AhYAHeNgY800RyQZ+CVQCB4HrjTHhHwOlVBxKz04lPTsVgLOuWcVZ16xi9pIZPP7fv6WhxveEtMlpSQwNhNao0d87/uqFQQmyp9lENNQ0M7csi/Fe7ZDAwuXldAwMcqChlW0trawoL6SutoWkJAfz5xezcs0s1q6tprmli4WntGrnpCRz8/LFnF89k5zU5FG9s5w2Gx84Yzm3r17GzT/+JW/Xjm2l/8uufdx79hk6OX2s0BylVETNPX0WBRV5NBzyPSfwqQ5s9V/sskxgfsiktKQJF7o6W/wvVHKsdvwFToLRWNMU1LBCfz3cGg414Ux2+i2a9XT2UTE/FQiu0KUdj2NAHOSngL+Jxpgh4B68qynuAJ4wxmwTkbtE5K6JnlipYFmGr2bXzVjKPy86l/fNWsllZQu4ZcEyXvnwnXzhgvNZVlwc0jHnZ+axMCufBVl5o776QryROpVVgktuXQPj34A5ffTS2tnQxHvnncb3L3u3FrnCSDzG51cQhoB/NsbMA1YDd4vIfOB+4AVjzGzgheGflVIj9HV7J0Pv7x1g1aVL+d/1X2Leqlk+t29raAv5HL2dYyd7D9bAOL2twmnnq3tZkpMx5vF3Dtbz5sF6dh9pZnC42PZ2bQMrz5jJj378T3zhi9dxzVXLKcrPGFPkOk5EKEhPxebjZssiwu2rlo373L6mFj79zPNxsZrxdKA5SqnIyinO4u4Hbwt5vwNbD1M2pxhn8slh7tXLq6haXH4iv4XCleIMeZ/jmo+0+h2R0tnaTVp2yoSO3Xasg8yCsbnqVB4/vXuMMRRX5Qc+RpBzPs1bXc32tw8Gta2KHH/5KYgcNSX5Kai7cmPMs8aYamPMTGPMl4Yf+54x5nvjbHu7MebJyQSlVLAyXC5uWrKYJ265kRc++AE+suYMyjJOuSAPV/2/fOEF/O597+V373svV8yew559x9i7r2nU1+6jgZe49cdyyujDfFcy7xwc22o+5KO3QGvP+N2L7VYrH1uzhiS7DlcMG+NdGtfXV8DdjTlqjHlr+PtOvA0BJXhXpX10eLNHgXdHJH6l4pgrxQV4hxdm5qeTnp3Kx77zQZ/bB/OH9qm6xlmdMFidLb6Xmw8XZ7//4ZrHWa0WZi4uYX9dC2Am1FvgVGku3zdVv9u6k4df3TDpc6hJ0hyl1JRYdclS3nXDmpD3O7CtlpLq4hNFKpvdyv5NByfUM8uZNPFC1/E86k9ecU7Ix3W4vPccBWWB9xWr/7wUaEJ6gANbasgr9d2Yb7EIhTPy6R4yPPmDl6kJcpijioAA+SlQjpqq/BTM0EWl4kJFViYfWXsG96xZTX1n54mJ5c1w38q8lBScNu9Hfn5+PgVpqTzw1HN+J6AP1c66RnJKkmge8BasCpPTyMjy3tC5PR4Ot3qXnHfYbKTaHeSmJJ9ohRERBj0eWnvHFrvOqqogJyVwklDB8y6NG57/fBGpBJYCbwAFxpij4L2Qi0jgZiylpqmUjGSGBt1Y8S5BPmNhGWIRcoqyyCnOIrswi/ScVH733edCPnZvVx8WlxPjp2XRYrWQkZtGem4aSWlJ2F0OjMVCX/8QdAY/lGUi3E4r+B9xAsDAoJuNW2q48fIVOBzh+bOtJDOda06bz1927aOjb2zvtQf/9iqz8nI4f87MsJxPhU5zlFJT575HPsTbf9tKW2OAid9PcXBbLZXzSziyrwGrfeJDvp1Jk2vIzsxLp/2Y7wYaq8NK2ZwiEOHwziMYY7DarCcWhLENxz44MMT8VbMZHBziyN4GyqqLSU5PYuGa2Wx9bc/oY9qslM0tJr0gk0EjfucZcweYhxNgoG+QgvJcjtWOmI852UnFwjJsyS5qalo41j1AsnQzNOjma//8GP/zq3uxhykvquDFS37ST4ZKOBYRitP9t2wAXLVsPsWZ6dz16NP0jjNn1kQk2e10DZ0cg7655WRrw6z0bBgeZVyQmoIVoebI6GHHcwpzKS0sAfEOWHYbDzaxsDi/ICzxqdECTKSYKyJvjvj54eEFNUYfQyQVeAr4mDGmQ1csUyp4InLij1RXiovvvfmfY7YxxrDgjGpefmo9Lz21PqSVF1Mzkuk8ZVLg1MxkZq+Zx8E9jbS399JuoP1YHxyb+FDHibB0j70hOHvVbI41d7J9b/2Jx9JSnCxdWM5//d/zVM/I59arV0363JXZWVy+cC6/3rR93OcN8OlnnmP1Rz5IqjNyK1Aq/zRHKTU1bHYbt3/+eh78f4+EvO/B7XVUzAttCpXxzj8ZyWlJfp/f/eZ+wDtEsrAyD/AO7y+bW4x7yMPQ4BBH9zeSV5rC9vUnC1p73znojc9hIynVRWFVPql5GfQMGOpqW6lpHYRWb6PQvJWz2fbS+Dml6UiL37m+nMkOZi6ZwQBW5qychd1pZ8ADBw40sefA6Hul7k5v48zuTTV8+4Ff8bH/viEsPZ1VaIKYjD5gjop0ftJCl5rWTq8q5dLT5vLUm1vDcrzstGSaPOPPmdfY18UXLj+PMyrLsYhwpL2DTGcSuWkprN9fw5f/8Hd21TcxpzCPxo6uE8MYHVYrGY6Jd2lWPhgCTaTYZIxZ4W8DEbHjvUD/3Bjz6+GHG0SkaLgloggI/q5cKTWGiFC9vIrq5VV84Es3sfftg7zym3/w2jMbOLSt1u++KekuOlu7+ci3bmflxUvIyEnF4XIw0D/E5+74Pu+8usfv/pHkSE/i3WfNpqo8h4O1zXg8cN7aOVQUZ/PaW/t5+BevsG7lbObPLuSSsxfQ1z8Y9BwmwVhVWcaNyxfzy42bx70UdvT1s+FQLe+qrgrbOVUINEcpFTcO7TjCgjN8zzMZyGR6gwHYglwpuK+7f1RjUdux0T3YfE1sPzQwROXq+Rw42AzN4/d27vX4juHY4WZK55RQu/vkdC6uZCeVi8sRl5MD+46xc9/YSfOdSQ7cg74nsf/zk//A7Xbz0a/ccGKopZoCgfMTBMhRU5GftNClpr2rl8/n2c276B0YJD3JydduvIxBt5vfbNzG89v2BnWMBcX5pDgdnLOwitycVF4/fJiugX6cNhtP79iO2xj63G5KcjIpykjHZrFQknlyzplLFs1hZl4OuxuOceGCaho6Orn6f39Gz8AgA243Gw/VMTDkxmHTlbDCJ+gJfccl3maHHwA7jDFfH/HUM8BtwH8O//vbyUSplDpJRJi9bAazl83g/f9xA7W7j/DaM2/y6m82sHvjfpJSXaRmpZCakUxadirF1cWIxcKC1dXklZyc+8PhtPHln97Fs4+9znf+7amwFpD8Ka3Kp3x2AXnFmdx874WkZ40/QfAV5y3iknMW4PF4cAy39Ccnhbdnlc1i4XOXnMuc/FwefnUDRzvGDnvZdrRBC11RozlKqam07tpV3nm2ttSw44097HgjuHuA47a/sY+sggxaG9pDPrdYJteTxT0U3JyPk5HsDDAPl8t/WSEzL+1EoWv+OQvZu+cYuw+M3zkAYMXZc/ncIx+k9VgH3/v3p3ntuS3jbvfXpzdyYMdRPvnN91I5pyjAq1DhER/5SQtdatpbVlHCk3ffzEMvrKcqL5u1sysAOKu6kk898See3bwr4DFWzSzjYxeeiW14MsbLq+eceK46J5eO/j5OKyjkzSN1LCsqGnc1rOrCXKoLcwEoy87kWzdfwX1PPEtbTx8dvf08t3U3VyyZF46XrI6b3PjytcCtwBYReWf4sQfwXpyfEJE7gBrgusmcRCnlW2l1MdffdyXX33clxhhC6fYuIlx2yxqqF5fxk6/9kTdf3BnBSL26O3q57b5LKJ9VGHBbm9UCASb4nSyLCNcvW0Sa08E3/vYade2jW/c31NRF9PwqAM1RSk2ZpFQXi9fNZ+6q2dz8wNX8770/4qWn1gfdEGI8hqJZRRMqdE3WRFZ6DFVvi+/5y4wxdDa0+HweoGZHLWIR0rJS6GpoZWjIzaJVM7ngupUUVeTS0tDO26/s5sXfvc3MBSU88J3bsNmt5BVn8dnvvZ93XtvDS79/m788tYGhgdGFvQM7j/Dzbz7HZ75zezheqgpGHOQnLXQpBczIy+Z/brx01GNWi4V7L1jD81v3MOQZu3xEqtPBmdWVnDN3BlcsmefzBuuDy5af+P7cGVVB34itmVXB6qpy/rR1NwDf/MtrXLBgNq5JjuNXw0xQ48t9727MK5xY03OM8yZ8YKXUhEx0bofZi8r47Pdu566Lvkp9zdihE+G07vIllAaxzPpUslksXLFoHkkOB59/9i+09fQxOJzzKrIzQy4gqjDRHBWQiFwHfB6YB6w0xrzpf4/JOXqggaIZBQz0D+Jw6jCpRGOxWEhOTyLDmYYzycGnf3oPn/zx/+Pz136Nf/zxnYD7p2WlsOfNfRM6t79FU4LR1TrxVYaDdXDrYWavnc+evWNXqBcRuodjsNmtlC8oIyU3g46jLRzadhiAjuYu5q2azWV3ns8Lj73Chx98N0vPmjMqv6y7fClXvO8sCsuzSRpenfn48ZeurWbp2mpyCzL42YNjF6h59Y+bee6X67nohtXhfunqVHGSn3TmNqX8qMjJ5JYzlox5PMXp4JOXruO/rruYK5fOD/omINSbhaPtJ4eSHGnroG8w9CWLlR/Gz5dSatpwuhxccevaMY9n5KRy75eu47Pfu52v/PzDLFk7e8LnWHXeAm6779KYnTT3/Dkz+ftH/4mvXXMp1uFc1TOgOSeqNEcFshW4BnhpKk6WU5RF05EWbi77EA2HIrsqq4qOtKwUXMnOE3+ve9wePvXju/nsLz6KM8Dw8bSsFAb7J3bNPL764US1NrSdWMU9Ugb7B2nccYjMrPEnvi+cV0r1OYuxV5RwsGmAbTuPkVGUjcUirLp0Kf/yow/zqUc/zFlXr+Arv/8Uy9bNHfe+qGp+McmprnHO4HWhj0KWMYYHP/VL/vyrf0zsBarQ+MtPMZKjtGuIUgF8/KIz2d3QxOt7a048du2KhbxnxcKIt3IvLClg0+GTEzf+YfMublm9JKLnnE5knJ56Sqnp6dJb1vD681vZumH/iccuuXE1l958xomfl6yZzbOPvcZ3Pvdr3EOBrx/OJAcX37CK6sVlnH3lMqwRHoo4WTaLhYvmzebapQvxGMOtpy/R3lxRpDnKP2PMDph4b85QOVwOcouz+en+h0hK9b/KnYpvPZ29JKclYXfYaD7SyllXryS7IIP7Lviiz6JUZl4atRMcAT80ydXfB/oGySjIoqN5/Mnkw6XlaBtV+Zm0jtPTd9uOscXfLTsauebjV/DeB67CZrOGpSdkSpqTiupCmuvb6eroHfP8g596HLvDxjlXLZv0uZRv8ZCfYvsvLqVigMNm5X1rR18sz54zY0r+sFpYUjDq52fe2RHxc04bBvD4+VJKTSuuJAf//cu7eeB/38cZFy7EZrey9pLFY7a79OY1XPG+M4M6ZuWcQtZechrnXr0i5otcI/3HZefzrxedQ1VuduCNVWRojopZWuRKfMlp3v/jrrZuUjOTAViwZg7Lz1/kc5/JLGoy2D+5QhdAVn76pI8RjP2bDuJ0BtdXxumy097nYcPfd4btvik5NYnLbz2TvOKscZ/3eAxf+5fHaKpvC8v51DgC5acYyVHao0upIKydVUFFTiaHmtsAsExydZRgXX7aXP68bS9/3ekd87+ltp5Btxu7VVdfnCzBxEVrhFJq6ogIZ122hLMuW0JPV5/P4RPv+8QlbHxxJ4f3+V75Oj0rhdvuu5RFK+Nr1cLm7h6aO7upzM3SXBNFmqO8ROQvwHirN3zGGBP0ilwicidwJ0B5eXmYovPO25WRm36iMKISS2rm6JVx562azb5Nh0jNTCYtK5W0nFTSMlNIy07lwOaDEz5Pf2//hPcVEbIKM7E5pua2PiM3jc7+oaAKVwP9QxzcfZTrP/QuBvoHsYcpxotvXM1bL+/iwM4j4z4/NOBm/Z+3cvmtwTVKxYPBgaGwvX+TFS/5KTbeLaVinM1q4ad3Xs9j6zfx2t5DvLjzACuryiJ+XqvFwv2XrjtR6MpIcumNR7gYYBITKaqpY4yhe2iAVLsz2qGoacTfHCFJKU4+9a1b+co9P6HuwPhz9ay5aBHzl1dGKLrIGBgawu3xUF2YF+1QlOYoAIwx54fpOA8DDwOsWLEibG/sdz/+Yy7/0IWsvGRpuA6pYtgtD1zNLQ9cPe5zzz/6dzxuD5v+tjXk3l193b4LXSkZyeSX5+JKcWFz2BARhgbd9Pb009naTWt9O63Humg9Ftlhi8d1t/eQXVJIa2vPicdsdivnX7OC3ZsPs3/HyeJTanoS//TAlbzy3Baa6tv56JeuDUsMNruVz37vdh796rPs2XKYt1/ZPWabjS/uSohC1+FdR6jZWceMReUUVxUE3mEqxEl+0kKXUkHKTUvhIxes4SMXrJnSCXpLszP58Qeu5fYfPsnyypIpO+90IBGeuFNNTr97iL1tzdgtVi58+of8/OIbWFtcEe2wlAJg5vwSPv/9O/jS3T/m4K76Mc+7kh04Xf4nL441DpuN/LTUaIehhmmOin2f/eUnqD/gu2enmj4uvO0cLrztHJqOtPDiL1/jr794hd1BrsLY29V34vvswkxyS3NIz0klMz+D4plFvP77t9j55oFIhR4SsViwO22ce9Uy0jKTqT/cQnFFDqefM5cP/9tVvPLHzfzmx69w9uVLWLSqitkLS1lyxiyGBt1hjcNisXD7Jy9j44s7SUpx8tpzW0Y9f3DXkbheNbilvo0f/evjPP/oi7zn45ex+vLl0Q5plHjIT1roUmoCkh1Tu6z0yqoy7jx7JetmV07peRObgTjodjudOa02FuR4W6/+fu0/UZ6WGd2AlDpF6cx8/vvxu7np9M+NmpxeRCgqz4liZCr+aY4KRESuBr4N5AF/EJF3jDEXTWUMDqed8rklbHjuHWYsLCO3RH/vp7vc4mze8/HLec/HL6f+YCMvP7mel558nZ3/2Otzn97Ok4Wuu75+O++6cfQqwJd+8Dy+de8Pef13GyMWdyBViys4uO0w1/3z5Vx978Vk5KSNu925717Ou4Yngh9ZZLLZwz8iRURYcc48Fq6aydfve4yu9t4TvbtcKU76egZISom/0QC/+d8/8ZN//xV93X1ccOs6bv3Xa2Nsns/4yE9a6FIqxg0OuWnu7ubDZ5+O0xFfvQNimgHioDUiFomIC+9y7k68eeRJY8znInnOyvTxJx1VKtrSMlNYe9FiXvrDOyceM8bQUNvCQP9gWFaZUpFhjAH3fjB9YJsHpg2xxMgE/JqjAjLGPA08He04AOwOG7s27CU9N11/59UJhZX5XHfflVx335U0HDrGy0+t5+2/bsFiteBKcZGU4iIlI5nk9CRSM1NIyUhm3urZY46TU5zF55/8BM/+4K889NEfh713VDBu+OQVzF4yg9LqooDbTnUvKleSgwceuh1jDI986RmeefRllp01hzjtzMWRffXkl+Vw/0/vpXJB5KfKCVmc5CctdCkV4+w2K4UZU7OSynQjcTC+PEb1A+caY7pExA68IiJ/NMasn6oAfr13GwtzCqjOyp2qUyrl00f/83reeW0PHa3dJx77y6/f5OoPnE1uUWb0AlPjMoM7Mb1PQ/9fwH0Y7Msg/UuINbZ642iOih8L1s5h++u7+er7H+L+n96LVedTVacoqMjj2k9cwbWfuGJC+4sIl33wPE5bN5+ffvEp/vb4a2GO0DerzUpyalJQRa5oEhFuuvdCLnvvGrLy03Elx1dvLrfbg9Vq4f1fvBGb3RYzk8+PJx7yUyz1gVNKqalljO8v5ZPxOj7rqX34a0rftDcbann24K6pPKVSPiWnuvifX93DnZ+9iqVnVlNUkYPNZuV3P30l2qGpEcxQLZ5jF2Car4SeH3mLXDiR5Pdisc9ELJnRDnE0zVFxw+6wU7GgjIVr5+qcXSqiSquL+OQPP0zVovCtHhrIRbefzcpLlkzZ+Sajr7efrPw0nK7461k52O+dAzopxRXTRS7Af36KkRwV4++gUkpFiDHgjv3x5bFKRKzARmAW8JAx5o2pPP+X115EQ08XHmMY8nhwaOu5irKymQWUzSzg6jvOBqC/b4D+3qlbuEQFQWyAG7CCYyXiuhgcaxHb1N0wBk1zVNzJzE3nkg+eh9Wm/QhUZFltVt7zsUv56h3fG/Pc3JWzuOn+q3AlO0nNSuGJr/6Ol556wztUOwQiQlZhBhfeuo73f+GGuJjUvb9vgO6OXnILM6MdyoTETQ+0OMlPWuhSSk1fMdLiEI+MMW5giYhkAk+LyEJjzNaR24jIncCdAOXl4b+RLEhOpaWvhz8e3M3CnAJOy4vtLvVqenG64m/VxURlTD8iTsRaCKkfB2s54jgt2mEFpjkqrgz0DfDMd56jt7OPWz93XbTDUQnunBvW8OwP/sq213aPevyjD93BzNNOrlD9mcc+wiUvbOEr73uI9mMdQR//6o9czM2fvpr07PhYiXdwYAiny0FFjA+vTBhxkJ+0ySGKurv6+O3jU9oJQil1nMHbGuHrSwXFGNMG/B24eJznHjbGrDDGrMjLy4vI+bNdyVgtFna0NPKng7tDbrFUSk0D5mTPOkm6Ik6KXGiOijPrf7+R/7vvJ/zk35/g1d/8I9rhqARnd9j4+t8+x7/84C5WXLgYu8NGyaxCKheOnbx82XmL+Nh37gj62AvPnMuld5wbN0UuIPaH+iWSQPkpRnKUFrqiKDnFyVU3rgKgr3eA3/5Si15KTR0DxuP7S/kkInnDPbkQkSTgfGBntOK5sXoxq4vK+fc3XuDJvVsD76CUmlbEEj83aydpjoo32149OW/kxuc3RTESNV2ICBfcuo4v//5+frT963zxt/+C1Tr+7f3aq07nirsuCHjM5LQkbvv8tZTPLQl3uCphBMhPMZKjtPQZRSPHOruSHFx5/UqaGjvYtb2OjMxkFi6p8LO3UmpSjrdGqIkoAh4dnqfLAjxhjPl9NAOqTM/i9Rs+HM0QlFIqfDRHxZ3soize97nr6evuIyktKdrhqGkmvzzwKtQf+OINdDR38uKvfC+SvfjseVQuGNsrTKkT4iQ/aaErhogIufnppKQ6OVLbysDAEA7thqlU5Hhi/yIdi4wxm4Gl0Y5jPC/U7OVdZTOxxMGkqUop5ZfmqLhywyevinYISvmVkp7MAz+7l/ScNP7w/RfwjFOscKU442rIooqSOMhPOnQxBiUlO8nKTuHO6x9i88aD0Q5HqQQV+8viqtA09HTxtbdf4QN/foqOgf5oh6OUUpOgOUopFX4iwr3fej8f/tqt4z7vcDl0vlMVQID8FCOfn6AKXSJysYjsEpG9InL/OM/fIiKbh79eE5E4mOUzttlsVo7Vt7PhtT3RDkWpxGQAt9v3l4o739+6gW3Njfytdj8PbXo92uEopdTEaY5SSkXQ+e89C2fS2JWBD22vpaW+beoDUvEjUH6KkRwVsNA1PAfLQ8AlwHzgJhGZf8pmB4CzjTGLgS8AD4c70OkmNd3Ft396J3fcG3jSQKXUBMV4S4QKTYbDdeL7X+/dRteg9upSSsUxzVFKqQhJSU/mP56+b8zjuzbsY+uru7RXl/IvDnp0BTMB1EpgrzFmP4CIPA5cBWw/voEx5rUR268HSsMZ5HRksVioml0Y7TDUNOEecrNzSy3f/9qfcLnsXPeBs1i8YkZiL9VrDCZGWhxUeBzoaGFxbiGXVs6hLDUDpzWBP79KqcSmOUopFWFLz13I/Y/ezeaXd7Brwz5qdx8lsyCDRz/3K5a+awEZuenRDlHFojjJT8HcBZQAh0f8XAus8rP9HcAfJxOUUmpqWawWKmbmc+9nr8Tt9lBVXYjNbo12WJHniY0WBxUe/3HG+djEgstmj3YoSik1eZqjlFIRdu5Nazn3prUYYzDGICI01jRpkUv5Fwf5KZhC13hLV437ykTkXXgLXWf6eP5O4E6A8vLyIENUSkWaiJCankRq+jRaDtuYmBlDrsIj1e6MdghKKRUemqOUUlNIRJDhFasLKvKiHI2KaXGSn4KZjL4WKBvxcylw5NSNRGQx8AhwlTGmebwDGWMeNsasMMasyMvTXyClVJTF+NhypZRS05jmKKWUUrEoQebo2gDMFpEZQB1wI3DzyA1EpBz4NXCrMWZ32KNUSqmwi4/x5UoppaYjzVFKKaViUXzkp4A9uowxQ8A9wHPADuAJY8w2EblLRO4a3uzfgBzgOyLyjoi8GbGIlVIqHAze8eW+voIgIheLyC4R2Ssi90c2YKWUUtOG5iillFKxKFB+CiJHTUV+CmpJKmPMs8Czpzz2vRHffxD4YHhDU0qpyDEwqdYIEbECDwEX4B3ivUFEnjHGbPe/p1JKKeWf5iillFKxKF7yUzBzdCmlVOIxBozH91dgK4G9xpj9xpgB4HHgqojGrJRSanrQHKWUUioWBcpPgXPUlOSnoHp0KaVUIprk+PIS4PCIn2uBVZMKSCmllBqmOUoppVQsiof8FLVC18aNG5tE5FCUTp8LNEXp3MGI5fhiOTbQ+CYjlmMDmBPOg3XS+txfzJO5fjZxnTLf4MPGmIdH/Czj7BMby4zEoAhe82P9cxsqfT2xTV9PbIvm66kI58E0R0VOlO9BxpNov4e+6OtMHNPhNULivM6pzk/gP0dNSX6KWqHLGJMXrXOLyJvGmBXROn8gsRxfLMcGGt9kxHJs4I0vnMczxlw8yUPUAmUjfi4FjkzymAkrUtf8WP/chkpfT2zT1xPbEun1aI6KnGjeg4wnkT63/ujrTBzT4TXC9HmdoYqX/KRzdCml1MRsAGaLyAwRcQA3As9EOSallFIKNEcppZSKTVOSn3SOLqWUmgBjzJCI3AM8B1iBHxpjtkU5LKWUUkpzlFJKqZg0Vflpuha6Hg68SVTFcnyxHBtofJMRy7FBDMZnjHkWeDbacUxzMfe5mCR9PbFNX09sS7TXMymao+LGdPnc6utMHNPhNcL0eZ1Tbirykxij81IqpZRSSimllFJKqfinc3QppZRSSimllFJKqYSQsIUuEfmqiOwUkc0i8rSIZPrY7mIR2SUie0Xk/hGPZ4vIn0Vkz/C/WWGM7ToR2SYiHhEZdyUHEZkjIu+M+OoQkY8NP/d5Eakb8dyl4Yot2PiGtzsoIluGY3hzxOMRe++CjU9EykTkbyKyY3jbj454LmLvXwjv3ZR/7oI9fpQ/e0G9/mh99lTsEpH7RMSISKDljmNasLkr1vm6xsUjf/kknomIVUTeFpHfRzuWyRKRTBF5cvh3Z4eInBHtmJQKVaLkMV8SJb/5kkh5z5dEzYe+JFKenI4SttAF/BlYaIxZDOwGPn3qBiJiBR4CLgHmAzeJyPzhp+8HXjDGzAZeGP45XLYC1wAv+drAGLPLGLPEGLMEWA70AE+P2OQbx58fHuMaTgHjG+FdwzGMLOpE8r0LNr4h4J+NMfOA1cDdI/5vIXLvX8DYovi5C+r4Uf7shfL6o/HZUzFIRMqAC4CaaMcSBgFzV6wLcI2LR4HySbz6KLAj2kGEyTeBPxlj5gKnkTivS00TCZbHfIn7/OZLAuY9XxI1H/qSSHly2knYQpcx5nljzNDwj+uB0nE2WwnsNcbsN8YMAI8DVw0/dxXw6PD3jwLvDmNsO4wxu0LY5TxgnzHmULhi8GcC8Z0qYu8dBBefMeaoMeat4e878V6kSsIZx0RjI0qfuwkef0o/e0z+9Uf6/VOx6RvAJ4G4n3QyyNwV6/xd4+JOtPJJJIlIKXAZ8Ei0Y5ksEUkH1gE/ADDGDBhj2qIalFKhS5g85kuC5DdfEirv+ZKI+dCXRMqT01XCFrpO8QHgj+M8XgIcHvFzLSd/WQuMMUfB+0sN5Ec0Qv9uBH5xymP3DHf9/WEUh2cZ4HkR2Sgid454PJbeO0SkElgKvDHi4Wi+f9H83IV6/Kn+7AUbX1x89lTkiciVQJ0xZlO0Y4kAX7kr1vm7xsU1H/kkHj2I96baE+U4wqEKOAb8aHiIySMikhLtoJQKVoLnMV/iNb/5krB5z5cEyoe+PEji5MlpyRbtACZDRP4CFI7z1GeMMb8d3uYzeLtZ/ny8Q4zzWFhaUoKJLcjjOIArGd2997vAF/DG+gXga3gTxlTHt9YYc0RE8oE/i8hOY0wwwx2nKj5EJBV4CviYMaZj+OFJvX9hiC1inzvwH1+Ix5nyz14Ih4nYZ0/FngCfmQeAC6c2oskJQ+6KdRG9xkWLj3wSd0TkcqDRGLNRRM6JcjjhYAOWAfcaY94QkW/iHbb+r9ENS6mTEi2P+TIN8psvCZn3fEmUfOhLAubJaSmuC13GmPP9PS8itwGXA+cZY8a72NQCZSN+LgWODH/fICJFxpijIlIENIYzthBcArxljGkYcewT34vI94GQJ8gLR3zGmCPD/zaKyNN4u+2+xCTfu3DFJyJ2vBfhnxtjfj3i2JN6/8IQW8Q+d4HiE5FQjj/ln71g44vkZ0/FHl+fGRFZBMwANokIeH+X3hKRlcaY+ikMMSRhyF2xzt81Li75yidxai1wpXgXE3EB6SLyM2PMe6Mc10TVArXGmOO9Cp5E52dUMSbR8pgv0yC/+ZJwec+XBMuHviRanpyWEnbooohcDHwKuNIY0+Njsw3AbBGZMdx75UbgmeHnngFuG/7+NiDoXkRhdhOnDB0bvoE/7mq8E6BPKRFJEZG049/jbYk6HkfU3zvx/rXwA2CHMebrpzwX7fcvmp+7UI4fjc9ewPhi/bOnpo4xZosxJt8YU2mMqcT7h+ayeLw5OC7I3BXr/F3j4o6/fBKPjDGfNsaUDv/O3Aj8NZ7/eB/+fT8sInOGHzoP2B7FkJQKWiLmMV8SJL/5klB5z5dEy4e+JFqenK4ksYrpJ4nIXsAJNA8/tN4Yc5eIFAOPGGMuHd7uUrxjcK3AD40xXxp+PAd4AijHuwLKdcaYljDFdjXwbSAPaAPeMcZcNE5syXjHe1cZY9pH7P9TYAneLrEHgQ8dn5doquITkSpOrsRnAx6bivcuhPjOBF4GtnBybPUDxphnI/n+hfB/O+WfO3/Hj6HPXsD4ovnZU7FNRA4CK4wxTdGOZaJ85a4ohjQhvq5x8chfPoleVOExPCTjPmPM5VEOZVJEZAneCYMdwH7g/caY1qgGpdQEJEIe8yVR8psviZT3fEnkfOhLouTJ6ShhC11KKaWUUkoppZRSanpJ2KGLSimllFJKKaWUUmp60UKXUkoppZRSSimllEoIWuhSSimllFJKKaWUUglBC11KKaWUUkoppZRSKiFooUspFVEi8kMRaRSRrUFs+w0ReWf4a7eItE1BiEoppaapUHLU8PbXi8h2EdkmIo9FOj6llFLTl+aoidNVF5VSESUi64Au4CfGmIUh7HcvsNQY84GIBaeUUmpaCyVHichs4AngXGNMq4jkG2MapyJOpZRS04/mqInTHl1KqYgyxrwEtIx8TERmisifRGSjiLwsInPH2fUm4BdTEqRSSqlpKcQc9U/AQ8aY1uF9p+0NhFJKqcjTHDVxWuhSSkXDw8C9xpjlwH3Ad0Y+KSIVwAzgr1GITSml1PTmK0dVA9Ui8qqIrBeRi6MWoVJKqelKc1QQbNEOQCk1vYhIKrAG+JWIHH/YecpmNwJPGmPcUxmbUkqp6S1AjrIBs4FzgFLgZRFZaIxpm+IwlVJKTUOao4KnhS6l1FSzAG3GmCV+trkRuHtqwlFKKaVO8JejaoH1xphB4ICI7MJ7U7FhCuNTSik1fWmOCpIOXVRKTSljTAfei+91AOJ12vHnRWQOkAW8HqUQlVJKTVMBctRvgHcNP56Ld5jI/mjEqZRSavrRHBU8LXQppSJKRH6Bt2g1R0RqReQO4BbgDhHZBGwDrhqxy03A40aXhFVKKRVhIeao54BmEdkO/A34F2NMczTiVkoplfg0R02c6L2kUkoppZRSSimllEoE2qNLKaWUUkoppZRSSiUELXQppZRSSimllFJKqYSghS6llFJKKaWUUkoplRC00KWUUkoppZRSSimlEoIWupRSSimllFJKKaVUQtBCl1JKKaWUUkoppZRKCFroUkoppZRSSimllFIJQQtdSimllFJKKaWUUioh/H9hIRcfgVhn6AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Analysis\n", "* Take a moment to consider how the area distortion differences vary for the different projections\n", "* Are they spatially uniform? How do they vary with distance from the projection center or latitude/longitude of true scale? 🤔\n", "* Hopefully this helps to reinforce what touched on earlier with distances and the area - choice of projection is important depending on the intended analysis. If you intend to do area analysis, you want to use an equal-area projection" ] }, { "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "*DES Note*\n", "\n", "If you look closely, there are some residual area differences between `CENSUSAREA` and our equal-area polygons. This is likely related to coastlines, inland water bodies, mapping scale, and how the `CENSUSAREA` is computed. Using the 20M or 500K polygons doesn't make much of a difference. \n", "* This page says not to use the Census shapefiles for area analysis: https://www.census.gov/programs-surveys/geography/technical-documentation/naming-convention/cartographic-boundary-file.html. \n", "* This document outlines the methodology for Census area calculations, and describes issues for different bodies of water: https://www2.census.gov/geo/pdfs/reference/GARM/Ch15GARM.pdf. \n", "* Makes sense for states like Louisiana, Florida and Maryland, but need to look at this further for other states with complex coastlines.\n", "* 🤷 They're close enough to illustrate advantages of an equal-area projection for now." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Extra Credit: Repeat the above analysis using pyproj geodetic area calculations as \"truth\" rather than `CENSUSAREA`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Part 7: Combine Points and Polygons" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create a combined plot of state outlines and GLAS points\n", "You already reprojected both the GLAS points GeoDataFrame and the states GeoDataFrame to the same UTM projected coordinate system with units of meters. Let's add both to the same plot, so we have better context for our points!\n", "\n", "See documentation here: https://geopandas.org/en/latest/docs/user_guide/mapping.html#maps-with-layers\n", "\n", "* Use the matplotlib object-oriented interface to plot on the same axes:\n", " * Can start with `f, myax = plt.subplots()` to create a matplotlib.axes object, then pass `myax` to the states GeoDataFrame plot() call: `states_gdf_utm.plot(ax=myax,...)`. \n", " * I recommend using `facecolor='white'` and `edgecolor='black'`\n", " * Alternatively, remember that the GeoDataFrame `plot()` function returns a matplotlib.axes object by default, which you can store as a new variable named `myax`\n", " * `myax = states_gdf_utm.plot(...)`\n", " * Note that you no longer see `` output in the notebook\n", " * Now, in the same cell, plot the reprojected ICESat point GeoDataFrame on the same axes, passing `myax` to the `ax` argument of the `glas_gdf_utm.plot()` call\n", " * You should see your points drawn over the state polygons!\n", " * Make sure you get the plotting order correct, or appropriately set plotting arguments for transparency\n", " * Note that you can continue to update/modify the axes (e.g., add a title) by modifying your `myax` object in the same cell" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAADoCAYAAADG166EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABdTElEQVR4nO3dd3xUxdrA8d/sbja9AgmBEHrvXZoI0kVEQEWKIgoKyAWvBbFdUWkiL0VEgYsFBQRsNAVRFAHpPfROgBQghfTs7nneP0JWclMIkBDKfO9nP9ecM2fOc1Z8mMyZokQETdM07fZlKuoANE3TtLzpRK1pmnab04la0zTtNqcTtaZp2m1OJ2pN07TbnE7UmqZpt7lCS9RKqc+VUtFKqbB8ln9cKXVAKbVfKbWgsOLSNE2706jCGketlLofSATmiUita5StDCwG2opIrFIqUESiCyUwTdO0O0yhtahF5C8g5upjSqmKSqlVSqkdSqn1SqlqV04NAj4Rkdgr1+okrWmadsWt7qOeDQwXkYbAK8DMK8erAFWUUhuVUpuVUp1ucVyapmm3LcutupFSygtoDixRSmUedr0qjsrAA0AIsF4pVUtE4m5VfJqmaberW5aoyWi9x4lIvRzOnQU2i4gNOKmUOkxG4t52C+PTNE27Ld2yrg8RuUxGEn4MQGWoe+X0T0CbK8eLk9EVcuJWxaZpmnY7K8zheQuBTUBVpdRZpdSzQF/gWaXUHmA/8MiV4quBS0qpA8AfwKsicqmwYtM0TbuTFNrwPE3TNK1g6JmJmqZptzmdqDVN025zhTLqo3jx4lKuXLnCqFrTNO2utGPHjosiUiKnc4WSqMuVK8f27dsLo2pN07S7klLqdG7ndNeHpmnabU4nak3TtNucTtSapmm3OZ2oNU3TbnM6UWuapt3m7tpE3bBhQ+bOnVvUYRSJS5cusX37dgYOHEhaWprzeGJiIn/88QfvvPMOS5cuBSAmJob09PSiClXTtHwolCnkjRo1kqIcnpeYmIi3tzcA9+IUeavVis1mIzQ0lPLly/N///d/xMTE0L9/fyIjI6levToHDx7Ew8OD5ORkAE6ePMm+ffuIj4+nX79+RfwEmnbvUUrtEJFGOZ27lcuc3jLnzp2jefPmhIXla7vGu07nzp156KGHePbZZ/noo4/o3bs33t7evPrqq7z00ksopUhISCApKQmr1Uq7du2oV68ePj4+hIeH06JFC8qXL1/Uj6Fp2hV3ZaKuVi1jh697tWXYpEkT9u/fj9lsZtSoUYwaNSpbGW9vb+dvHTt37gTgjTfeYPz48VSoUOGe/E1E025Xd2Uf9TfffMPMmTPx8vIq6lAKnIiwb9++PBOpj48PDofjuuvu06cPJUuWBODnn3++4Rg1TStYd2WLum/fvkUdwg0TEVavXk1gYCANGjTIdl4pRVhYGMuWLaN9+/ZUq1YNHx+fLGUMwyA1NfW6712rVi3CwsIYN24cDz30EEuWLKFXr143/CyaphWMu7JFfSebMWMGnTt35osvvsi1zIYNG5g1axbPP/88pUqVok6dOowePZoTJ06QmprKhAkTeOqpp27o/sWKFeOjjz4CYNs2vROapt0OdKK+zQQEBAAZCXvmzJlZzsXGxrJ69Wpq1qxJ8eLF2b59O7GxscyZMwe73U7NmjX57bffEBHmz59/wzEopWjSpAkffvghr7/+epYhfpqm3Xp3daLeunUrP/74Y1GHcV369u1L7969AThz5kyWc/7+/rRr145PPvmEXbt2cfDgQVxcXGjatCmhoaGkpqZy8eJFoqKimD17NoMGDbrhOP766y/Gjh3LxIkTadOmzQ31eWuaVjDylaiVUi8ppfYrpcKUUguVUm6FHVhBqFevHq1bty7qMK6bYRgArFixItu5gwcPcuDAAZYvX06tWrWcx81mMwAtWrRwHrv//vtvOAZXV1feeOMNUlJS2LRpE//5z39uuC5N027ONRO1Uqo08C+gkYjUAsxA78IOrCBYrVZnV8LtIDIykg4dOmC32/Ms17p1a6pUqcL+/fuJiYnJci4hIYEyZcrw4IMPZjk+dOhQRowYQZUqVZzH+vfvf9Mxu7m5sXHjRsaOHcvw4cNv6CWlpmk3J79dHxbAXSllATyA84UXUsHZs2cPU6ZM4eLFi0UdCpCRTNesWYPFkvdgm6FDh7J//36ioqKy/UXTrFkzGjRowPDhwzl/Puu/hilTpjBjxgw6dOhQoNPnmzdvzoEDB/juu+948cUX+eGHH5wzGjVNuwVE5JofYASQCFwA5udSZjCwHdgeGhoqt4MpU6YIIO3bty/qUEREZNasWZLxld+c06dPy7PPPisuLi6yYMGCAogsf44cOSINGzYUi8UiQUFBkp6efsvurWl3O2C75JKDr7nWh1LKH/geeAKIA5YA34nIN7ldU9RrfVzt119/ZdmyZYwfP945E68oJSUl4enpWSB1KaUAmDx5Mi1btqROnTq4uRX+6wOHw0GlSpXo378/7733XqHfT9PuBXmt9ZGfro92wEkRuSAiNuAHoHlBBliYzp07x2+//cbGjRuLOhSAG07SIsLu3btJTEx0Hvvvf/9L2bJlefnll2natCljx44tqDDzZDabmTdvHu+//z4nTpy4JffUtHtZfhL1GeA+pZSHymjCPQgcLNywCs6MGTOoUKECLVu2vONehBmGwfHjx5k9ezZ+fn40aNCAunXr4nA42LFjB08++SSnTp1ylq9fv/4ti61u3bpAxugQTdMK1zUTtYhsAb4DdgL7rlwzu5DjKjA7d+5k165dDBgwgJdeeqmow8mX8+fPo5TCxcWF1q1bs2zZMqZPn47D4SAyMpJhw4bRqlUrXnnlFS5evEixYsU4evQoPXr0uGUxfv311/Tq1YvSpUvfsntq2r0qX2t9iMh/gDtyIG27du2oUaMGTzzxBDt27CjqcPKla9euADz00EMsW7Ysy7n58+ezfv16HnroIT799FPWrl1Ljx49qFSp0i2LT0SYOXMmM2bMuGX31LR72V25ccCdJC0tjcmTJ/Piiy86F1dq3bo1Fy5c4MCBA3leGxYWxuXLl2natKlzwsutsG7dOoYMGcL+/fudLzQ1Tbs5N/sy8a6QlpZGWloaU6ZMyTaJpCitX7+eN998E19fX55//nkMw+Cvv/7i4MFrvwaoVasWzZs3v6VJGuDTTz9lyJAhOklr2i1yTyTqxMREunTpQrt27di3bx8ffvhhtnU0ikqTJk0AeO+995g9e7Yz6RYrVqwow8pVVFQUq1evvuHV+TRNu373RKL28vJi2rRpTJ06lYoVKzJx4kT+9a9/Fdr9Ll68yDvvvONcsyMvPj4+tGnThnfeeYdGjTJ+6xk/fvxtM5vyf82dO5devXrh6+tb1KFo2j3jnkjUkNFN0LBhQ7p3745SiqVLl/LOO+8UypZTmetj5DfZLl++3LnSX4UKFZxbid1uHA4Hs2bNYsiQIUUdiqbdU+6ZRJ2pZs2a7NmzB4APPviATp06ERERUaD3OHDggHOXlvzw9PSkcePGlC5dmhMnTjhfKi5atIgePXqQkpJSoPHdqF9++YWSJUvmuPOMpmmF555L1AA1atSgffv2iAjr169n8ODBBVr/Cy+8kG3R//xQSvHaa68xYMAAmjRpQu/evTl27BguLi4FGt+NynyJqGnarXVPD89bv349/fv3p27dujRp0oQ333yzQOqNiYnBy8sLq9V6Q9fv3r2bRx99lFOnTt02u4GfOnWKRo0aER4ejru7e1GHo2l3HT08LxetWrXi1KlTtG3blrfeegulFK1btyY9Pf2m6g0ICLjhJA1QrVo1GjRowJgxY24qjoI0Z84c+vXrp5O0phWBe7pFfbUXX3yRmTNnIiJER0dTokSJIovF3d2d1NRUjhw5QuXKlYssjkw2m43Q0FDWrl1L9erVizocTbsr6RZ1PsyYMcM5Njg6OrpIYkhMTKRjx46YTCYuXLhwWyRpyBiVUrlyZZ2kNa2I6ER9lf/+979Axspw//73v9myZcstvb/FYuHXX38lOTmZEiVK0KBBAy5fvnxLY8jJ7NmzC/yFq6Zp+acT9VUsFgs2m43t27dz4MABjhw5ckvv7+bmRmxsLHXr1sXFxYVdu3YxbNiwWxrD/zp58iQ7duygV69eRRqHpt3LdB/1NXz99decPXuWwMBAnn766Wvud1iQWrRowd9//029evWoVq0aCxcuvGX3zvTmm2+SnJzMlClTbvm9Ne1eklcf9a3LOneoFi1aMHfuXJYsWcL06dMpVqwYy5Ytw8vLq9Dv/fTTT/P333+ze/fu61r7Iy4ujilTphAZGUlUVBQtW7bEarVe97R5m83G559/ztq1a683dE3TCpBuUefTxYsXefzxxwkNDaVChQrs2LGDiIgIOnfuzJgxYzAMA5OpYHuSDh06xPTp0zl+/Di//vorAEuXLqVbt245lt+/fz+PPfZYjivvlSlThtOnT1/Xinc//PADU6dO5a+//rqxB9A0Ld/yalHnaxfy6/00bNiwgPfnvX0sX75cAOfHYrHIwIEDnT9v27ZNLl686CzvcDhu6n6GYUiXLl3E399fHn30UUlMTMxyftWqVdK4ceMsMfn5+Qkgs2bNkpYtWwogX375pRw8eFA+++wzMQwjX/fu2LGjfP311zcVv6Zp+UMeu5DrRH2D4uPjZeXKlVkS5NWfmTNnyoMPPiju7u5y//33y2+//eZM2jExMXLixAlJS0u75n3eeustsVqtsmbNmmznPvzwwyz3fOmll+Sxxx6TsmXLyvLly53l5s+fLzVq1HCWmzt3rkRFReV53xMnTkjx4sUlJSXlOr8ZTdNuRF6JWnd93KS0tDRefvll9u7dy/r16xk+fDizZ8+mZcuW/P777wCUKFGCCxcuOK/x8vIiMTERHx8f3n//fcqUKcPu3bsxDIMyZcpw6tQpfv75Z+fiUZGRkQQFBWW79/r167n//vsZOnQokyZNYsmSJQwYMADI2CuyVq1a/Pjjjzz++OPZujz8/PyIjY3N9bnefPNNkpKSmDp16k1+Q5qm5UdeXR/XTNRKqarAoqsOVQDeEZGpuV1zLyXqnGzYsIEzZ85QsWJFTp48yZNPPnnNa9544w1SU1P56quvuHTpEhs2bMDPz4/Lly9TsWJF9u/fz6lTp0hISCA5OZk//vjD2W89b948/Pz8cu27zmQymahQoQLHjh0DyHUdEbvdTmhoKL/99hs1atS4zqfXNO1GFFgfNWAGIoGyeZW7F7o+rsf69eulXLly0rVrV3F3d8+xq6RDhw6SlpYm48aNcx4LDg6WLl265Nq9MnjwYAkKChJAatWqJTNnzsxWZuLEiblev2/fvhzjXbp0qTRr1uwWf0uadm+joPqogQ7AxmuV04k6q7CwMGnTpo1cvnxZHA6H/PDDD86E7ePjk2siBaRu3brSp08fSU1NlTNnzsgjjzySY7mnn346z/uXL19epk2bJmFhYbJ582bndTl5+OGH5fPPPy+kb0PTtJwUZKL+HHgxl3ODge3A9tDQ0Fv5fHekNWvWCCAmk0nefPNNWb58uXTt2lVGjx4tu3fvlnXr1snEiROzXDNx4kTx8PDIMVG/884713X/HTt2CCADBgwQm83mPH7u3Dnx9/eXhISEAnlOTdPyJ69Ene8JL0opK9ANGJ1LF8psYDZk9FHnt957VfXq1alVqxYnTpzAbrfTtWtXunbt6jw/evRoOnTo4Pw5KSmJvXv3kpycnK2u5OTk615+dMeOHQB8+eWXLF26lL59+zJhwgTmzZtHx44db8mEHk3T8ud6ZiZ2BnaKSFRhBXMvKV26NFOnTmXVqlW8+OKL2c4/++yzGIbBwYMHKVeuHD4+PjlOqFmwYMENrRE9aNAgBg0aBMD58+cZNWoUXl5eBAUFERUVxcmTJ2ncuDETJkzA09Pz+h9Q07QCk+/heUqpb4HVIvLFtcre66M+CsqwYcNwc3Nj8uTJhIWFMWbMGHr27Env3r0L/F4iQokSJbDZbLzyyiu88847AMTGxuLn51fg99M0LaubGp53pQIPIByoICLx1yqvE3XBMAwDh8Nxy/ZMTE9P55133mHixIlAxqa7v/32G/fdd98tub+m3ctueuMAEUkWkWL5SdJawTGZTLd0Y1ur1cqECRPo1KkT7u7uDBs2jK+//jpLmZvdpkzTtOun16PWslmyZAl169YlMTGRhQsXEhERwcyZM/Hy8sLV1RX925Km3Vo6UWvZeHl5sWjRIpYsWUJsbCylSpVi2LBhjBo1CqvVyvfff1/UIWraPUUnai1HoaGh2aa+T58+nfT0dH788UcMwyiiyDTt3qMTtZarYcOG4e3t7fz54sWLABw+fJgNGzYUVViads/RiVrLVZUqVfjPf/6T7fisWbN47bXXcl3USdO0gqUTtZanOnXqZDt2+PBhtmzZcss3/9W0e5VO1FqeWrZsme3Y//3f/1G2bFn27t1bBBFp2r1HJ2otT+7u7phMpmzT10+fPs2aNWuKKCqtqPTu3Rt/f3+6devG5cuXizqce4ZO1No1GYaR4yiP3377TfdT3yPmzJlDYGAgixYtYuHChfj5+fHEE09gt9uLOrR7gk7U2jWNHp2xYKKvr2+W1vXJkyc5efJkUYam3SIrVqzgwoULfP7553Tq1Im5c+ciIgwfPlz/ZX0L6EStXdPIkSMBSElJwWw2Z2ld//LLL0UUlXYrlSlThmnTpvHMM88A4OLiwuLFi9mwYQNvvfUWGzZs0Am7EOlErV1TYGAgkLHOh8WSdWXc999/n/h4vQTM3S4gICDbZsg+Pj589NFHjBs3jlatWlG/fn0++ugj0tLSiijKu5dO1Fq+LF68GMhoVV+9UFT37t2pX78+586dK6rQtFugTp06LFu2LFuruWPHjqSmprJq1SqOHj3Kq6++muNIIe3m6ESt5UuLFi1o2rQpAP7+/s7je/bsoVGjRtSqVYukpKSiCk8rZJ06dWLnzp1cunQp2zlXV1c6duzo/PevF+0qeDpRa/lSqlQptmzZAkB0dLTz+ObNmzlz5gxxcXG6j/Iu5uXlRcmSJenWrVuuZTLfVzz99NO3Kqx7hk7UWr5NmTIlx+PJycm0adNG77N4lxs9ejRRUTnvxHf8+HG6dOkCwKeffnorw7on6ESt5VuJEiVyPF6lShVCQkJucTRaUThx4gSpqalZju3atYtKlSoBUL58+Rvaw1PL2/Vsbqvd4/r27QvAwIED6dSpEyVLlmT27NmsX7+eQ4cOFXF0WmESEf7v//4PINvIn8TEROfxAQMG3OrQ7gn53tz2eug9E+8dhw4dokKFClit1qIORStEhw8fplq1akDGDkC9evVynouLi8Pf35/nnnuOmTNn3tLt4+4mN71nolLKTyn1nVLqkFLqoFKqWcGGqN2pqlWrppP0Xc5ms/HFF18AGd1cAwcO5Pjx4wA4HA7nKKDp06frJF1I8ttHPQ1YJSLVgLrAwcILSdO028WuXbto0qQJe/fupXv37hw5coQ+ffrQunVr0tPTnTMVe/bsqfumC9E1E7VSyge4H5gLICLpIhJXyHFpmlaEDMPg2WefpUGDBrzwwgusXLmSxx57DICPP/6Y0qVL06lTJ0JDQ4GM7hCt8OTnZWIF4ALwhVKqLrADGCEiWWY3KKUGA4MB5788TdPuPGfOnOHpp5/mzz//xGKx8OSTT6KUIjw8HACz2cxPP/1EqVKlOHHiBABKqaIM+a6Xn64PC9AA+FRE6gNJwOv/W0hEZotIIxFplNswLk3Tbm/jxo2jfv36tG/fnvT0dJo0aUKTJk2AfxbnWrVqFcHBwcydO5fTp0/rdxS3QH4S9VngrIhsufLzd2Qkbk3T7iJbt25l4sSJ/P3337zxxhu4uLgwZ84cDh8+zP79+3F1daVatWr8+OOPQMYwzXnz5pGenk6lSpX02tSF6JqJWkQigXClVNUrhx4EDhRqVJqm3XILFixg+PDhVK1a1XmsRo0aDBgwgFq1avH999/Ts2dPFixYgGEYXL58mWHDhmEymTh+/DixsbFUrVoVpZReQa+A5XfUx3BgvlJqL1APGFdoEWmaViQ2bdpEhw4dsh2fOnUqJpOJZ599ljfeeMO5ZECFChUoW7Ysb731FpCxHG7mhsfNmukRvAUpX4laRHZf6X+uIyLdRST22ldpmnanCA8PZ//+/Vla05l8fX1JT08nJCSE3r17AxmLcb399tvs27ePVq1a8cEHH9C9e3fnNYcOHWLr1q23Kvy7np5Crmm3iQULFtC2bVtKlix5y++9du1akpKSCAsLIygoKNt5s9nMpEmT6NKlC23atGHZsmWEh4dTsWJFIiIiSElJyVI+JSUFV1fXWxX+XU8vyqRpBSgqKooFCxZkW7goL2lpabz22mv07ds3yxKyOQkLC8Nms7Fly5YC3QX8ySefpHbt2rzyyiu5luncuTP169enZcuW9OjRgxo1atClSxcqVaqE2WwGoEmTJixduhQRoW7dugUW3z1PRAr807BhQ9G0e9Enn3wigIwcOVJERAzDkOXLl8ukSZPkzz//lN27d0t6ero0atRIgCyfMmXKyIkTJwSQt99+O0u9MTEx8tprrwkg5cqVE0BCQkLk1VdflbNnzxZI7O+++67Ur18/zzKTJ08WDw8PcXNzk6+++kpEREaOHCmAdOnSpUDiuFcB2yWXnKoTtabdpOjoaJk/f7707dtXAClfvrwAUrt2bfH09MyWkDM/TZs2FUAaN24sx48fF5vNJg0aNBBAli1b5qx/165dEhQUJI8//rh8+OGH8uCDD2apZ9GiRTf9DJs3b5agoCDZuHFjnuUuXbokLi4u8sUXX4iIyOuvvy5KKQFk0KBBNx3HvUwnak0rQJcvX5aVK1fKK6+8IgEBAeLm5ibdunWTTz/9VE6fPi0iIr/++qvMmzdPZsyYISdPnhQRka+//lqOHTsmY8eOlQsXLkjt2rVl4sSJznp/+umnLAm4bNmy8sgjjwggo0ePlqSkJClZsqTzfEBAgLz99tvyxRdfyJEjR677OVJTU+Xjjz+W9u3bS2BgoDP5Xstnn30mJUuWlBEjRmSJN/PZtRuTV6LWy5xqWh5EhHPnzrF48WKOHDnCjh07OHjwII0bN6ZNmza0aNGCzp0789JLLzFx4sR81/v111/z6aef8tBDD9GoUSNcXFzo0aMH//nPf1i7di3z589n5MiR2Gw2SpYsyYMPPkjnzp0JCgrCzc2N06dP89xzzxEREcHBgwc5ceIEZ8+epXTp0vm6/5kzZ2jfvj2VKlXiySefpFWrVpQtWzZLmcuXL9OzZ082b95M06ZN+e233wCw2+3ZVsn79ttveeKJJ/L9/Fp2eS1zqlvUmnaFYRhy+vRpWbZsmbz77rvSrVs3CQ4OlhIlSoiXl5e89tpr8tdff0lKSkqW67p37y716tXL933sdrvUqlVLHnzwQbFardKiRQvx9/eXb775JsfyrVq1EkDq168vrVq1kho1agjg7Ju+fPmyADJixIh8x9C0aVPJ7b9Th8Mhr7/+uvj4+Ej79u2dXTqAeHl5ObtsMj+6y6NgoLs+NO0fqampEhYWJitWrJDJkyfLoEGDpGnTpuLq6iolS5aUjh07yqhRo2TRokVy4sQJMQwjz/qWL18ugGzdujVf93/11VelTJkyWZKdyWSS2rVrO/u3Mz+ZLxAB+eqrr+SFF14QQNzd3bPUuX//fgEkOTlZEhMTrxnDt99+K4CsWrUqy/EFCxZIyZIlpUKFCrJ69Wrn8VOnTgkgLVq0kLFjxzpjateunSQnJ+frubW85ZWoddeHdss4HA6sVn9A8PbyY1pwG0zKTjF/OwEu8bg2akj9ydknvYoI6Wl2XN3++XU7KS6OsO6PIA1bYm7+KKeOR7Nk3CqendmL8o1KEh0dTUREhPMTHh7O6dOnOX36NFFRUVitVpo3b07VqlWpWrUqNWrUoF27duzZs4datWpd97O1bNmSY8eOERkZec2ySil8fX3Zu3cvx48fp0KFCsyZM4fQ0FACAwMJDw8nMDCQ8ePHs2fPHgBMJhOxsbHUrVuXU6dOOb+XTDt27KBRo0YEBwcTERHBxo0bad68ea4x2Gw2AgMD+fXXX2ncuDEbN250dqVMmDCB5557LtuWW0op+vTpw2uvvUbjxo0xDIO0tDTn0Dzt5uTV9aEnvGi3zKxZc8loiEFCYhy/J+2ke2ANLiW64untiWPrPvq3epg4v4z99ywWC4cOHcJ6sg7KsKCKX6JyDRM9I/0IcLuIMhWDv3fww4J4olNNmJRi7tAl7Cz+C4GBgZQsWZJSpUoRHBxM+/btKVu2LGXLliUkJCTHnUjq16/Pzz//fEOJ+pNPPqFevXpcvnwZHx+fPMs2bdqUBg0aEBoa6lwS+IMPPshW7sEHH3RuKGwYBj4+PoSGhiIivPrqq1nKZu78nZCQwLfffstTTz3Fzp07c43lm2++oXr16vj4+NC0aVPCwsIYMWIEr7/+eq7XtGnThoULF9KkSROeeuop5s6dy86dO2ncuHHeX45203Si1grVnDlfMWzIaEQMDLIsYU5VjyAik7wp7ppOUpoLey+bcS1WiUGDmpGSlMq2NcfZcnEXxUVQChwXPTjzly/fuzsYVNkNUBjigSEmFGCIoFAcO3bshmJt3Lgxf//99w1dmzm545VXXmH27Nm5lpMrLyf/t7Wak+LFizN48OAs9bVr147o6GiGDRuWpWyjRo2YO3cuzz//PE888QQrVqzg1Vdf5bPPPsu2VvSxY8cYOHAgLi4u1K9fn759+7J06dJrzohctGgRo0aNYuTIkTz66KO8++67zJ07VyfqW0DPTNQK1b9HjEGhqOtZnP+EdsWKBXWlfSDpoQRYU0i2uxKT6sbSsz6kOqx069YNN1tJ/lh0iJL2JhSrYMXAwErGVk9nUswY2LA7wGyy4e2SgtWkcDFlJKQegSMZUP0NUlNT6eT1Ag96PM/Auu9cM9Z69erdcJKHjPWav/nmGwzDyLXMgQMHOHv2LDNmzMhXnZl1ZbbyPTw8SEhIyFbu+eef5+jRo0yYMAGAGTNmMHv2bI4ePZqlnMPhoF27dvj6+tKxY0f279/PnDlz8jVtvUSJEowbl9E19dZbb9GsWTN2796dr+fQbo5O1FqhSktPwcBOR9/7OZsUyMshnVEq44/dgugDlPBMwc1sw98tmQYlTrN7/2FqeTzB0CHvkiJJGEkuXDrhyKhLOWj7aD2qebiw6EQFbPbLuLtfxttsp4QbBFgFKwapyTaiw+PpVezfOAyFoDh+NOqasdasWZOLFy/e8LO++eabpKSk8NJLL+VaJrNbIb9D+SZNmsTWrVsJCwsjMTGRJk2asHr16mzllFJUqlTJ2VLPHEq3adMmZxnDMOjfvz+nT59m6dKlLF++nPLly+f7+aKioqhZsyaenp40aNCAU6dO4eHhke/rtRunE7VWqBxiBwwu2OJxUQY/x4ZhiA2AHj612XXJSgmPBC4m2/jxQjoO5QAFygTJ5su4uBvUf9Qbb393zqfuproRyX2BaTQrEYsDC4bdEwcupBuAUrhYTFgUuCgo5m5GKYWJ/P1Br1GjBrGxsXm2iHNy9uxZ3nvvPR5++GFcXFz4/vvvcy1bpkwZhg8fnu+WqJ+fHzVr1sTd3Z3k5GQaNWqEyWTiu+++y/O6zN8Mrh7b/H//93/s3buXXr168eKLL+br/pDRXbNy5Urq1q1LamoqycnJNG7cmOeff55HH3003/VoN04naq1Q1a9fDUMcfH7hZ+Zc+o4DqTGA4Ikva+INavvbUcrE75cteJoD8PJ146X3+9CmXSNOJfyKX5OL+AW5s+7sbKyl4vnqr6X4epsp451EcS+DNIeZ6gGXALAbDtINRTX/NN647zBtQyKwKgj0MLM8Yuo1Yw0ICMDd3Z0tW7bkWsYwDP7880+GDx9Ow4YNCQwMpGLFiixfvpwOHTpQrFgxbDYb6enpudbx0EMPcezYMfr06cPOnTuvGZeHhwcNGzZk165duLu7s3z5coYNG8aff/6Z6zWXL1+ma9euuLm5AbB//37Gjx/PkiVLmDx5MmFhYXlen2nr1q00a9aMfv36ERUVhd1uR0Q4c+YMQJGs9Hcv0olaK1R9+jwG2BDsOCQRQ+yAorFbVwDmHPfk13Ou+OBOihFPooqjx9MP8PWPHwL/bJq6e9thWtV5kkf9qiOpabhZbNgdihOXvfGxCv2rH6FH+fN8cvg9nqx+DH/3dBqXusAHzQ4zuuFhTj7+EDMHfHrNeKtXr86aNWuAjKS8YcMGRo8eTevWrSlXrhxeXl706NGDY8eO8eSTT/LTTz9x+fJltm3bxpgxY/jhhx8wmUwMHDgw13s8+OCDvPvuu4SFhdGkSRPq1KnDokWL8owrICDAublsgwYNmDZtGv/5z39yLb9v3z6io6OpWrUqAwcOpEGDBowaNYrq1asTGhrK0KFD8+yi2bVrFw8++CBt27alSpUqhIWFAZCeno67uzsVK1YEuOZqf1rB0IlaK1T//ve/svzsK8Upaa2Du0kobbXQ3M+M1aSYf3E3SRJDXFwciYkp2ep5Y/h0Nv+1n6PBway6cAD/gAuUDLVRpn8v1kWW5FycKzui/Qnr0w8cQnq6GYfDxD8DHoRjvx7k3L5wZ52xUZf5/I0fSU3+p/Vbv359xo8fT4kSJfDw8KBbt25s2rSJli1bMnXqVI4ePUpMTAy//PILr7zyCs2bN8+y7nKzZs348MMP2bx5c67ficVi4c0332Tv3r2EhYXRsGFDBgwYkGey7tevH++88w5xcXEAPPLII2zbti3LOtCXL1/mzz//5IEHHmDlypVER0djs9k4c+YM69at47XXXnOWbdWqFbt372b//v1Z7nPgwAHq1atHgwYNWLt2LSJC69atOX/+vLNM2bJlCQsLw8XFJUudWuHRw/O0W8qmUunoXRE/syI+fTsfRroiQMu2jVi79i/KlC9GmbL//DptGAaJF5NpXKYaPl6evPr1KPau+pXUBXNJTTO4NH8prctd4GKSF75WC+lpCjd3K8Gj3iRs4hccTw1gx6F0HIaJ82nCsBYfUr1eacL3nUcpiLcZLP9kLT/GfwxkjPxwcXFh8eLF1K5dm+LFi1/3M7Zr147BgweTnp5+zR26T5w4QUREBDabjaFDh9K+fXsCAgKylWvatCkRERF89tlnvP76685x4IZhMH/+fCZMmEBYWBhms5nevXsTGxub53juzN1YOnbsyNmzZ1m2bBnjxo1j27ZtWfroU1NTee655wAoXbo0586d49ChQ5jNZvr378+XX36Zr+fUbk6+WtRKqVNKqX1Kqd1KKT3lULtBigQjivOp50myp7M84TKJtou4urrw2Zxx1KtfnTr1ytKzZ0+efPJJ2jTryf6NKYT9eYJjv5/g8Q5tCQouRonvv8LT1Y4t3RVEsf1MeU5dCiTFpgiLKEV0l9dw8S+GR9pFWjbzwcBCZtPaAML3R2T8qBQugOtVw4xr1aqFu7s7bdq0uaEkDRAcHExgYCCLFy/Odi49PZ1PP/2UFi1aEBAQQL9+/QgNDWXJkiXExMTwww8/OMtevHiROXPm0KxZM6pWrUqxYsVYuHAhly9f5siRI6SkpFCuXDleeuklHn/8cebMmUNAQADffPPNNSfduLm5ERQUxLlz5yhdujR9+/Zly5YtGIbh3DygVatWLF68mOTkZACSkv4ZB+9wOPjyyy8Bso3T1gre9XR9tBGRerlNcdS03Phbq1DdrQuu+AKwMWkri2J+II00HJJKYsplalVpz+69f3D02AH8/fxxTfbEesYLK17sPLeFOgPKU+WPSYR1fhCrix2HofB2T6Fxjb2EBFwADMyAySR0GHI/8m1rarTYRrDpE2qUPk2KI2MkiKcJTAieAg5DcDWbUCjmv7WAn1f8zG+//VYg/a6dO3dm4cKFAOzcuZNBgwZRtWpVfH19mTx5Mq1atWLVqlVcvHiR2bNn8+ijjzJkyBCGDRtGtWrVaNGiBSEhIUycOJGWLVsSERFBZGQktWvXpn379nTv3p0WLVowb948IiIiePvtt3nmmWdQSjFv3rx8xVivXj2UUrzyyitERkbSrVs3IGMGIsDcuXPp2bMn7u7ulC5d2tntAhmjUQBcXFxynOWpFax8rfWhlDoFNBKRfA0y1Wt9aFfzMpehvFtLbEYyR9P/JKNdC1Y8cXMJxGSyUtzfn0Nnf0UpxdcjFvD7N5tJNxQPlTtLoHc0vhY3PKwOlAKl0kCZAQuJkkRp/3T+PlSd5GQLVhc7HR/YjKtPAgozlsA4EEi1w9sfPkNFH4PIFAunkjKG7hkieJoV7i4QbpzjVPAx9uzZw4EDB6hevfoNP/OECRP44IMPcHNz49KlS3Tu3JkePXrQqVMnQkJCcrzGZrOxZMkSRo8eTXR0NFOnTuX555/PUiY5OZnQ0FBCQkLYvn17thmO48aNY/78+dn6nv9XdHQ0derU4amnnuLDDz903t9ut1O5cmXi4+OzTKxJTEzEbrczduxYPvrooyx1FcZ6QfeivNb6yG+LWoBflVI7lFKDCy407V6gLMWJURHEmS5Ryq0xFS2NaevahzqunfE1B2E2WYiNS3T+Cl2+jJknap2jY2gk5bxTCHDxwoQFN48k/IvH4FMsjchL/iiXJHzc0nHzv0zLOrtoWPsQnVptBQNsibBzW13SUt3ADCaHIsQTDidYaRp6hhDveEQEE4K7JSPRlDOVYs1Pv1G7dm3nhJEb5eLiQlJSEkuWLMFms/Hzzz/z3HPP5ZqkM6/p06cPhw8fpnv37tkSImQM1Rs+fDhKqRynoT/33HOcOHGC06dP5xlfu3btiI+P56233spy/xYtWnDu3Lls46y9vLzw8/Nj/PjxvPNO1lmeDocjz3tpNy+/ibqFiDQAOgPDlFL3/28BpdRgpdR2pdT2CxcuFGiQ2p1LRHBIOoJg4KAaVXjApwol3RR+yg1X3EAUod5lnNdU9LpIqEcc1QLiMSnBpGygwOGwAIK4eOBV2QNf73R8vG2YXdPw8EvCxysBh81CWpqF4wdrk5biyvZfm2NPsBJ5JhhXM3iYFcG+CQy77xC96pyhrJfgbgZPs4G7Rfis71Tq1auXZUbf9UpNTeWpp54CYMuWLfla1+Nqbm5ueHl55dqlMGDAAA4fPpzj5raBgYF06NCBUaNG5Vp/eHg4+/btY8iQIdn6snft2kVAQACDB+fcHrNYLM5uj0wbNmy4xhNpNytfiVpEzl/5/2jgR6BJDmVmi0gjEWmUueKXpmW07JKJTT9Nqi0WE1DFB1IdFvxdLJQxBdHarQlbzi50XhPY/2lS2j/FvANV+OCwnXWNm4AorM17Ynn6/7h8IQ5r1FmU2Ya7byKS6o5hKFxdHOw+VpF9Z6z4e6ZRofQ5mrX/CxefdJSbg5QrDb8VB6tzIdjE9hNlEEyYFSAZfdhJp+OoW7cuR44cydezffjhh7Rr146yZctSoUIFSpUqhbu7O4GBgVit1nyv6XG1p556im+++Ya33347x/Nly5aldu3aOa64BzBs2DB+//33XOv//PPPAXLdDWbKlCl5Ti0fNGiQsx/bx8eHtm3bsmDBglzLazfvmolaKeWplPLO/GegAxBW2IFpd4eDBw/iavLBhBmTycpO2U5sejouJhNmk4nabiaCi3litvyzprHZ04uyPR7KeAGYXJmpCxdQb9kS5n5+gqiPRxNYKgVfbzsurmmgDJTZDkpYuqkJ20+VI+xEM/zviyLo/nDM/nawQKniF3i2T8aICofDwtZVtfA021AIFmWglOBAYTZBtWrVsr1QDAsLY8KECXTt2pVq1arh7+9PlSpV+Pbbb6lTpw7vv/8+Q4cOpXPnzhw4cICdO3fSsWNHzp07l2fSzMmWLVuoWrUqTz75ZK5lnn/++Vynkbdr1w6TycSUKVM4fvy48/jq1atp3rw558+fJyAggJdffjnLdZmzDbt27ZpnfCkpKZQsWRJPT09SU1MxDIO+fftmW3pVKzj5+Z0sCPjxSv+hBVggIqsKNSrtrvHdtytxtXjhQQCpxmU8zQHMjzvPo15lwZFGiI8bESmJnN5+grKNKjivCyjjT1SaAZgo7lqK58u/TJ2ABAID40mO9cPN5zLuxRJJS3ThaJSJNVs7I6KwicJiVnhXS8xYMCRG4bCb+GN5R8zuKXhaHPi52DAE3MwGtivvwTxMdswmE/G2jNmJly5don79+ly4cIGYmBhMJhPVq1encePGPPbYYzRs2JBq1arl2a2xbNky6tWrR4cOHUhJScn3WOM333yT0aNH51mmR48eDB06lJMnT2Zr/ZpMJnr27Mmrr77Kv//9bypXrsyZM2dIS0tDKcXWrVupU6dOtjozu1ISEhJyHMsdGRnJhAkTmD17tnNd7Kunyn/00UfExMQwd+7cfD2nln/XbFGLyAkRqXvlU1NExt6KwLQ7X1paGr98twdvVQJXPPEmEFCAoklgEiHe7jgMByaBmd2nEr77nxdgZrOZ/yx5AVO9C9QsXZfYdBfCk9w5fKw0SoHZIxmbzcz0pZ34eXNHDCNjPK/VBKlKSNufStpORXqUmXP7gklN9uJ8RDBKmXAxgavJQYCrgYfJjpfJgdUEZgVWMroWbDYbXbt25YsvvuDYsWMkJCSwbds2Zs6cydNPP02tWrXy1fe8efNmDMOgXbt2eZYzDINNmzYxatQonn76aQIDA/Ms7+fnR5UqVRg+fHi2cyKC1WrF4XCwcuVKHn/8cR555BF+/fVX7HY7NWvWZNeuXVw9Muv8+fPUrl0byBgHfrUzZ84wdOhQKlSowIYNG1i3bh2HDh2iR48eALRt2xaAYsWK8fnnn+tRIIVAz0zUCs3vv/9ORVWOAHyJ4TIXTcm08XLQLdTOoRgfUGA3rIDCIUJSbHKW65t0qoVlVjrepc306NKZv6b/wo7Imuw5ZyfZbiLAnIxDMq63iQN3BYYBzZr78/uvdWnZ5ABuyoVSVc8RUmUJDmXm08n9KOWRTJLdjEPA3WLHgRkTDmwivLr3/zCbzZQpU4aqVavSvn37m/oO3NzceOihh1i5ciUXL17MMokmNTWVdevW8fHHH7Ny5Ur8/f2d5++/P9v7+mw6deqUY+t1/vz5TJs2jUGDBtGlSxe6dOmS5fxPP/1EhQoVaNy4MSaTic8++8z58jAhIcHZ8t+3bx9jx45l2bJl1K1bl82bN2dpic+bN4/777/feW3mjEabzaZnKhYwvdaHVmiOHz+ON54ZS42KBTdx44LdFbO4kmyHJBu4KMFuCIYooo5E5FrXI690YfKZjxn05/vYXd0we7hyNMWdzBa6ACkOB5BK2qFTtGh+CDdXRWqSO6mprpiUQVKMB3WKRQOC1SyYTYK/m41/7Z/BkB1TGLn/Yzz8PPl3qeE8ktKFPz79o0C+h6VLlzrX99izZw/Tpk2jffv2+Pv788wzz2C32/nhhx+IiYnhyJEjPP744/kaHti9e3diYmKy9VUfOnSIkiVL5rrTTPny5bNMEx88eDDly5cnKSkJV1dXli1bxv3330+zZs2Ii4vj4MGDbNq0KVt3ybp167KMDomNjWXFihU6SRcC3aLWCo2npydR6iQR9lgqmWpS0eJLFXcTv5+3k+yw4GoySLCbaPxsM6o1qkr9Rxpcs06vID9e2jfF+fNrIcMBoUqNYC4dP4+nq4XIFC8MEQwDTh2uQORvpbC42LCgsBuCp0saSTYrLhYDwzD4rfVTiMOOGTu/nS2Op8UNQyD9hHuBfA9ms5lBgwbx6aef8u2331K2bFkeeOABZs6cSeXKlbOVnzRpEg0bNqRs2bK89957PP300znW27x5c1q2bMlXX31Fr169sNvtjBs3jkmTJjnX58jNqFGjsFqtbNy4kQYNGrBt2zY++OADZs2ahYuLCw8//DArVqzIcyr6Aw88wI8//phlTeqHHnoon9+Kdj10otYKzaBBIzDjjqclCF+LO0kOG1tiDap5uqOUItUAb7PBufl/ErlwLbYSz1IsqASurq6YTCasVispKSkkJiYSExNDamoqdrudlJQUEhISSEpK4vGfMpJY9JFzuIUHkxIZR9LxizT5OJFpVbqCWEAJbsoBKKxmBym2zLU/MkZ5mIx0DEyYzYqqbkkct7uigFTruQL7LqZMmcKnn37K5cuX6devH0OHDsXLyyvHsqGhoZw8eZIJEyYwePBgPvroI3r27Mm7776bpZxhGGzfvp3hw4djGAZt27Zl/fr1ADz77LO5xmKz2Zg0aRKVKlXi66+/du552LBhQ2bNmkWvXr3y/VwVKvzzAtjT0zPf12nXJ19TyK+XnkKuAZhN3hm7tWBmZpWOfHXak1reHlhNJjK6LITS7gauJgcCrIzfwubkwzgcDkTE+QGw2+1ARp+v2WzGxcWFuLg4TCYTxYoVw9XVFavVitVqxd3dnf9zK0tsihtmZUIw8HZJBZOJhBQDUR6AgYV0igfa8VKJ2OwmLib4kJzuxpHLnhhi5reEzQR1rMnhw4eJjo7m7Nmz1KlTh127duXr+WNiYti0aRN//vkna9asISwszDmLr1KlStn2M8zJ2LFjeffdd3E4HNl2njl16hTly5fH398fq9VKVFQUISEhnD59GpMp515NEeHJJ5/k+++/x2q1UqtWLYKCgli+fDnx8fHXXMzpf40fP56lS5cyfvx4mjZtqrfmugkFMYVc066bSWX8R1vK1Y8axdIYUNagpKuN+DQbGasSGNgNsF9Jxg1d7yMpKYnU1FTS0tJIT0/HZrNhs9mcSTuzhR0bG8uIESNo2LAh0dHRhIeHc/z4cQ4ePOjcNcWkFCgQMRGR7MOlZE9suOMQE4ZYSDXM1G61loDKh3DxiaJi/b0YmCjrlUpJtzT2mSMQER577DE++eQT5s+fz7lzObey09PT2blzJ5999hl9+vQhNDSU4OBgXnjhBbZt20afPn04f/48IoK/vz/h4eEcPHjwmt/hm2++yYEDB3B3z94NU6ZMxmzO2NhYQkJCmDlzJuHh4Tkm6ZiYGEaMGEFISAjfffedM6527dqxfPlyHnnkketO0mfPnuWjjz7i22+/pU2bNjpJFyLd9aEVGrO4Y2AQbbPx53kHP0dacL+ynofVbKOku4V0UYjDTKrDTsbguGtbPfoLjv+wBZcEaErOizlOtlzmGTFjwZU0R8aQPJuhKOaaToI9I+kZGJDiTtzxylRpvwVQFK+4mB+/7EtcmiIyMjJLnYmJifTv359Lly5x5MgRdu/ezfbt29m0aRPHjh3D29ubkiVLUrduXSZNmsQjjzzi3Arrahs3bqRhw4a0aNGCmJiYaz5vQEAAFosFDw8PKlSo4NyUNnP50eeff57PPvss23WJiYm8//77LFy4kPDwcJo3b8748ePp2bMnnp6ezJs3j3HjxtGzZ88sLyQTExMxDAMfHx+Sk5N56623iIqK4oMPPsgyZnvZsmV069aNcuXKXfMZtJujW9Raofjqy2+wcRFI4YXAuuy7mDEu2HGl9ZxgM3M6UeFhtuNldlDLN5V3w8Zds97UuESO/5Cxe0pZT/A2mVkwdX62cr2fH8gElzMkqjTsIjgEzie7sS+2BJEJEOAWQzF3g7OnSmM2O0AJILhaIDrVlXjDiiPdnqVOLy8v5xC67t2788knnxAfH8+LL77ImTNnuHTpEvv372fBggU88cQTOSZpyJhQc+bMGZKTk0lNTb3mMxcrVoyzZ8/yyCOPcODAAerXr8+lS5ec60Zf/eIwJiaGtm3bUqFCBUqUKMGaNWt48803OXfuHBs3buSpp57C09OT2NhYnn76aYKDg/nuu+9IT09n0qRJ1KxZE29vb3x9fSlevDglSpRg/fr1xMfHU6NGDWrUqMHs2bOJjY3lq6++0kuc3iK6Ra0VioEDX3D+88WU4hTz8OTopdNsZysmTLwT2BUPs8GlVBdMLnZO+Jpx98355drV0hL+2XpKISgT9BnZN1u5vn370rdv1uOTK70AKMxmK65WMzYHlKgbiYslGbshmBH2nigPmHBV8Pn9o3hu00dZFsavXbs29erVY/Lkydf/pVylePHilCpVioULF/LMM89cs7y3tzcLFy7ks88+w8/PzzneOiAgAF9fX5555hm2bt3KiRMnqFKlCi+99BI9e/akVKlS2eoKCwujZ8+eeHh4cP78eQYMGMC8efOoVKkSgwcPplu3bmzZsoXt27fzwgsvOJd7jY6O5osvvmDkyJEMGTKERx55JM9p7lrB0YlaKxSNGtVj+/b9oOCX5G2UTi1LBBn77hniwNeaiI+LKxGpbkSkunP5iOK5wJEAmDK6lpkdPc1Z35xHXoAjNiAB8AYsKBOk2IV/l/oXSikmn5v2v2FkoQAfl3TsDhPu1hSqP7QPH/847L5+mF3ccSQYlHVLgl8EF2XgiEtgz5xV1B3UyZmsGzdunOcu5dejU6dOLFmyJF+JOpOvry/vvvsu7777Lo0bN2b8+PHUrFkTm83GRx99RO/evXNdbClTjx49iIqKYs+ePTRr1ozNmzfz+eefZ4mjSpUq9O/fP8t1gYGBjBo1ikOHDuFwOPK9QYF283TXh1YotmzdwOOd++BrKkMq6ZwwTnCZiygUIjDi2M8oI5X2IecIsNoBIbPdmvn/ffxH/FPhEQMwA740Kh2BSQmhZY7hYsrofxZx8N/B2ftpszCERJuZdMNGeExxNn7ThkvRfojdAcqEKdgP/9peDHvhe0p67MSq7Gyb8iNxx/+ZiFOnTh3Onj1bIN/Rgw8+yIEDB677usyZhrt376Znz5707duXI0eO8PLLL18zSYeFhXH06FEsFguVK1fOMUlfy6+//pptqKBWuHSi1grNZwvGkU4MJlzI2J0wg4ENQfj08EpSbe6YzTnvuWfOdiSjH/lCfMYf3IhzFXHnnz7ebqMezXbF1Y62M/FXnQvE2LwwmQ1MCtLjXDGdS8KweiPpgnE+CZVmp2zoBdwsBq4mO5vf+tRZR+3atbl06dL1fRG5uP/++4mMjLxmP3VqaiqrVq3ihRdeQClFkyYZqwyvWrWKS5cu8cUXX+Q4ceZq4eHhjB07lrZt2+Ll5cWLL77I33//DcDAgQOpW7dutuF/uUlLS8tX37pWcHSi1gqNr68vdRvUwcXsTmlLVexGGnYjBch4SbcZg5CASB6tfoAmgfGYlAPzlZd6qQ7B3dfKtCpDmFZlCD1/eIuqpc8S4nEMF7MXhoAh4GsFVwwsJvi4zfts+3QFe6cvyRLHq6X/xaul/4XXSgtVtmQsDHXoUgCH4nzxLRYLFhN4WMDTii3NheNHSrHryINcTLXibrET0LKes64qVaqQkJCQ46L918tqtWKz2ZzrQ2cSEQ4dOsS0adNo3bo1fn5+PPPMM9l2bWnbti1mc/a/zjKdP3+eadOmUa9ePSpXrszixYsZM2YM8fHxjBkzhmbNmmEYBn///TcJCQkEBQXlugZ2ppdffplLly5RqVKlG39w7brpRK0Vqtr1qqBMNn7YMhEvl2Jktooz903MfE/XOPg8met2AAS5CgGOf14ceoUUJzXNRHxCAgdj/bEDNsOEDROuzsa6Ytn41Rz7Yjlnf9+RLRaFopxHCmZl4GYRXE2wdV9dKO+DXI5D0mys/b42f21uTpphxWZYCIv1pkyrf6a2u7q6EhwczJo1a67rexARwsPDWbRoEUOHDqVq1aqUKFECd3d3lixZwpkzZ5g3bx59+vShRIkSNG7cmP/+9780atSIgwcPEhERwS+//ILVasXV1TXX+xw5coSJEydSv359KlasyKxZs2jdujUAH3/8MUOGDMkyzlopRbNmzdi3bx/Dhg1j5syZeHl5MXZs9kUy09PT+eyzz5g1a5Zez+MW04laK1RTp02gfFU3vvxqDuv/Xk7GH7nMZA0OAy4leBFYOoL3Hv/ReTzz5Z0HaUAaVm8P1p+uwP7UZsTbzKTYzaTYI7EZJpTDIMDFuNIaBxdTOoFN/tmYVmHgZXEQ7JoEJhN1isU4Y2jSJxbc3DDZDRxJNkqlRdIg9DieXomki6CUiV0/ZZ2JWLt2bdatW5fnc8fFxbF27VomTpxIly5dKFasGFWrVmX06NGcPn2af//731y8eJEvvviCHTt2UK1aNd5//31EhPnz5xMfH8++ffuYPHlylrHLaWlppKWlOX82DIMff/yR++67Dx8fH+rXr8/ChQt59NFHiYqK4sCBA0ybNo3XX389z2nlnp6evPvuu5w4cYJ27drx1ltvERwczOHDh4GMv2ieeOIJgoODGTRoUJ7PrhU8PepDK1Rubm4sWbKEChUqXHnRZbtyRmFSLsSnmfF2TeTAwWqU8I3ikaqn+e1YaTL+aArFPW0kpFucE0NMKNzNGS8k7y/jYEfiPuIv1cYQhYvZzqOVjpFms+Li9c9MPl+rYGAiRdzwMqVzLtGbvi8swa1hacyuFkS84eQl4iKtuCt3xAIPlDnGpuT7ibhg0GZkxyzPVL9+feeaGiLC6dOn2bNnD7t37+b333/nyJEjxMbGUqxYMUqXLk2TJk147bXXuP/++7PNGuzcuTN2u50NGzbQoMG1F6W6WuPGjTly5Aiurq5069aN7du38/PPP9OhQ4dsZV999VWmT5/ON998Q79+/XKt09fXl59++ok9e/bQo0cPateuzb59+/jrr7/46aefOHfuXJbhitqtoRO1VuhCQ0MBGDlyJEp5oq6s82FSVnrtvMTnVatgM6zY4yy0efwX1k9/kow/miaOXfYGYO6sWQAYCCl2sCCsOlWWVFsJ/NwyukzK+MXi4Z6Gycs7SzJxIRUbbvhYMl6AuZnseLklY5w6BxVLgcUCpf0JKOdK7N8GiAm7Xej+8WD8a2YsOpScnMzGjRtJTk7m999/Z8+ePc69Fc1ms3NcdIUKFXj99ddp165dvroHvLy8eOKJJ3jjjTdYteraGyddvUVYt27dePjhh6lbty5KKU6fPs2qVatyTNSenp6MHTuWUaNG5ZmoM9WtW5e1a9fSpk0batasSdOmTXnhhRdyHJetFT6dqLVCZzabSUtLy+hbFQOUQilXHJJKfOoJLCoEB2aCyx/B4majnv96dsc+CAgiGQlX/nuW9898gmEYvFP5ZQy7DVC4ubijMBAUCUneFH9mGF4t2mS5fyWvWLB4YTdg1wUfqpZIBAGVmIyBgN2GlA4FWzqlhpzF3VNhXLzE2x904YfNacTFxZGYmIjdbsfDw4OKFStSvXp1qlSpQvXq1dm6dSsnT54kOjqaOXPmULNmzev6foYOHUq7du2w2+3X3DUmc1/Cffv2UatWrSznWrZsyerVq3O99rnnnmPs2LFMmjQpX/sbli1blqNHj+Lj48Pff/+d6/rWWuHTfdTaLWG1WjEpjywtXbnyv26719Fx6PfUfPAIEZHF+DOqHRdSFRdTTaSk2rAb8PKhjMksJpOJGt0bE58CIgaHLqeTYjPwsNg4lWDGv3tvXEoEYbfbOXPmDH/++SdRtWtyMsGD04meKDPEJVtZ/3Mr1v74IHP/7Yb9xDnU+bOYIs9x6VtP0venYFVCo5admDp1Khs3biQxMZHnnnsOwzA4ffo0e/fu5e+//yYxMRE/Pz/Gjh1LUFBQrhvO5qVRo0a4ubnx888/X7Ns5pTt/03SAA0aNMh10ajMaydPnszYsWPzPWrFbDbz4YcfAlCjRo18XaMVvHy3qJVSZmA7cE5E8t6mWNNyMHvOdAYPGkKJEsHExiVhtzuc5z6bUYWmPuU5GJu5a0vGi8EjqRZSEhWjy72ExWLiP2ET2PDjHmyY2R+Thk3MlDEseBsG7i4ZU60zV93LHCFRzMePx+ma0Y+thCS7mfOnQwAoYSnO+lWdeeCRLzC516XS/H+S5f9Ojq5evTre3t5s3LiRcuXKZVvnIjo6mk2bNl3395I58mLFihV069Ytz7J5bRybuRmvYRi5LnP62GOPMWTIEJo2bcr+/ftzLXe1kydPOuPUisb1tKhHANdel1HTcvHss8/SvEVTAoN88aU0ZlxQmHDBi9f3n8FmTuCx0bsoVTya1HQHcclpLIz7gj/S17EiNpwtF+IYUul1er//KBZPV2o2K49NHKTaDeLTFXZXCwcOHODChQvY7XZSU1OJj4/nRPhpPCyCl8VONZ8kQt1TSHWYMQCzpGI+ehCj2TZcu+Xdoq1SpQru7u5Urlw5x8WI6tWrx6lTp27ou2nVqhXXWsM9c23u3JYjLV26NBaLhR07sg9NzGQymTh06BCHDh1iwIAB+Y7tfze81W6tfLWolVIhwEPAWODfhRqRdldzc3PDxcWF8KMXqePeiWjHWSJs+xBRtN+wh/0D3XjlsTWM+W83XAyFn1ENs9nCRc5RQYVwKiGV+/veR6s+Tblw4QJBQUFsSL725hfvnJwJwDe1B+BwmBBMpDkUfq4WHMDeEe/S7Me8+2ArV65MfHx8rufr1KnDxYsXr+v7yNSkSRNnF0NuLly4AGSMZ86JUoo6deqwbNky564tOQkMDCQkJCRfrWnIaFFHROS+n6VW+PLbop4KvEbmLAVNu0EzZ85kz549pDjicFcGNS0VMDvHVjt49p1kDG8bJ1MURxyxmM1X2hKGiat3I+revTtBQUEZp/I59Rkg8aFypBkOHIbggg2HAWaLovQTD1/z2vLly5OYmOhcB/p/1ahRg/j4eBITE/Mdz5kzZ3juuefYs2cPMTExeV4bGJixVGxe07ebNWvGxo0br3nfmjVrsm3btmuWGzFiBC+99BJAvne20QreNVvUSqmuQLSI7FBKPZBHucHAYPhnOJam/a/KlSszZcoUhr0whnAjlmQjDrvYyWwz7D3vx9SPy+FqcrA1MZ6KUpNIwimZXoZEa8YaIb///jtms5kqVaowbty4fLcMAUo0rs2o777h2LFj1x271WqlePHibNy4kfbt22c77+bmhqenJyVLlkRE6N69Ow0bNmTfvn3069eP0NBQFi1axOLFiwkNDWXdunXZErO3tzfdunVj6dKlQEZ3x5kzZ/jrr7/49ddfgYzuCxHJsc+4YcOG/Pjjj9d8ljfeeCPHZ4CMPRW3bNnCL7/8wvTp07FarTz11FN88MEHfP/999esWysEV+9Nl9MHGA+cBU4BkUAy8E1e1zRs2FA0LTeGYchzzz0npUuXlkCPZmIxl5BQj/bi41pLvN2qS0fPwdLAva809egrdT36ShP3/s5rp06dKh4eHlKnTh2pWbPmdd973bp1EhwcfMOxN2/eXMaMGZPr+WPHjsnw4cPFbDZnTr/M9VOtWjXZsGGDGIYhcXFx8sYbbwggfn5+MmPGDHnkkUckICBAPDw8pGLFitKrVy8ZOHCgANKhQ4cc779//37x8/O75nNcunRJAOnbt68YhiEHDhyQadOmSdu2bcXNzU2KFy8uzZs3F19fX2nWrJkkJCRI2bJl5Zdffrnh707LG7BdcsvDuZ3IsTA8AKy4VjmdqLVriYyMFKWU1Hd/TMpY75cuXsPE26WSeFgrSgu3AdLC/TmpeyVR1/XoKxEno53Xfv31185kd732798v/v7+Nxz3c889Jz179sx3ecMwxGazyZw5c2TTpk0ya9YsiY+Pl6SkJDEMI1v5kydPiru7u9SoUUOeeeYZ+e2338ThcGQpk9ez22w28fLykvXr12c7FxkZKXPnzpV27dqJq6urBAQECCD+/v7i7e0ttWrVkn/9619y8ODBHOtevXq1hISEyLlz5/L9/Fr+5ZWo9YQXrUgEBQXx6KOP4k1xdv1iwyZ2SpkqctpxgDMSTqilXEY6ujJSz9Xtn1EW/fr1448//uCnn34iOTn5ujZVLV68+E0t0VmtWjUWLlyY7/JKKSwWi3O7rPvuuy/P8mXLlsXNzY2PP/6Ytm3bXnd8FouFXr16MWHCBFasWMHhw4dZsGABS5Ys4cSJE5QpU4Z27drx3//+l7Jly7J48WL8/f1p1aoVP/30E97e3s5Nc/9Xhw4dGDp0KJ07d+bPP//E39//uuPTblBuGfxmPrpFreXH+PHjBZASJUpIkyZNZOPGjVnOG4YhMTGxOV7rcDikWLFi0qdPn+u6p81mE6WUpKWl3VDM3333nVSoUOGGrs2vhx56SJ5//vkcz2V2WTz77LO5Xr9mzRopUaKEiIg0adJEAPnoo48kPj5e9uzZI+vWrZOzZ89muaZ58+YCSLNmzSQwMFCWL1+eY92GYcirr74q1atXl+PHj9/gE2o5oaC6PvL70Ylay4+LFy9Kz549pWbNmlKxYkVxc3OT3r17y/fff5+v64sVKybVq1e/7vt6enrKoUOHrvs6EZFt27Y5k2BhmT59uri7u8uJEyeynRszZowAcvr0aRERSUhIkJ9//lkGDx4sYWFhIvJP90fnzp2ldevWAkj16tWlVKlSUrVqVWnRooUEBARIuXLlZMSIEdKhQwcxmUzO/ufPP/9cAKlXr57Mnj07xxhnzJghfn5+smPHjkL6Fu49OlFrt6WEhATp2LGjhISESPXq1WXjxo3OF2pjxowRm82W67UpKSkC5JjMrqVUqVKycuXKG4o5KipK3Nzcbuja/EpLS5NSpUpJ8eLFs5176623BJAhQ4ZIvXr1xGq1SqlSpQSQoUOHimEY8sMPP0ipUqVEKeXsz7ZarbJr164s9wgKChJAzGZztn738PBwqV69ugAya9asHOPs16+fvP/++wX67Pcynai1297evXvF4XDIkiVLpGzZslKmTBmpUqWKxMfH51j+/fffFyDPZJ6b2rVry8yZM28oTsMwxGq1Snh4+A1dn19btmxxjsq4WlJSkphMJmnYsKGMHz9eoqKiRETEy8sry4gSNzc3sVgsEhISIr///nuuz/LXX3/Jpk2bco1jwYIFEhwcnOOLz8zfLnbu3HkTT6pl0olau60ZhiH33XefbNu2TX755RepWLGiHD16VPr37y8DBgzI8Zq2bduKq6vrDfU1t2nTRkaPHn3D8ZYvX16+/fbbG74+v55++mnx9fXNV9nExERxcXERwNlSvpG/xP6XYRgCSERERI7nv/vuOwkODs71vJZ/eSVqvXqeVuSUUmzatIlGjRqxevVqjh8/Tvny5Rk7dixffvklDoeDtLQ0Tp06xd9//813331HSkoKaWlp7N+//7rvFxQUlO8p0SJCXFwce/bsYfny5UyfPp1Tp06xc+fO677v9apSpUq+t7yKjIzEZsvYlCEqKgoXF5drLpl6PYKDg3NcL7tnz54MHDiQHj165DpjU7t5eniedluZPHkyffv2xWQyERwcjL+/PxaLBavVSlBQEKVKlSI4ONiZaGNjY/O1jvPVgoKCOHr0aLbjdrudvn37YhgG4eHhnD9/nujoaEQEb29vvL298fPzo0uXLvle0OhmJCcnk5KSku34X3/9RalSpbJsMHv1gv6BgYFMnTq1QGK4evbj2LFj6dSpU7Yy7733HocPH2bkyJF6zerCkltT+2Y+uutDKyixsbESFRWVbdLH+fPnZdy4cdKwYUMJDAyU559/XtasWSPp6enXrHPs2LHSrFkzSUxMlA8++ECGDh0qvXr1kmLFijn7d8ePHy8//fSTc3RFUfj666/FYrHIrl27ZO3atXLhwgUZO3assx+6devWcvjwYVmyZEmOMx8LyoYNGwTIs18/Li5OADl//nyB3fdeg+6j1u5mx48flwkTJkjjxo3F399f+vXrJ99//70kJibmWP6zzz6TOnXqyJ49ewSQ6dOny7fffisrVqyQpUuXSsmSJaVTp07OF3W32ooVKyQuLk7q1asnrq6uUr58eWnZsqX4+Pg4k3DDhg1zTM6RkZECyNq1aws0ptWrV0vx4sXl4YcfzjVhP/zww7J48eICve+9RCdq7Z4RHh4uM2bMkHbt2om3t7d069ZNnn32WenVq5e0a9fOmeDc3NwEkFq1amWrIz4+Xp555hlxdXWV77//PscRD4Vl6tSpzqRbt25dmT59eq73j4yMlK+++kruu+8+iYiIKPQ4165d64wtp5e4Y8aMkVGjRhVqDHezvBK1yjhfsBo1aiTXWgRd0wpbbGwsv/zyi3O7LF9fXwICAvDz88PLy4ugoKA8V96bN28eTz/9NA8//DA//fTTda3Sd6MWLVpE7969gYxV7AryhWBBaNmyJRs3bqRmzZrs2rUrywYKixYt4sknn7yuZWe1fyildohIoxzP6UStabmLj48nNDSUSZMmMXjw4GznT58+TWxsLJcuXaJSpUqULVv2pu6X+fLu8uXLeHt731RdheXChQs89thjnDt3jt69ezNmzBhMJhOjRo1i5syZxMXFYTabizrMO05eiVoPz9O0PPj6+vLll18yZcoU/rdR88EHH1CuXDnq169Pu3btKFeuHB9//PF11S8i2O12jh8/zuuvv05oaCgRERG3bZIGKFGiBHPnzqVWrVrMnDmTPn36ICK4uLhgGIZuUReG3PpEbuaj+6i1u0liYqJ4eXnJv/71L0lOThaRfyaCXD29etq0aeLh4SGdO3cWu92er7ozZ1hmforqBeaNio2NdU6ycXV1FaVUUYd0x0JPeNG0G+fp6cm+ffvYsWMHwcHB9O/fn+effx6AQYMGOcv961//4uzZs2zcuJHJkydfs14RybJjSnp6unO7rTuFn58fixcvpnPnzohIlu9DK0C5ZfCb+egWtXY3MgxD9u3b59xlZe7cuTmW+/nnnwWQzZs351lfx44d8xxFcSf47bffxGQyCSBdu3Yt6nDuaNxpoz7sdjv79u2jUqVKt3Vfnabl5plnnmHVqlX8/ffflC9fPtv5pKQkvLy8MJvNJCYm4ubmVgRR3rioqCj+/vtvevToAcAff/zBAw88ULRB3eHumJeJY8aMQSnFo48+SoMGDfDx8cFutxd1WJp23WbNmkWbNm1o3LgxW7duzXbe1dUVAIfDcccl6UylS5dm5cqVOBwOnaQL2W01SNPLy4tXXnmFgIAAVqxYQf369W/J2FVNK2hWq5VvvvmGrl270rRpU86cOZNli6shQ4YAOFukd5qgoCCCgoKKOox7xm3Z9QFw6NAhQkJC8PLyKqCoNK1oBAYGMmjQIMaOHes8Fh4eTmhoKJUrV+bIkSNFGJ12M2w2G2fOnCEtLY3Zs2fTvn17HnrooRuq66a6PpRSbkqprUqpPUqp/UqpMTcUxXWqVq2aM0mLCOvWreOrr77SXSHaHee9995j3LhxnD9/3nksJCSEWrVqcfToUefypNqdITU1lR9++IE2bdpgtVqpVKkSNWvWZM6cOfzxxx+Fcs/89CukAW1FpC5QD+iklMp7K+UCdvnyZR544AEGDBjAtGnTbuWtNe2mvfDCCwwaNIimTZsydepUzp49i1LK2fJ68803izhCLT/27t3LU089RenSpRk+fDitWrVi6dKljBw5EshYlrZLly6Fc/PchoPk9AE8gJ1A07zKFcbwPK4MY6pSpUqB161phS06OlpGjhwpJUuWzLbiXbVq1Yo6PC0funXrJiEhIXLo0CExDEO+/fZbqVGjhgAyb968m66fm53wopQyK6V2A9HAGhHZkkOZwUqp7Uqp7RcuXCiAv0KyMgyDsWPH8vbbbxMQEMCwYcMojPtoWmEoUaIEU6ZMISIigoiICH799VcWL17M6NGjCQsLK+rwtHzo2rUrZ8+eZeTIkZhMJkaMGEFcXBwrV66kf//+hXrv63qZqJTyA34EhotIrn+6CnNRpvDwcCpWrIjNZsPf35/o6OjbboUxTdPuDna7nYkTJ9KjRw8qVqzoHFY5adIkXn755Sw74NysAhtHLSJxwJ9A9v14bpEyZcowcOBAIGMZSxcXF3bt2lVU4WiadhdTSuHp6UmxYsWwWq3YbDZEhFdeeaVAk/S15GfUR4krLWmUUu5AO+BQIceVp/Hjx/P44487W9L9+vUrynA0TbtLmc1mRo4c6VyDpah+e8/PXYOBr5RSZjIS+2IRWVG4YeXN39+fp556ivr16+NwOLjvvls6CEXTNO2Wum0nvOTX6tWreemll1i6dCmVK1e+JffUNE0raHfMWh/XKzExkTFjxnDw4EGaNWvG+vXrizokTdO0AndHD5eYN28eW7Zs4eLFi2zfvp2OHTsSGxvrfDOraZp2N7ijW9QhISFUrlyZYsWK0bZtW1JSUvjhhx+KOixN07QCdUcn6kOHDlGpUiUmTpxInz59sFqtuvtD07S7zh2dqBs3bszKlSuZO3cubdu2ZdWqVcyYMaOow9I0TStQd3QfdZs2bThy5AgVKlTQ29NrmnbXuqMTNaCH5Gmadte7o7s+NE3T7gU6UWuapt3mdKLWNE27zelErWmadpvTiVrTNO02pxO1pmnaba5QVs9TSl0AThd4xRmKAxcLqe7bwd38fHfzs8Hd/Xx387PB7fF8ZUWkRE4nCiVRFyal1PbclgK8G9zNz3c3Pxvc3c93Nz8b3P7Pp7s+NE3TbnM6UWuapt3m7sREPbuoAyhkd/Pz3c3PBnf3893Nzwa3+fPdcX3UmqZp95o7sUWtaZp2T7mjE7VS6hWllCilihd1LAVFKTVJKXVIKbVXKfWjUsqvqGMqCEqpTkqpw0qpY0qp14s6noKilCqjlPpDKXVQKbVfKTWiqGMqDEops1Jql1JqRVHHUtCUUn5Kqe+u/Hd3UCnVrKhj+l93bKJWSpUB2gNnijqWArYGqCUidYAjwOgijuemKaXMwCdAZ6AG8KRSqkbRRlVg7MDLIlIduA8Ydhc929VGAAeLOohCMg1YJSLVgLrchs95xyZqYArwGnBXdbKLyK8iYr/y42YgpCjjKSBNgGMickJE0oFvgUeKOKYCISIRIrLzyj8nkPEfeemijapgKaVCgIeA/xZ1LAVNKeUD3A/MBRCRdBGJK9KgcnBHJmqlVDfgnIjsKepYCtlA4JeiDqIAlAbCr/r5LHdZMgNQSpUD6gNbijiUgjaVjEaRUcRxFIYKwAXgiytdO/9VSnkWdVD/67bd4UUp9RtQModTbwJvAB1ubUQFJ69nE5GlV8q8Scav1fNvZWyFROVw7K76TUgp5QV8D4wUkctFHU9BUUp1BaJFZIdS6oEiDqcwWIAGwHAR2aKUmga8DrxdtGFlddsmahFpl9NxpVRtoDywRykFGV0DO5VSTUQk8haGeMNye7ZMSqmnga7Ag3J3jJ88C5S56ucQ4HwRxVLglFIuZCTp+SLyQ1HHU8BaAN2UUl0AN8BHKfWNiPQr4rgKylngrIhk/hb0HRmJ+rZyx4+jVkqdAhqJSFEvqFIglFKdgP8DWovIhaKOpyAopSxkvBh9EDgHbAP6iMj+Ig2sAKiM1sJXQIyIjCzicArVlRb1KyLStYhDKVBKqfXAcyJyWCn1LuApIq8WcVhZ3LYt6nvYDMAVWHPlN4bNIvJC0YZ0c0TErpR6EVgNmIHP74YkfUULoD+wTym1+8qxN0Tk56ILSbtOw4H5SikrcAJ4pojjyeaOb1Frmqbd7e7IUR+apmn3Ep2oNU3TbnM6UWuapt3mdKLWNE27zelErWmadpOUUp8rpaKVUmH5LP+4UurAlYW8FlyzvB71oWmadnOUUvcDicA8Eal1jbKVgcVAWxGJVUoFikh0XtfoFrWmadpNEpG/gJirjymlKiqlVimldiil1iulql05NQj4RERir1ybZ5IGnag1TdMKy2wy1hBpCLwCzLxyvApQRSm1USm1+cps5DzpmYmapmkF7MoiXc2BJVdmGEPGjGPIyLuVgQfIWPdmvVKqVl7Lq+pErWmaVvBMQJyI1Mvh3FkyloawASeVUofJSNzb8qpM0zRNK0BXlro9qZR6DDIW71JK1b1y+iegzZXjxcnoCjmRV306UWuapt0kpdRCYBNQVSl1Vin1LNAXeFYptQfYzz+7Gq0GLimlDgB/AK+KyKU869fD8zRN025vukWtaZp2m9OJWtM07TanE7WmadptTidqTdO025xO1Jqmabc5nag1TdNuczpRa5qm3eZ0otY0TbvN/T9o1cX23PqqsAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## OK, that looks good, but how do we limit the map extent to the Western US" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Get the total bounding box (or extent) of the *reprojected* GLAS points\n", "* Hint: you did this earlier for the original lat/lon GeoDataFrame, should be easy to repeat for your projected GeoDataFrame." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Set the x and y axes limits to your projected bounds to update your plot\n", "* See `set_xlim` and `set_ylim`\n", "* You should see your points with state borders overlaid for context" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVQAAAEQCAYAAADvW4zPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gUVdvGf2e2pneSQIDQQ+gdQVFEARUEFAQbqEhRpCgIig0VFBEVVBSwg4hgwQJSld57L6G3BNL7tpnz/TGbRgoBgsT34841V3bPnDa7O8+c85T7EVJKbuImbuImbuLaodzoCdzETdzETfyv4KZAvYmbuImbKCPcFKg3cRM3cRNlhJsC9SZu4iZuooxwU6DexE3cxE2UEW4K1Ju4iZu4iTLCDRWoQoivhRAXhRD7Sln/ISHEASHEfiHED9d7fjdxEzdxE1cCcSP9UIUQ7YAMYJaUsv5l6tYC5gN3SimThRAVpJQX/4153sRN3MRNlAY3dIUqpVwDJOUvE0LUEEIsEUJsF0KsFUJEuU8NAKZJKZPdbW8K05u4iZsoVyiPOtSZwFApZTNgFPCZu7w2UFsIsV4IsUkI0fmGzfAmbuImbqIIGG/0BPJDCOENtAF+EkLkFFvc/41ALeAOIAJYK4SoL6VM+ZeneRM3cRM3USTKlUBFXzGnSCkbF3HuLLBJSukETgghDqML2K3/4vxu4iZu4iaKRbna8ksp09CFZS8AoaOR+/RvQHt3eTC6CuD4jZjnTdzETdxEUbjRblNzgY1AHSHEWSFEf+BRoL8QYjewH+jmrr4USBRCHABWAi9KKRNvxLxv4iZu4iaKwg11m7qJm7iJm/hfQrna8t/ETdzETfyXccOMUsHBwTIyMvK69X/+/HliYy8QEhJMfHwCAIqiYDYbcblcqKoKgNFozD1MJhNGoxFztsTsUpESNCkwhvlAShamYD8UowHXxSQsQf6Y/XwKjeuIj8fg5YXB0/O6XVt5hyM+HlNwMPk8NQCQUqJpGqqq6odLJSs5C2EWYCCv3H24HC6UbAs2MlEVJy6XC9C/M4PBUOA7y/86/3+DwXAjPoJyhT179lClShX8/f2vS//bt29PkFKGXEsfnTo3lIkJGaUc78RSKWW5dJu8YQI1MjKSbdu2Xbf+7XY7f/21lI4dO+DrGwbAAw9056efZnPffT1ZsmQ5AGv/WUWv3oPIyMjk/UkjSU5JJvjLXZiNAgOSRIcHgdYsrIFw0eUg3CRRIy0YhMoDe37By8uLXsENSTO5eCbEC2GJwGRwstpToWpcIEn+CseaBmC1WvHw8MDDwwOLxYLVasViseQeZrMZk8lU5JFfYAAYDAYURUFRFAwGQ+57g8FAjgpH0zQ0TUNKiZSS5IR0zB4GQBdq6enpWCwWXC5XkYeqqjidTmw2W4EjOzub7OxssrKyyM7OxuFw4HK58EzKoP3FFMKUNFSfIFTNweCUJDIyMsjIyCA9PR273U5ln0pU967KBd8kIjyrUDulLppQ4R4Xfn5+BY4/n9uC8BFIKflg32gCAgLw9PQsJKhvomR07tyZOnXqMHXq1OvSvxDi1LX2kZCQzqYtb5aqrtnQL/hax7teKG9uU2UGi8VCjx73576XUrJixT98+OHH7Nq5J7f8q/cWk51lw+lw8VDv3nh7e/Hj9/djNQkupHpj1xSyXUYUVKq1bkrG0ZOcPCPxMjpIT0/nwE+r2D7hJwyKxEM5RzYKmhQ0rlqNlLRsfEL8qFQpPFcYpaSkYLfbsdvt2Gy23NcOhwOn01nkoapqruACcld5Of8TE3XbnJeXF6qqYjAY0DSN7OxsAgICsOJPJVs7VOEkIWgtiqJw+vRpKlasiK+vb4FVXc7Kz2AwYDKZ8PDwwGq1YrVaqZSt0CzGRaa/gZPtq+Pj44PFYsFoNFJ10U5MGVYSpQmbaiLYO43vvvsOHx8fvLy88PX1xcPDgy/7fMrxDTE8M+cFgmtU4MU6L+Pr48Ok6e8W+g4XDs3ziPt7ygbijlxg5C/PYjTdXHVeCVq0aMGqVatu9DQuA4mUrhs9iWtGqQSqEOIkkA6ogEtK2byYei2ATUBvKeXPZTXJq4GUkv3791OvXj1UNR2DwYe0tDRefPEVBg9+mpiYk9St2IwnB/fk48Yv4HS68Pb2YtecX6nsLQGBd2Ayh5J8SHNYyHS6qN00mkbDH2Zvl0lkuozE//IbsVPmUd1PJcXuiUFx4WPNRNM02s74mNM7T5Eam0KDextddr5lBU9PT06cOEFISN4OLPZ0AvfXHYWCkU1rt1OxaggeHh6sX7+eqlWrlrrvLS9O4WzMDnzSNV5//fUC5/acmUj8qq0YFDCb7KRmKrRp3JiE/SfwDvLG6laB3Pd6D05sOkqlBpUxGA0oQHZyFuvnbKDto21Ii09j3az1tH2sDdMPv8XA2q8BsHLOJjSbitPmvClQrxCNGjVizpw5N3oaJUOClOqNnsU140qMUu2llI1LEKYG4D1096YbhtjYWIRQ6NnzIRo0aISiGOjcuTO4nRmkhF27drFs2QK2Hl7H4Hve5p7KIzCbzAD41q6BEBoCjdPxYHMJMhwaDpeBRoPvxxriAyhIBDsnL0BiwSAk/pZM7KYQHC4jhjrNsMcnMXvQN8wa8DWZSaXTDV0vhFcJptfgDlSrWwkffy9A1yc7HI4r6qfxuEEYFRWfSoV3XNmHYzAoEtAQSCwmwcllW1nS5y1+vm1Ybr2K9SJo2/8ODMaCQnH1N2sA2PbLdpZMXsKW+Vvwr+CHUQiMQmC3qTgADx/rlV38TdCgQQOSkpIuX/EGQiLRpKtUR3lGWW75hwK/AC3KsM8rhtVqRVG8WLBgCYriSVBQIBs2bAS32k0IeOrJflTxvQspNbzVdLLsDravOkibzo2o3qIRP5wNx6BKHO6oV6emoBj0Z49PhUBCLRl4GFW3vlLg0hQUb08uJlkxS4n33sPsffVDHpz4CImnEvAM8PrXrl9KiaIUfk6O/uDxAu+vVKBKKTnzx1q8qlcmILpaofNNf/yMnf2GYzt7DqNw0nrFr6Qfj3OfVTk1/1eqPvQAO3/bTkClACJbVAcgsmVVTm8/w4ifdaHb+uFWGM0GmvVoBsBTH/bi6xd+QpD7TLyJK0TNmjXJysoiLi6OsLCwGz2dYqChabYbPYlrRmlXqBJY5maAGnjpSSFEJaAHML2kToQQA4UQ24QQ2+Lj4698tlcITbPz4ovDcTgK3orDho5CkxqgECp8SfU6RZvOedtyExaEwYqi70OwGoxE+Gay7J6BuOxOIn0zqOidjcnPiqpJTqf70/b3r2j90QiiXuiHqVIEVfv2IOrOaNo+2e5fNaJIKUs1nsFgwOl0lrrfzNMX2DNpNklH47DUrVvovMliwaG6sDs9yHJ4k3HiIn51KlPVL4kaAckcnPQZmUkZzH1uFj88Nyu33cjfX2Dq2Y/w9NdVAp5+nrR7qh1e7odQmweaIdF/gO0evqHP6v8sDAYD1apVY+HChTd6KsVDSqTmKtVRnlFagdpWStkUuAcY4uYxzY8pwBh5GSWIlHKmlLK5lLJ5fh3fpXjnnXcYOHAgR44cKeX08hAQEED//o9St24kM2dOY9Cgp3E68wSqlJLgCgFcyNpNHVkZH8WX1994vkAfw/dOJtRX5dbHmhPpYyfSOwuXQ3D2hJ3fWvdBkwKnpuBKs2NTLXib7Zi9PQhr25DqD9/DLfM/IaStvsI6sO0E6alZV3wd14LSCFRFUUoUqJ0qDKW9/+Dc915VQvFq3IBUm5FjS7YX2ab+lLdRhIoQGoHRVdna61GkBi5VIdhHIBRBvQ516fTiPQXafT9yLuPbv0dmahYup+4ulXBG36J6+nkAukBdM/cmbcPVonnz5qxcufJGT6NkSFfpjnKMUglUKeV59/+LwAKg5SVVmgM/uo1XPYHPhBDdr3ZSmzdv5osvvqBu3aYYjX5cuHDhitpPm/YJvXv3YuDAgfj5+aFd8lSrVas2Gg7WOn5j2OeP0P+53gXOW708eHLXdDzCQrCrBjKcKkZFwWISuFyQ7VRQNYGqCXzMDiwKzJ25lEfav0ZqPn3pVxN+p3+78dxTefjVfhRXDCllqXwvS9rypySlkZlhw+lQWTJnA6AL6bu+GkW7SQO49/MhRbbzrxROh02/0GHTrwghEFl2PKxZeHtmkO2A7d8s5ejK/VzYf65Au3Xfb+LsgfMMr/0yT4SPpG/oSIY3fJNTe8+6VRgCpMQn+N9TnfyvoWXLlhw4cOBGT6ME6Fb+0hzlGZcVqEIILyGET85roCNQIGWJlLKalDJSShkJ/Aw8K6X87WonFRUVxRNPPIHVGIpJ8adixZpUrdyQjRtL57dqMpl4/fXXcTqdPPbYY4SFVcx3PQbGjBmJj483bdq24q5Hbym2n92f/olTU8hyCTYlCU5lQtsPR+OSJrKdZpyagsMFUnOy8Z+97NkaQ8LF1Nz2gWF+AHi7V1llAVu2g21rDqJpWpHny2LLb8vME7Tte+bZIBVFoXbXVhg9zEW2y45PYfmtj7Cmz4sA2DNVTAY7JoOKj5eds7PmYFQgpHrB3cl9ozoRfUcdKtYJR1P13UR47Qr4h/khhMAzyAuEvsK9iatDdHQ0/4aa7eohQXOW7ijHKI1RKhRY4L5JjcAPUsolQojBAFLKEvWmVwqn08mvv/7K5MmT+XXeRhwuFYPw4Nz589xx2/1cTDyIn59fqfoyGo18+umnBAZG5CsVfPvtV0yZ9BlHDp4qVgAlJaZiUxVcGPA0mKjhacTPZMceewGHqmIymMhQzZg0QZDZRq/ed/LUc12pEVUpt48e/e+g+1O3l6kO9av3/uDr9//k7S8Hcu/DbYusc61b/rDKwcxcMxbfQE8slqKFZ1FIPXgck2ZHnjlK0tqNGA0uTl+0UKWSk4QUX3xNLjwDPAmsWtBLoOuL9wJ6MMaAiqMBmLz5ldzzSRfSEEBSXFqp53ITBREdHU1ycvKNnkax0ANQyvfqszS4rECVUh4HCjlSFidIpZRPXMuEYmJiOHr0KJ07d+bQ0TbUqt4Gg+KHS8tGSkmzZi146aXRREdHoygKa9Zs5M8//2LkyGHcd1/n3GiiHFStWtCAYjC4+OGHH9i/KYuEi6mopjTem1TQpxKgYWR3Xg6vjkM14JIKRgUcmpHwB+7izIQvSc02EWr0JMhkwmxSmNj3a6JaRNL4nzoF+ilrg9QdXZtydP8ZmrStc/nKJUBRlNxAgaIQ3bywJd+Rra9czcWsUMPaNSWt570k/b4AZ0oqx5NDsZJEZroFi1GgORSiDac5/8EUarSbUah9Wmx6kf3mfII3I6SuHhUrVkRKSUxMDLVq1brR0ykMqYHrv2/lL3eRUlFRegqprKws6tZuCxLMFjPObN2wM2zoMP755x+mTZvG2bNnSUrSv4QNGzYBsG7dMm6//U6qVavN0qV/YLV6kJ6ed6M6nZkAVKgmOHhqP4sXZ+cK1Kn3TCT14GnCbovGgOCX+Fi6BFXGYQAPCQ/+9ipe3p5EmgTHTGnU8M3AGy+QKmMankYRp9Gztlw/1GtWnY9+er7Y86Xd8huNxit2m5rU6nWMZiMvbRtfbL3aL/RHffZRDFYr1ZbvJXn9DkyGZIQQZNrNgCA7LqFQuzVfr2HP4j20e6QVfqHeBc49N+Mxvhz1M5/tea3U872JghBCULNmTZYsWVI+BSqUe4NTaVDu2KaEEPj7++vhlk4bDi2dFs0bYDH6ERJUiWHDn+OHH35g586dbp2Qgr6G0YVI1y7dkdLE0aPHqV+vJYkJKUBhI037DregmFxMeCfvJs08dBqJgYR1BxgUEk0rn6qsS7HhLVT8gy2E1NWjioK9NG4PMBNoNKGrMhVcmpkb7UbnsDvxkMEIcfmv1WAwYLfbr6j/Sg2rULFBFU7vPUt2euGLzTgVx66J3+F0n6vdrS1+IR5kRzTjdEowigImxY5DK/wc37N4D0fWxdBtZEd6vXp/gXN39GnF92ffxzfQ94rmexMF0aRJEzZs2HCjp1EkBBKhuUp1lGeUS4Hq5+fH2bNncWn6CkqYNAY/+xiz5xYkd3hx5FsYhBlFmPExVcbDEMrG9Vvo0+chALJtdkBBEbpAzU/9+uqrb+FwOOjc+W4APuj6PkkOA/FZKj4RgfzqOE6mmsXdgRBssZOWkKe/s3lXJinTj4QMPzLt2foc0cB4/UMit288yMN3j+XY4bOFzs2asphalo4smbepyLbLftlMU6/Hae7bF0VRchm3SgMhBE9+/yy3j7iH8R3e5+shswvVOb1oPSfmrSB29Q4Ado+djJqSTOM3B1HzofZYjSpWk0qDl/oXavv0N0/z2sbXCIksH7wXZw7Hcn/gMN586PMbPZUyQ+PGjTl8+PCNnkbRkBI0V+mOUkAIYRBC7BRCLHS/DxRCLBdCxLj/B+Sr+7IQ4qgQ4rAQolO+8mZCiL3ucx+LUmz9yp1ABejYsSPjx4+nVq0aKELh40/eYe7cn3iy73MF6tVcdJrPanXjnYh7GR3RmEEVW5Lw+1pmzfqC+PhT/Pjjt4CKmiOYBYAFRbHk9vHCC2MAWLXuACvT4rELlaFrx3OHR1UCjVaCPTQcmolga94X6RFWAW9rNt6WbI5lCqafUkhzGGg2/4vr/MnAlrX72bHpEPt3HSt0rnWHeqS4ztL8tsKO9wAHduptNFViMpmw2a58SR0SGUT9u6Jp9WDhCORaj99D83eeoUqXW8k4Fw/SiEszEbdzP45lP2E2OlC9/KjywN25bWwpGRz+eS0WT3OZCNPY4xeK9YAoDou/Xsdnz8/Lm1OWnXEPTSfdZmf9wt3XPKfygnr16pVjS3/ZClRgOHAw3/uXgL+llLWAv93vEUJEA32AekBndJfPnJXR58BA9Nx1tdznS0S506GC7thfOaIhmgqaVDl+/Czx8Tqjks1mw2q16kxLmkAxSHwtRixGIxUtCoe++5tbxjxGYGAgPXp04ZGHH+GHuT+hyRzneg0pBTnPmpde0nWexxyZIGBbpu72pGWaSJKCTHsGXhaVWv275s7v/IFzBBkMSBSUqtW4OzYdr8Z18QrVBYKUkukf/EStulW4677WZfrZDHihB3d0bkZUg8hC5yKjQjnpWkWVmkWHF44Y/whhlYJo2jaKBx6574oipXLg6efJsB8GFXnO5ONJ5Xva6PXCg1CEhibB38+TTEViUCTZaamo2dkY3WQpq/o8j5/9DJtP9eeHyesAaP/M7fR4/YFSzSf5Qhq/TF7GvYPa8UzLt3E6dGE6c+drOB0q1epVukwP8PnwH1GEYOEXa/AK8CA2MRUTChpg58qEc3lGdHR0+Y3plxKhXpkKqjgIISKA+4AJwAvu4m7oGZMBvgNWAWPc5T9KKe3o+eyOAi3dPvW+UsqN7j5nAd2BxSWNXS4FanBwMKpLN64owkDX+3qjKPpD49dfl/DII915p1J/Tqs+mISklnciTs0Tq1FDdeXdABZLQL5eFUAjICAUDw+J2ezLxIlvUamS7qOaJmLx0kL4avU4ADxNKg5VcCrTmzcOFbRI3zLqQTa+Ox8QVDd6YDdmkLz9UO75xPgUPnhzNlWqhV2TQN278wgNmtQuUGY0GqjbsBrTXvuJgztO8dGCEZjM+teoadplDVJ9nsnd0RAXF1dCzWuDoijctTmPcGz3K5+gAWbhRDHneQlEcAwsCkeWLkfggRCwavrqUgvU7Uv2sXjmGjx9rQW++6ebvA3Ar7Ef4HkZQhVVSnKUH5nJ2QjAYlZwqJLug9qXah7/BVSqVAkpJYcPH6ZOnWvzEil7yCvRjwYLIfI7pc+UUs7M934KMBrIzwAfKqWMBZBSxgohKrjLK6Ez5OXgrLvM6X59aXmJKJdbfgBVZiClhkuzIXFhMnhjNHhx551tmTvnN6RRwc+k4WeSdJzzIgEWJ2YFcjx61q7deEmPGmAgwN8LRRHs3r2J3r175p5V/NI56dzM4ZjDbJ+7AbPBQFiIBz3ef7TQ3Go+2pm2E/oT/WQnOsx+BY+KwTR7I08vKJEYgrJp0KZKsdf38lOf0sCrD68M+KzI81UD76Jzu0FUC76ryPOblu9n68oDZGfmPdWvZKt755138umnn14x49SVwB6fiHTPyenpi1M1kWa3oBjznuM24UumzUyHCf1RAKOAyg0rFtmflJIX6r3ClD55es12vVsw4su+dBt6JwvTptH83mhe/3kABoOC2WrE6lWyH+2xvadRhEDVNFxSokpJ1YpB3HJ7Xf5O+5xhk/tc+wdRTpDf0l/+ING3pKU4ICEnhN195ApTIUQX4KKUsuj46MIoagUiSygvEeVWoAKoMhOQjB37Ig/0uhOXmsZP839jQP8XcQkPfEwqJkUlunUT7C7Ichk4nwHr12/mjjs6FtUjx0+c4emnn8bXt6DFeOOWv5jy8Zt079GFw3/vRUiJ02hhyS97mNzkReL2nS5Qv3q3tjQb+RCewQHc99cHVO+RR2+wZvUW4i7G8efC5cVe2+KfNqIKjcXzLhX87pk6NQQCo9FU5Pnpy8ew6NiH+F7CZFVaX81JkyYRFBRE48aNS/RHvVokrN3Klh5PcvJrt24yIwuBgtGgcOD9PF3zhXgrF9P9MAaGY1RAEXBh7/nc806Hk3mvL8DpdPLN8LmkXsxgz4q83YDZauK2Xs3xcpOrvDV/CK07N2ZR6if8kTCVtMQMJjw0nQPrC+uc9f7VAndJePVgHAlZ7F99lLXzr19GiRuFpk2bsn79+hs9jcIoO6NUW+B+95b9R+BOIcT3wAUhRDiA+/9Fd/2zQOV87SOA8+7yiCLKS0S5FahpaXFUq1oDRRh5993JzJ37C5rUGDnyVb78ejK+0SGomoGKTXQH9ESHB5mqCal4UaVyvpX5Jc8URVFYuXI9+/blxTUfOXKUbdt2Mnhwfzw8PDBIDZBUvb8l65Ye5mRsFkcW7yj13B/o2YkPPnqNxSu+LbbOh9+PIMDTlylzi/YpXbd7FhOnPk9MXNEqGy8fD4LD/QuVlzaLrdVq5ffff+fYsWO8+OKLl62/65MFnF21q1R9A8T/8QcWk4usPXobqyEVo+Ik2DuF+MXLc+fqUgVSlVgqhRHRvCouDe4elUee8nydsayYvooRtcYSWjMYTQNhLL2D/y/vL2PH0gO89+h0Hg0fxfE9Zwqcr1ApAAGYFIVP147m271vERCm7xT9QwvnDPuvo0mTJldFOvRvQGhqqY6SIKV8WUoZ4Q6D7wP8I6V8DPgD6Oeu1g/43f36D6CPEMIihKiGbnza4lYPpAshWrut+33ztSkW5VKHCno6j3r163Lq9DkERrdcVPGzRtD2tubU7DcYENhP6w+NDFVglgKnJjl6TF+NCAxIoSIwIdENMFLq6oAvvviGqVPfB6BJA9141+OBZXw/dyqeYQGERlWiSZtILtxdk4a31qTtsNLnBBNC8PSg3iXWubNbC+7sVjwdXWT1CCKrRxR7vixQu3Zt3nzzTV5++WW6devGHXfcUWS9C9uPsG/mnygmI4/smFlkHQDN6SI95jR+0dUxRVQme8N+5GldT2syaIQGJKJqgsw03bvg/D9bcEozIDFazQz//YVCffqH+BCfmUhojWA6Db6TeeMX43BovN1lKq8tvDzpTLueTdn07Vq0TDt2l2B8t0/5+sR7uecDw/z58dz7GM0GDq6JYdWsDcw4NOGy/f5XUa9ePRISCgdW3HBImbOdv16YCMwXQvQHTgO99GHlfiHEfOAA4AKG5GPNewb4FvBAN0aVaJCCcixQAYYNf5r9+/dx5nQiQcaa2LVkLC5/t4W+4CrFKsCl6QnoHnigO2ZDEIpiQCAZ9/YoXnv9VRwOJ0JAWIXKjB6db2UodHG9YMEiUmPfZMOsDYTUCOXnp2eAprF912F2fPonI4/p0baqSy3EOF8eYDRe+df50ksvsWvXLgYMGEBMTEyRdYIbViekeRRhLUo2ZCy7/QmkU8WvfnUCQjSsJjukZJN54jjBMyaTOGg0GiCErlcNbdcURZEYLbpaY0Rl/Tv56PSHuaqLhFOJGBUICA/AaDbiE+xFSlw6gRX9AUiOSyHhbAq1mkcWOaeAiv4oBoHqAk1KzNbCKhQvX5285uvhc0mLT6dVj6b/s5kB6tWrV04t/RLhKlt9vpRyFbo1HyllItChmHoT0D0CLi3fBtS/kjHLtUBVFIXTp+Lx9PQkPvMQ4CSNs0REVCLbfraAvjAtxErG+VT2Z50nJSUFg2LEIK24NDtrVq/niSceYebM7wCIT0gix35z8tg5coTzylW/4BPqyx1DO5J98SKHTp0DRWBUQJO6dmRtm7sxGA1cdHjQfdOCf/PjKBVKu+XPj8GDB9O+fXuysrLwLCL9tcFkpNM3oy8/ttMBKKTvO0LUB8PI2LoHEJx7+zX27zTiKXzwMNvRpAFndjYmDw8e2KGTTWekZqC5rfQuuwuTW/C5NNAEnD6oU/5NOzAeTdVyMyg8V28cUpOMWzqC2i0L8w8ERwQyI3YKTqeTdT9u547HWhU7/6HfPkVaYsb/rDAFCAsLQwjBwYMHqVsEUfiNgpDystv5/wLKrQ4VYMXy1WjSTkZmDkuOApiIqHALwb7NSEvLi9H/8uhKvoz/hw3p+wETEhsuLQXIZs26fzAY8oSvqmUSGhrMy2PGs3HDNgKUKowZMZKWrRux6etV7PtlEwcW7CRbU1ClAKni46u3d0ofbE5v/EXJX76maXzy3g/s3320TD+TklBU6pPSYOvWrRiNRqzWaxMkRi8PjMKJFBqB7W7Dq1o4QjhwmHwxoeKQZuyqCbNR5cJvBdnjvf28qdG2BlHto3KFKUBglQBUCaP/yMtLlSNMAXyDvRGKIDgigKKQFp/GxrmbQIX2j7cu0WhXq1V1mt3b8Gov/z+BHEv/0qU3NPVb0Si9lb/colwL1LvuvgPI8WFQUBQTAoXElFhsjjSWL16XWzcl/RwONQ2nzKR//3yO5xLS0zOYNu2rAn2//NJ4PvpoOk/2f5Z0LvLLn7q+OeVMEulxqWgCvI26f+Iyp5V550BVVWwuPbd9lqNkF6Vpk+YydfyPdLuteCKTsoaiKFe1Qr3nnntwuVy888471zR+1QfagRBYDPpnE/31lzhdVlL2nyfML5Eg72QSsv1IyvbEGh5eqP2Q7wfzzJzBBcombR/HV/FTCakUVOSYnx8ez5zEKbkqgEuxdMoyfnhhLrsW/e9EPF0rmjZtWv5i+t0r1Gs1St1olGuB2r79HYwc9QyVKvlj9VCQUkVD90vVsHNftzyVyB3t22JUPDAqHjz7bH+EMOUzZkF+naunpwe9et2PEGC16PqzUyf0LeU94x7k5QOT2ZOtEJutkVynMonx6aSnZ2PLsnEx049TqQHc+vuX7Ph6BRs++QuXvXDEUbWalREoiCKIWa4XrkaHCnDxou5BsmLFimsa36dJFB5mOxaTk/PvvwSAJgWKko3ZoOFlctK6xiGiI05zakpB9sed781m4S1P8vttg67qoVAc2j15G3cPvYt6HaKRUnJo9SFSYlPKrP//Ipo0aVKsvvyG4uYK9frjmWcGomlOWjRvDgislhz/UQVTvvzsR2POIdHdnVq0uA0pnUhcCOF036B5/muzZ39F61uak20/y9///I6HxZPb2unM/UIILF4WAqqHsisDNqw9gnT//frNah7Z8jGPbvmEDRMXsPKdX1g7ZRGnN+W5odSpejcRwW3peP8t/LnhI7aeKkwicr1wpTHsOWjfvj2zZ89m165d9OjR46rH92/elJrVT1C92ikuLP8bgDarf8fi441EASFQFDAYwJZYkOz45I+LUISGzExj6ePXtlLOj9Caodw/tiue/p6cP3Cez/p8zqwiiF3+P6FevXq5D9HyA4nQtFId5RnlXqD6+vpy7tw5Nm7agUDBbs/GaAJVy2b9uryIsVYtm2Ex+GFSChpVNA2kzKRp0/rExR1nz55NdO+eF5ff/c7hWJ3+vP7qUN0v0qU/AWesHcv0dS/r+YwAgWDj0r2YvT0xe+urWg+DhrePiSqta7vH0khMTCI7OxtN0zBZjRw6eOK6fj5lASEEjz32GP/88w9Lly6lWrVqDBs27LLt9r/+AQfenJL73sPDg7jYYE6ciMDDQ2Pfx/MQikLV0aNwukBE1MBl9MFmV7CYCt4YniYXYX6peJhU5Ilrz320t3N7Dndtx55OeaGjFWpUoG3fNnQYcuc19/9fRo6l/2ofwNcFUoLLUbqjHKPcC9SQkKoI4YXdkYoqM5HYqFmrCs+/8Cztbs9LAfLj/On4e4dgcyXmay0Q6MxKK1euJCQkhHr16uWelVJikV5EU5OJPb5m/HNfc0vQU5w/pTPy1G5YhY0ZXzHo9e7UaxnJZ4vG5LZt8cIDpLsEoS3q5Lr9nDl9HlVzUqtOFaxWC+1b9aVHpyGcO3NlSQZvFJo2bcqhQ4fo378/n376Ka+/XjiTQQ40u4OUlWtIWr4SLR8NYJWPZuJRoxqHLzRAcScLDGp3C/VnfkLjL6YSOfMHsm2eCKGi5Qt7tRgcGBSJxeCgUqtrJ0A2KBIhwGjQSN2xw/2AM9H7vd7U61Dv8h38DyM0NBSj0VjukvYJqZXqKM8o125TObjUMrt3716aN2tBZmYW3t55oZeVs2tiJ4VETgKgCAsLFy+gU+cOnDp1ljat72PE8wN5esDjAKiqhslsJEPN5p4+t6L5Kfj4eWE0FdR79n+pGy3DPHA4HJjdxB5B1UMZvGYCnkF50TRVIyP44aePqV5Dj+Fv3rIeJ46fI7iCf1l/JNcNVapU4dVXXyUzM5MP3nuf+oYgHhg9GKOHpUA9xWJGCa6AFCJXcAIE1qtN4Def0ThfXSEE3nVqAmAxB2IOr4SabYN8Ot82K+dz9I03qPvsUDwiChusrhRVf/yTY0/2Izsjje3PvoWn1UnrVYuuud//BeRY+lesWEH9+lfkZnn9cP0d+/8ViNIYANxxsemACriklM0vOf8oOhUWQAbwjJSyRLNq8+bN5bZtl4+VNhh83Am8HAV4TA2KF7Nmf0afPnmsRO0DB+HK1kgLO8nnc8ZTuXIlKlfWo4127NhDm9b3MnDQ43z8ybuoqkon3+f0VaqXCUeWiwlTu9D0sbswWQsKj28aDEKqGlJK+h/88rJzvlFwOBy51IbXCikls4aMw2P9ScIf78Bto/qWwQx1JJ1NQlEU/IuxzJfZOH/M48SUrzAaJZomaXIFRreME+ewhARg8i7sl/u/gCeffJKMjAx++umna+5LCLH9UplwpWgW5SE3fRFZqrrmdoeuebzrhSvZ8reXUjYu5kJOALdLKRsCbwPFxydeIVQ1ncaNa9O79wMYhCdmQwAGvFCEiffeKcjUlBh+lF2s4dDZAzzc52mCg/NcbZo2bcjZ83uYMlUPiGjh1xcNCUKgZTuRwIoJc1nQ/PFCc5BCgNvkdS1wOl2sX7MTp7N8p3EAfRXz4NjnOBskeOajcVdFRl0UNE3j3bbjeb/DxDLpryTE/7kMo1FFCInBkufbmh5zjF0jis9PdfCdCZwY3JdDD3a57nO8USh3ln4pdYNHaY5yjDLRoUopN0gpc8y2myjI0nLNqFmzJosWLUeVWTjUZFSyUERhR/RTZw7jcKUhpUbyBZXwsHo8/tgzpKSkccetDzLm+feJ8GtPw2o98JOeZEobmdLG03Xi6Vopm9bhqUQExTGr7Yvs+Dxve9hr9QcsyDZz6Bq3R7O/+oPe943k2xnlL8KqKHhHhPD4vPfZf/4EtWrVIiMj45r7VBSFln1a07J38RFLZQXvxo1RFIEiwBqeR7q9+8nnse3cxaq23Yts51y9HFByVU1DwoYzJOzyvAH/JZQ/9n6JcDlLdZRnlFagSmCZEGK7EGLgZer2pxgSASHEQCHENiHEtiv5MocOHUpmZn42b0lAgDffzPqwQL02rdthMnhjEBYcWhZZWVnMm7eAxMRktm3bw4pFWwBISEjCgBFFgCZcNKl5iNurnqR+n40cTYgkOzGNrHw5pIQiOJ+Qwd9/bePogcK5nC7FqZNnORpzslD5bXc0467OrWnXoXzsVras28f4MV9gyy6eKT0kJISMjAwuXrzIlClTymTcXu89RLdxV++eVVoEde9JZrYZafakyptv55Zr7sWQQxZNjVh91jzAgSYEM57K22zNGT3nek/5X0N0dDTJyclXrR5yuVysWrWKMWPGXL5yaSD5f7VCbSulbArcAwwRQrQrqpIQoj26QC3yU5ZSzswhhQ0JCSn1JIuyNl9MOM/+/YcKlAUGBgIwavQQGjetj+7Mr3ByVxy3hnTmn01fExjoz4uvPIWnYiBVySBVyeRUUiA12u3k7y9vwVIljKf3fErbV3Vi4cSjsSx/8Tv6D7uHyNrh+F3CP1oU7mjbh1ZNuhdKglcrqirf/vQOdeoWjjm/ERg16EO+/uw3Vi8vmYvXy8uLWrVqMXHiRFatWvXvTA44t+c0J7cev+r21krh1HnvLWp+Nh1rpbxNU5tl8wh9dgh3rZlbZDvv0FAaLF3NxS4vsX/x/tybpMPgIrk1/pPIH9N/OZw/f56ZM2fy6KOP0qRJEypWrIiXlxc9e/Zk8+bNZTSj/40tf6ms/FLK8+7/F4UQC4CWwJr8dYQQDYEvgXvczC5lhsTEgt15mCuwaetC6tWLKlD+24K/MBgMvD3hRR7v9wBNG3ZGInm874uoOOnf8h32pfyOqqosH7+FcALoO74rVRtE8sWgz/Ez2Xl68aQCfZ5af4jj/+zljld68uzO90s134GDHyY9PRODofwxUuVHq9saEDcvgeiG1S9bd9WqVTz//PO0b9+eBg0a8MUXX9Cqlb5td8adw3HmOJ7Nby01wXVp8GWfT7Gl2xh/4qOrZvcKaF14N2D08qDGw8XTMe78cydfD/yWyKZVEQZBaI0KvLJ67FWNX14hhKB69er8888/ua6EGRkZLFq0iHXr1rFr1y7OnTtHYmIiNpuN6tWr07RpU/r27UujRo1o1KgRQUFBuX1dMyT/E1b+ywpUIYQXoEgp092vOwJvXVKnCvAr8LiUskzZa8+fP8/+/QVXKf4BPtSvX5ApZ8izL2NR/LCr6VQKbMOpi2uwWMz4+fuSleRCapK2XRoA8NWrv+GSEgMm+o24n6TEFGq814P77i+cP0hzOdEkbPx8Cc2eLJ1D+MuvDbnKq/138f7055n0+YhS3RDBwcF8+OGHfP/99+zdu5euXbvy3nvvMX36dKbU8CPMnk6lD2djrlqzzOZ3z2vdsafbihWmmsPB4V5dEVYLUfP+KLNxl3yoE4ecO3ieqWenYMuw81Kbd4i+rTZ93+t5mdb/HTRu3Jjx48fz8ccfk5iYSHJyMkFBQbRq1YoOHTpQv359GjRoQM2aNa/74kC4I6X+6yjNlj8UWCeE2A1sARZJKZcIIQYLIXKYLF4HgtBTsO66JIHWNaFmzQaAKHDT21Msher9NnsjgcYIAk1VsdkcCCG4kLibFX/PQ5UuNCRvffcMAGqIkwQSiG4VCcDECTPo3/dlFv6+slC/h3/fgkFAVuK1G2TKI65kdRESEoLdbmf+/PnEx8fz7LPPoigKE7Ydxrf7Y5gqRZbp3Fo+3IbbBpb8EJOqC1nGebEGzh5AjVtqMHKRTmzjtDuJOxpPbMx/I0CjtGjRooW+o3v7bVavXo3NZiMhIYFFixYxbtw4evbsSZ06df69nVYZbPmFEFYhxBYhxG4hxH4hxJvu8nFCiHNu+bRLCHFvvjYvCyGOCiEOCyE65StvJoTY6z73sSjNzaL7eP77R7NmzWRpcOutd0tF8S5wVKnQqlC9Pl1ekNW87pEh1tbSbAyXUko5Y/osGebXSoZ4tpYh3i1y6wZ7NZfBXs1ldLXOUkopxwz9UN7V6imZmJBcqF+X0yX/HPSJvLD3eKnmeynOnYuVgweOkefOxl1V+yuB3W6XQojrPo6UUmqaJqWU8osvvpCRkZH/yphFQbXbpep0XvdxbBk26XK6CpUve3+hnNjyNZl2IfW6z6GssXLlShkeHn7N/QDb5LXKgxoG6fo1sFRHSeOhG0683a9NwGagNTAOGFVE/WhgN2ABqgHHAIP73BbgFnefi9HVmSVeR7kPPd23b3+B9wIjZxMO0P727vy1KM9R+8zfqVTUKiGEINBUA4DhQ8eiOgUGxUjtWjVy6wZ4egMwaNgjAPy1YC1HD53Dz79wDiGD0UCX6c9Rof7VGZKGDnmVWd/9xNDnrr8O7t+Mzc55WA8aNIiKFYvOUno5ZG1cjGrPKv58WjrTowYwPWpAoXNSSg6uOUxmuqNAFtXrBYuXJVf1oGkaZ/adQ1M1Us8lkxaXgjP7+sSYTx81n6Gt38FRBKPZtaJ+/frlJ6Zf4na/KMVRUjc6craTJvdRUqNuwI9SSruU8gRwFGjpTuTnK6Xc6H5ozAK6X+4yyr1Abdv2lgLvJS5Asm7dZh588GHeffddThw/mXvelxBaNm/qrivIcsZjsgh+X6anHh4SMpT7jA3o59GSAU/1AmDh2mn8vfXLIrc2mqYx+fbxfNbtQ9LTM+l69zPM/uayubpy8fLYoTRpWp+Xx/5v+TGCLtQqVapE+zvac27f2Sui3Uv++AXSpr9E/LCi02QD7J+7ihxPjfxubABHNx/no56fMfuFH69u8teADXM38/adk/j7i9U8+OGjjDs8mcCqwddlrGXfbuDE/vMc3HT13g7FITg4GKvVyvbtpc24fJ1R+i1/cI77pfso4MophDAIIXahZzZdLqXMcUV4TgixRwjxtRAih5G8EpA/c+NZd1kl9+tLy0tEuReoP/2Uj2ot3/0aUcWHfk88yMyZM7mtbU92OVdySNuC2cPEL//o/qn+lgACjZF0uLMNQcH+ABiMAkUIUqRgyfR/AKgSGU71WsXHIjhtDpx2Jwt+WsGWjbsZ//rnxda9FM1bNGLdht9p3uL6M8EfPapnB7jUXet6IT0xmfA0SVNzYz7o+D47FhS+Mc+v3c2FzYVJOAyVaiIl4BNI+oXUIjllWwzqqlP+mRQ8gwum/Y6oV4nWvVpwx1O3ldn1XA6LP17ByAav4RfuT/VmVanRohpCCExW8zX3/VjQcB4NLPzQvWfAbUjgtynXxlVbHKKioli2bNl16fvKcEVuUwnS7X7pPgpEZkopVSllY/QAo5ZCiPrA50ANoDEQC3zgrl6UXlSWUF4iyr1A9fDw4NNPP0LTHAwc9HguYfOD3fpyf5deJCYmEnsxBrtMIdUVy6GUpXh6BqGqKtUrNUIa4O98KaATbJBsk2S5oHGny7MOKYrCS5veZNji0TzS9z6eHPgA38wpO77OskRsbCxSStauXVvkeafdhctRdmGvayZ9xdjqtxNq1ajWohqVG1YucN5ld7L2uY9YNXBSoba+Dz5L6PR1GJ/5iimtX+XXod8UOcbggzMYuLfwA8zDx8pT0x4j+vaSEweWBS6cvIjD7mDJZytJiUtj+fRVvLT4Bao3iwTgje6fcr/vUH779O/cNj+8toAnwp5n59J9JfatulSy0rIRUr8Zn6z6PO/0nsHx3fqiydtixCzgwMrD1+XamjRpwpYtW65L31eEMtryF+hSyhT0JH2dpZQX3IJWA75Ad/0EfeWZ/4cbAZx3l0cUUV4iyr1ABejX7xFCQwPx9gzHwxyKtyWC2V8sZtCj4zl+/Dhtm3XEx1wJLy9dl6aqKn37Ps0Lr/VDoFAtMm+l3tQ7FR+jyp1B8VRrVJUVX69l468lb3mE0L0MjEYjEz8cRZt2Ta/r9V4t7r77bjp06MBrrxWOU5dSMrTBG7zQfHyZjXc6I45zrliqOrbw9MT2VKgZWuC80WIiIDqSkOZRRbZXPH347sHJGJAkHo8rs3mVBM3pJGHJCpylzPz5cZ/PeLPVBIZXeZHASn4AnNp9pkCdnf/owu67N/Jct45tP43q1Dh7MLboeagaT1UcyVNhLzC0+ku55QZPE7uW7uePqbpwvrPfLXgYDBiEKNNMBjlo3Lgxx9xp1284pFa6owQIIUKEEP7u1x7AXcAht040Bz2AnCfdH0AfIYRFCFENqAVskVLGAulCiNZu635f4LK6vv+EQK1TpxHx8em0at0Ei8XCY4/2wiys+BoDCA4OZt/+oyAMfPZJ3komPT2Fno924HT6MlbvzVv9nHaYqGCxcdAShNPu4rsXf+a7F3++EZd1XTB06FC2bt1KcnJyoXOVaodSsWaFMhknOzubsG37aOTnTda2TSR8WrSg7jh3HHd+9VKBMsfOxaS+1ATHziXY07JBQPLxf4dBPmXDFk689xFnvyoda/+FfPN6ZekL3DXwdl6YPxh7Vp4RqseIDigGwRu/5OXDGvvHc4xf/SJdR9xdZL9SSlx2F1JCWM0QnvigJxoQFBSIIgQXjurjhlarQPsnbiGiZgjHd5y6iisuGfXr1y8fMf1S6iluS3OUjHBgpRBiD7AVXYe6EJjkdoHaA7QHnteHlfuB+cABYAkwREqZozN7Bj1Y6Si69b/IkPr8KBV93/VAaen7AGrXrk92tp1Tpw7nZvaMPZ2Af4gPmRmZ1K95D06XCx9vL05eWMP8+fMZOnQoFy5c3m9w78pDWL0t1GpRPsJBrxX79++nUaNGHD16lMjIyOs2TlZWFgfv74IiFIIbRhDY+ym8WhYZkZyLlOnPo+79A+ETjNFxAaV+F9advJUd3+vJFkcdmIz5GjOvXg6ujExif5hP8N134lGtaqnaDI0cSVCVIMatGcu4Vm8RezIRuwpjfnuOurcWTYZ9eMsJdv19kAdGdsRkLtoL4cyB89iy7NRqXg2Xw8XWP3dTp3V1ln65lg5PtqVCFT0Sad2Pm/n6uR/AbOTr8x8U2dfVIiUlhdDQUDIzM686J1lZ0Pc1r6bIzW+UThdtfNJebun7/hME0x1u78TBnedJT83EL0DnR50y6XvCKwZjJwOHy0GLlo1o3CQagO7du9O7d2++/XYOtWvXok2blsX23aB90dtRgMSEZEY89xYjRvWnWfOyJ+I9ceIEcXFxeHl54eHhgZeXF97e3nh6epb6x33m1AXCKwVjdLv0/Pzzz6iqSmho6GVaXhvMmoqXVQVU7CcO44o7XWJ9NS0Rx5blICyYLRcxP/ge5pbd6Wyy4LQ5UR1qscJ0wRMfcW7DYTwqBtF/1YRrmrfR24vKA5+8ojafnMwTYo3ubYhpfQxxp5Lx9PUots3HT3/HxdNJNGhXm+i2RUePVY7Oczczmo3c8mAzAB5+4/4C9bxCfMh0SVxOJxlJGXgHel/R/EuCv78/Xl5ebN68mbZt216+wXWClJfdzf8n8J8QqBtXHiD5gsruHYdp16E5dpuDed8tJTQ8iNc/fIpGTaLQHIIBg/tQo8ptxMfH42HxZcDTw6hePZLDR3Qd6U+f/83SHzfx4W8j8C0FycmkiTNY+MffHDt2ig1bf72quWdlZREbG0u1atU4fPgwK1asoG3btnzwwQf89NNP+Pj44HK5cg9VVVFVFSEEiqKgKEquDjf/e4PBgAk/vNRoHEocdqMu0BRFwd/fn0WLFtGz5/ULkxRGExoCVWoYhSRx1Sr87n+s2PqKTyCmeq2QF/bg2X8G5jp51vmukwpz0ObHuQ2HUIQg61xCmc3/atHjje6YPl/Jvjf+ZP/GY1RtWLR3iG+gN/Gnkwirfu3uVE06RKMoYJGwe8Uh2j5UtouzqKgoVq5ceUMFKnBFBqfyiv+EQN13YhNmxYv2HdujqulYPSys3PklHp4Wevcaws4d+/Aw+HHowDEuJp4hy5EMSB5+uBsDB/TP7WfrPwc5sPUEyfHppRKo4RUD8fBReOWN5654zg6Hg7i4OJo3b05ycnKuQKxRowZjx46ladOmbNq0iaZNCxu4pJSoqlpIyOaUOZ1OnE4nZ09fYNzIr3io32PcfncTNE3D6XQyefJkJk6cyIMPPlimZCX5YbBaqfL6O5wcN5bMdF8CvEr+PIUQBIz86qrGajCgI7tnLsMVEHT5ytcRGSlZfDpoNqcPnMflcHH+SPGGtAdf7MiFE/EEhvuXydgv//QMB9bFlLkwBT2XWNmxRl0lJFwzg3t5wLWGjF11qFkpQ0+llAXCTvMjPT1D+nlFyZqRt8oD+45KTdNk8+a3SkXxcdf3lampeSGBtmyHjDuTWOw40dHNZYcOXXLf39PpYWk1VZaHDsZcdo6qqsply5bJZs2ayZCQEGkwGKTZbJYPPfSQTE5OlvHx8aW+3mtFcnKyDAgIkMOHD5cpKSnXbZyOLZvLffe0k3s63SmzDh+8buOUFxzZekL29h8mnwkfLoeEDpW/jvut2LrP1n1VPhIwTGamZv2LM7w6zJgxQ9arV++q21MGoadNqwjp/MxcqqMsxrtex39iherrVYG0zBT6P/lUgfJB3d4lUjbFdjGLuvX00NI1a5ZRvXo9Ll6MBySennk5gSxWE6EROmfq5s1bGTZsJMeOHeQe853Eui5yKPEIhw4d5pZbbiEsLIyPP/0Ap8NFnShdB6ZpGl9++SVvv/02iqIw9JmX8fX3JjH5DB9//DF2u51+/frx0EMP0bBhQ7wus2q7XvD392fatGn069eP3377jYkTJ9KnT58yHWPt2rX8vX0nIb/OwadaTTxqF6+L/l9BreaRvLtqFF/0m0lqXBpVm1Yptu6wr58g5UJ6iXrWouDIdrDtr3006RiNh8/1NdDloG7duoUoMv91SJDa9dlN/au4UZK8tCtUTdNkhQrhcuiQMTI1Na3AuaZej8kmno/Lxp6PyrS0vHNTp36Wu6L18vKSbdu2lZGR0VJRvGVkZN0CK972De+Sr1YeKsdGDJVmc6D09g6TY8eOlZ07d5ZWq1X27t1bNmzYUEZFRUkfHx9ZsWJF+cknn8jBg56VwV7NZZBnM9m8eXM5ZswYqapqqa7p34Ldbpf33nuv9PLykgsWLCjTvpOTk2XFihXl6NGjC5S/++670tfXV06aNOmyfagOm0yZO0U6Y08XKD8wZ4Wce9vzMuHgqTKds5RS2hNOyqz1X0rXyZ3Svm6W1Nzf2eHle+S+P7aWqg+n3SkzEjNKrDM06hX5dKWR0nkZ4paEkxfl31MWS1VVZXZ6tlw8Y7Xs7T9M/vL+ktJd0FUgISFBrlu3Tn755Zfy+eefl02aNJHkhsFfOSiLFWplIR0fW0p1lMV41+so9yvU2NhYMjPT+GjqhEKx9tnShiIMZLlSCQ6sjd2pO1EPGPAEr776JhUqhLBw4U+89957bNyo+5qePp3nlF2zZnW++eNLloz8nQq1w7G/83GB/qtWrcrPP//M5MmTiYmJoWfPntxxxx0It5P1uRMDqRgRyvSvys5ZvixhNptZtGgR7dq1Y9asWXTv3r3YuvvvvQspJZXGjiPgtsuHcyYlJXH+/PkC3giZR49Qd/GvdKhckdGjR7N161bmz59fbB+p307Atu43sjcvJeyjv3LLD81bjS0xjZNLtxMUVfwq8GrgmNwSUMjECXZvDDVaYwirxe8jvsWRaSeqcxMMppLp6oxmI8bAkm+d1IvpACScSiSsRvEeF1PunIDm1Di5/STblx2kcbcm3PVkW9o8cG3BI1lZWRw9epQjR44QExPDvn372LdvH8ePH8fhcBAQEEBQUBARERG0adOGAwcKhwf/6/gfWKGWe4HqcDjw8fEpkrgkull19u84Spx6GP8APYolJSWFF198gy2b1xBVtzYA33zzDbNm5Tnvq2o6UkqEEPw6YyW/ro6hUYZK+/h0/EN0xqnudw5HJtdm49pFtLilsMuUEII/ln5xPS65WGz4ZTs7luxn4Md9MHuUPn78119/JTw8nJiYGGrVKtpvUrotrClrN5RaoAK5KTQ++eQT1O+/omNwIB+0aEGzhx/j1VdfJSsrq4DaJT+UE3PwDHGCoSDjVKevRnJyyVaiHsnjQtWcdtJGNQSzB/7v77rs/IqFkCiK25pc/z4cR9bhEVaLBz54iIwty8GeCqbAq+/fjV6vdyU5NrVEYQoQXDOMuAPnCagShEMxsPbXXby7bgxH1sWgABWqF58qKDs7m2PHjrHux/UcX3OcC5XjOHDkAMePHyctLQ1fX18CAgIICQmhRo0aPPXUU7Rv35769evn+nODvkv95ptvOHjwIHXr1i12vOuK/5Etf7kXqO+++y5xcYWtqXHnE0lMSOb1jwfw8FN56SzGjh3Pt9/8wM4de9i2PY8w+ptvZjBwwDAeeuhBII9+bsXsjWRn2vE6dJDv+n3M8L9eASBm/xmkJnE6y09ahhVfr+fQhmP0GNWRSnXCLt/AjSFDhlCvXr0SHf2V4HAccbH4NSuexEVzOjg5fCCWajVoMGw0r7/+Oh999BHNmjVj7969tG/dmq533Emlvv3pdOYcr776Kk899RQ//lg0I5TdXhn7+XQ8KhekTfQM9iP6sUtYqKR0pxq+tu9DMWiAQBES14E/0A78gSGqCaE7HqWy93nsH03G87WUaxoDoMvw4lm08qPv14MY33IcG2ZtIDNbd5d7sdW7eJsFDTvW47Z+bfEMt3Ax9QLHjx/nyOEjHF50ik2n13I+9Qy+vr509OhEiFYB1U+lV69etG3blhYtWmA2l+6hK4SgRo0aLFu27MYJVMTNFeq/gXvvvZfTpws7jQ+4ZwLJp7L46OUfCwjUJ554mLk//MRdd99eoH7fvo/Qt+8jhfo5uycWP4OZSK8snCdOAHD+VDweGT5Y8eaW264/S9SlUJ0qv771O3VurU3DTnmr4xHfPcXFkwlXJExdLhcLFy7kl19+wWQqOssnQOQrL5P05x/4tm5TwsRUnHHnUTw9sVgsvPnmmwwYMIDWrVvTs2dP5syZk/ugah4aTvfu3Tlz5kyx3fn2/5DEd/pjP5eGmhiHIaj461LMVnynHCr2PIDUVGRmMopP8b6f8uG5yDmPunmDNCQS7DakKwtHgi+aE7I/9EXUGYT1vtLlEMuPLb9sw+pjoWHHBiXWczqdLBgzj1ZP3kpAZCDWYCtnV59DnxUk+yQwe8V37Fy6nzOuE+yxbMHf359aWkN8E8K5t8JDTDn3JlarlcykTOJPJRDZpHSRX0WhSZMmbNy4keHDbxDNpASp/ici4UtEuReoMTEx1K5du0BZUlIqdRtGcvroBZq2KmhdFkKQnp5WQFd69kwcTep2xWIxcTZxQ4H6z33yMGten4WGALcwUDUNh3BgNpjo0nEQWzbsxmQ2cj55/XW6yoJIOJXAypmrOb71RAGB6hvsjW+wHiVjj43FmZSEd72SGbPefPNNAgIC6NCh5IydnnXr4Vm35L4Uqwe1fvwTYcj72URERHD2bNGptZ944gmefLL4qCRrdFM8b+2EK/YMIuDyHAP5t6lFIXv+Kzg3zcN897OY7h6G0Vw4VY5X9N2k4o/RlISabkYIMFdujRy0luy3O2KpFY/BB0j6DCidQD21+SiHFu/kthH38t2zswHJQy92ILBmKP7NKnH27FnOnDnDqVOnOHr0KDExMdQ4EkEAAWycu5kv0r+hjfVOHDipSC0MJpXofnV4pG4v4lYkM7rvUOq4o63OHorjw0dncv/zd2N1R5Z5BXrhFXhtHiWNGzdm9uzS8RtcN2g3Bep1x549e3KzawJs2byLu9s/xnPD+7E7s3Ce9BYtmrJv/2aqVs1j5HI5dco6VdV1ZxdPJPDG7RPpMKAdPV+7H0+rkQXPf0elO/TV6PuvzMaFSu0GVdi4fT2KMOCwF2Rk1zQNTZO5IZ9lidCaoTw37xlCS9CfHXziSdA0ak2dild00ds0TdOYNm0a33zzTYHVqe3sORJX/EPFfo9dseO/UoSQykHa8ZMcev1DGn/2DmZfb1q2bInD4WDevHn07t27yDYBgyde0fglwVC5Ac7tv+FYMQ3n5tn4vrWnyHpGQzJGDydOowaKrm6wVKiBWiEBg3BAOmiukj8Xu93O+fPnOX/+PCsfn4uQsPqP1WjSQJDZzt6Zi3FJeDX2e7y8vHL1mZUrV6Z169Z4B3qSvDEexWLi13EL+fGVBWCElj2aUqV+Re4d7iZV6VVw3IioMD7cXjitOsDOJXtZOu0fBs18goBwvyv67OrWrXtjSVLk/6MtvxDiJJAOqIBLXkJM4Ka3mgrcC2QBT0gpd1zaz5UiPj6e2bNn89ZbbzFj6lwcdhdzfpoPmuCrmXOZ8O6LRbaLiiq4on1h8CTeHj+SgcMeAnQlvKZJpNs20bpHU7KznDTuoAumo3vOYpImOna7hd0H9mPDRu9+95Icn0ZyQjpL5m/k7UlTkcCxC0vx8i7a6HItiL6jZL9Oo78/ruRkjAEBZMdeJPP4aYLaNCsgILdv305GRgZdu3Yt0HZ/vwGAJG3rDupO+6jM5rzjsZEAbLq/P+1WzSM8PJxRo0YxePBg2rdvT4UKZcN0lZ6QxM5JP9BuUsEINkvbR9GSTuBcNRNDpehi28vb38S29G0sLbvi8fCnueUGHztCAc1mQAiNmTNncu7cOU6ePMmpU6fIzs4mISGBixcvkpWVhZeXF15eXjxuvg9vYSUpKx0Nf0KsYFIkBqmnZi4KH3WfSqwWT6vuzWjVoyk/vrIAxQCDv+h31Z/LjoW7ObLxOLsW7aL907dfvkE+1K1bt0iGsn8TUv4/EahutJdSFhdMfQ86j2AtoBU6O3arYuqWGgkJCZjNZiIjI/nm5dcxY+GkRxxGgxmHrfi43y739UbTNP5a/BPPD3iP7RsPsWPDEQaP0J3bQ6uHMONsHuGF0Wzk7if1OOY5kxZjNhgRCO7t2Ybxb00DAdWqV6RzrREIJ7ikC4fIBiRx55OoUbvsBWpJuLBwKZkX0sFowRIexvYOd2E2qsQJhaCHHiL8qUEATJ06lT/adWB/3/7Un/11rrCV7ieJ7fy5Ivu3H9yKGn8Oz3bdr2hepiA/nIkp+DXKWzG/8cYbrF+/nu7du7Nhw4YSWpcef7R/AYOAOX/149F93xU459H1VTy6vgro+uPExEQ8PT3JysoiISGB2NhY9u93ovr0Z/eS0+yZ1ITExESSkpJ4vrlkbFdQJKQ5JJ988wmBgYFERERw2223YbVaqV69Og0aNCAqKgqknnNMCIE9w4ZiNjC8+hiShAVfp0PXzxaD2564lYSTCbTu0xq/Cr68tWYMBuO1bXmbdopmz89bWfXpiisWqJUrV8blcnH69GmqVClbV7VS4+aWPxfdgFluJ99NQgh/IUS41ElarxobN27kwQd1q7wFK4pQaFm/OTu3x6DJ4pOW7dq1F83tBlS/QS1+n7saRV7+yzq84yRfv6mTBLeqX4eIahW4vX1LDu49zpNDuhGzOZbtyw6Q7krCIIwIKahRu/jUKdcL6bv2AgJcusXbanEgNV31kPTbr7kCdfv27TxdtyHKJSxOlQb3J3bml0Q82bdQ367EOJImPo0ArI3bofiW3oWo7Z9fFyoTQjB58mQaN25MVFQUBw4cKFEXatu3DUNgCKaKxRtYBDnq7oIrGi07FQwmXn/rHSZMmICiKFitVhwOByaTCQ8PDzw9PQkMDMTb25vKEZV54okniIyMpHbt2tSoUQOz2Yx0ZhFs9GDvy0WvmJJPJ/D9EzM4sOowPiE+1O7UiN4T9d3PoM8eJTshlaVvLSiR66N592Y0794s931E9NUlOswPg9kECiRdSGPaw58zZO4zpW6rKAqRkZEsW7aMp59++prncqWQ/8/cpiSwTAghgRnykhwuFJ/oqoBAdSfTGgiU6im4aNEiOnbsCIAdByZpZN+us2hCRSKYO2sRD/e9r1C7ezvdz+ZNu8nIyOKtN6fhFC58DJdX2odWCcQunUjg6D4928HsP/Lo4vxcZszSQACBqNKJv+eV6anKCjVfHYW1agSBt7clcf0q7A4rBsWBQXERcJ/+APruu+84e/Ysdf75h/Dw8ALtwx/qSfhDRTNRpSz4Bs2lIOGKhOml0Gw2hNmMUBQaNWrE5s2badWqFX/++SfdunUrso2aksDFt5/FGFaZilN/KabORe5pvx4UIwFTDuaNl51K1rh6YLRw4mRrOnbsyKJFi4qlQdw29lPOL91IxWoKzYcXnI8wlbzjmHHX26hOFQWFtIvprPtuPU26Nib+0Hn+HPcrCFA1XUhlJWfiWQQRT3bMQZJ//IIKw17D6BdQxCjFI/lsEi67i5AaBVUoG+dsRHPzNB9aF8OckT/y6AelDzlu2LAhGzZsuCECFcT/hJW/tFfQVkrZFH1rP0QIcSmTcKkSWkkpZ0p3Yq2QkOINLqBv95ctW0avXrpWPls4SBPZqJoGUqJJF6GhRd/w8ReTuBAbj+py0aX77SiKYPI3BfWtO/4+yHOt3uH0oTwfV29/T1QkGhJjEduvvWuPYNUUAo2e1BSR/Ljqyt1qSgvN6cR+tniXo4jH++BZpTKK2Y8smydZNm/qL1lNxUHPAjBixAjGjRtXSJheDt53PoDqMiBN/lc9d1dSIjG97+H8O6/mltWoUQMfH5/cRIKQp3rIgeIbiE/3J/DrPajYvtXE86BKcDoLtjdawGQFT39CQ0MxGAwlcspqDn2Ho9rtBcqlIxOZnVri9VWoq6fUqdKiqp5EENi3bA9ndp8EINMhyHIpZDgkF47mkZzbdq0kcczdOE8d4OJ7L+Dcu56T/bpw5ME7ixileEy99wPev/0dlk1dyrHNevqS74fN4uDy/SjA+G1vYFBVjm86WnJHl6BJkyY3LmJKom/5S3OUACGEVQixRQixWwixXwjxprs8UAixXAgR4/4fkK/Ny0KIo0KIw0KITvnKm7lZ/o8KIT4WpbDglmqFKqU87/5/UQixAD3B1Zp8VYpLdHXVyM7Oxmw2ExgY6J6DigEzSc54EFlIKWnfsXWBNp9N+5qLF+P55Y/puFwqZrOJaV+9zrSvCltFv3/zT84ejGXZt+t5eqK+qjMajUxb+iIxO05zb9+2nD97kaxMGzXr6Kvp9/8eSfyZZByZdk4fjKVK3SsTVleCuBmfkbzoD6q+Oxnvxk2KredTLwqfBlEEtm2RW+ZwOEhLS+PRRx+94nGt1etQ+fsNUERkWmmRdjEdh/DEacojQo6Pjyc9PZ0uXboAYFsyCdeqaXgMX4whXDcgCUUh4OFnS+zbXKMxrtsfAatXAQOcYrLiPV4XICHvvsumTZtK7Kfl5Odx2ewYrQW9FtJerwlS4jF0OeaIwr6kqkslft8JBHB26ymQAqMi2fjlGswGEBIsJolLz3bOia0nqNaiOgDahVNoiefRki/g2/EBUuZ/iaYpKCJbP69pLB35DZVa1qLhw3lrlqzkTMxeFoxu5v82T9xK/LF4/nrvLyo3qsLIxSO5EBOHEGARkg/bjkMBUk9fGX9sdHQ0M2bMuKI2ZYky2vLbgTullBlCCBOwTgixGHgA+FtKOVEI8RLwEjBGCBEN9AHqARWBFUKI2lJPg/I5+o56E/AX0JnLpEG57ApVCOElhPDJeQ10JC/BVQ7+APoKHa2B1GvVnyYlJeHv75/7PtE7hlj1EDWrVURPXCgLufyMGDGWd975iPPnY3HYnHz92a9U9rmLpx/RBer+3cd4rMtYjh85w0PD2tPojtr0GtWxQB9/zVvP15/8iQTu7/AcdzR/guwsGwA1GlehdddGtOvTksfe7HZZv8hrgXeTZnjUicJSqeRU4EZPDxp9PpHKjz2YW5aUlITJZMJms13V2MJkRihXJ1BtyRls//Zvku12EjbmxedHRUXRo0cPmjVrRnR0NKmLPkdqKmrsla2iADwfegvP+8fkvl++fDmenp5MnKi7YAUHB5Oenn7Zfi4VpgAm70xM3nZsUzqSMqHwVvzI8l14KOBlBGEyABKrItEg12skyyFxaOCUcPDvvBWfR8d+BH20Dkvj9gQ8NICwD+fgE5FE6F3ncaYlcnbTEY4s2saaCT/ltkm7mMZr9cfyxWPTc8s6vnAPj3z6OI9/+jiPfPQwACMXj8YlJQb3T9IkoEK1K+OPrVev3g209AukLN1REtx8LTmuFSb3IdHtPDkWzO+A7u7X3YAfpZR2KeUJ9PxRLd1J/XyllBvdtqFZ+doUi9KsUEOBBW7hZQR+kFIuEUIMdl/AdHTpfa97MlnAleWYKAKLFy8mNjZPJp+7qHthhXvfipcxhGYtC/pebt++C/2hIrBnadwS1R+LVb+8vTtjAHj3la/YsHo3H7z2LdW3x1K5cjB+wbof4uHNJ5j96gK2bT6KS1VxOpz0ffp+zp25iNWjeN/L6wXftrfi2/bWq2rbqVMnHnzwweuaU6o4bJ78Cxmr/qJerUSEoqLaMjFYdR3izz//zJgxY5g/fz77k63UyjYQUqXZZXosGRcvXqRjx45YLBbGjRuH1WolMjKSzMzMK+4rZfdSlDQf0AxgsqFYCxs+gyIr5ArPt2ImM6HmCAAcmsTpXmEJFF0JJiWxO49xesdJqjSN1DMv+OQJaY8qNTHen4YQAnVLCyLuPErdB24homUtzu0+xcKxP9Lx1R5Uqh9B5cYFbQ5CCJo9UJBs+qnPHmf+0NlICYoAL6/iI+OKQrVq1XK9IYKDrz3TwBUhZ8tfOgQLIfInpJuZ364jhDAA24GawDQp5WYhRGjOIk9KGSuEyFFAV0JfgeYgx/7jdL++tLxEXPYKpJTHpZSN3Ec9KeUEd/l0tzDNeSoMkVLWkFI2kFKWLvteCXA4HDz+eOHUGPXq1cYgTazbuAl7Pv3XsmV63L7FYmbJH+sIlD54Z3vS877OrNszC4C3PnyGTve3od+g7qxMNWDLl1562/L9bNxwCFXVAIXACn4Me/Ex3vv4hQIr4dSE9EK6v/KCpKQkoqKiiImJ4b333iuyTvLaDWTsu356sug+txN0+z2guJAanHj4TpJ+0H09FUXh/fff59SpU9z69V5uXe5k0AsvXabHkrFq1SqMRiMJCQmMHj2al19+GR8fH7Kzs0vVPnPFl9iT9Ae3R9QdaJoGFjvGii5MtsKroQp1K3PvJwNp9fz9TGn8IrcP64RTBZMCfhX9yDEn5LS02zWOuXWZ5/acYuk7v6G68vgINLNVNzYoVhRFoePEvkQ/cAsnNx4h+eBpYpbv4YWlL9JlbME8U0UhZuV+JLpsEgLO77syrZvBYCAiIoLly5dfUbuygAQ0VSnVASTk2GLcRwEjuZRSlVI2Rlc9thRClJQQrjj7T6nsQpei3JrVdu/eTcuWecn1jsecYeBj4/j8uzfI0PSIjsOHj+eef/nl5/l02vscOLiJOzu1Ihs7ZhQO/nmc5MQ0nDYn1WtX5vM5r+Dp6YmwOzm/Yh9jKj1Hr0qj+OeXrWTiQgIGiygygmj3qsM8Xn0sc9/5q9C58oCRI0eiKAqnTp0iIqKwO5crI5Njb4zn2Lh3rtscQhpE0u69p3W3JiHRVDO2Nb+R9MptJI3Jc03OOr6ePQ/AVP/1ZBxaW2x/8+bN48svvwT0MOTPxjzLwaeb8OcnE2jevDmPPvooLpeLpKQkRo8eTZUqVXj88cfJysrClZlFzHvTyIg5XmTfqR/1wv7rJDLf0H2QLRYL1p6fYmg7FjVFxSmL3pnU7twE7wr+OLMcBFUPxcfHiFmRZGfa0QCDAKOi/89SBb9NWIiUku+fnMn6Gf+w1Z3lFcDc/gjG9rux3FnwIRdetyIGAZpNXzTY0rKZ0PxV5gwu7JqWgwc+fExfPaMLVA1IjSvZwHYp6tWrx7p16y5fsawhRZkYpQp0KWUKsApd93nBvY3H/T8nP3hx9p+z7teXlpeIcitQlyxZUiDKZOWKrfz+8wpGPv8mtWpXQzFIAvwLui0NGvQEVapE8OqQz8nChhMVFyr7F+9hZLVR7Fuuq37rt65BY1+BQQg8DCqZqdlkJmUTaLDioRhp26NoI1BAmC+hkUFUib5+xqhrweLFixk7dizFeVAYvb2o8vxzVB11/Qkwwr/dS8h7f+BbvyKez09DvZCImphO8nb3w+jUrty6zi900hpb4nlS3u6M44B+Q7/22mv06dOHAQMGIISgdu3a7Pp7ISHCzvxpH9C8eXPGjRvHgAEDsFgseHt7s23btty8W2fm/MqFP5dz+M0Pi56kf2VQVITBhZSS7H2LYOWTGPa8iskIZrMd+4ktRTZt2OsWRsd8jNXPE81mx9sqsKXoOmuDkJiFRHELVqP72Xz70I5UqBNO/a55XKdCCIS5sK62Wrto7J7erJ69iXnDvuPM7lOkxaWxZ+EunM6ifbCNRmOu76vmJueKWXVlu5HGjRuzf//+K2pTVpCaKNVREoQQIUIIf/drD+Au4BC6nScnDK0f8Lv79R9AHyGERQhRDT04aYtbPZAuhGjttu73zdemWJTLWH6Hw4HRaOSxx/KyaD7evyvDnx/J8r9PYzRYdB3WuI/44uvCrkvPjunFyIemkoGDeBFLQIVAPP09sXpbkVLyZPgLRHk4CfVwYjG4uP+b0ZhMBl667xM04LHnOxfqE6BKVDhf7Bl3fS66lEg4lUjqxTRqtKhWoPzvv/8mPj4+NxCiOFToeu9Vj63ZbVwYejdKYDihE4snjpb2bDAYMQRXZskfvlhWf06nJm4D2Z+jSZwzEmOXl1BVicFsw5ltYd/u3WS+3406AUYSPu5HrdlxOBwOhgwZwvjx44mJiSEiIoKwsDDijx5g8ttBhIYVZqfy8fHh9OnTDKxXDRm3C2ulMCIeK9rn1vPRiWQfnAeAc9NMHP+8i9llAiExBGQhFHCt6QXVThXZfuHAjzm77hCeBomQEg8B2dKEUdFXiSYFJhx9H6QuOFs/cTutn9AjmLZ9tZzN05fy+O8v41uxsPFICEFmSjYg2PPbdjSXlrsPPbHxGLXbFR2a/MzCIczoOi03+GHdtGU073NLsd/Vpahbt26JpODXE2UUehoOfOfWoyrAfCnlQiHERmC+EKI/cBo3S4KUcr8QYj5wAHABQ9wWfoBngG8BD3TrfokWfiinAnXz5s1UrVqVoKC8H5rZbKJS5YqcPnWGBg2j2L8vhgd6Fi0c7ujcjBYNoth5dD+NouvS6N6GNL6vEQD7NxwlNcvFfrsFP7Od81kePHxnXRZ/t0a3IwDBYTfGYb80mPboDC7EXODdvW/jV8EXAJvNRu/evXn44Yfx8LiyHEZXAuf5o8jsdNTzmcR98zXpW7dQffKHGPIRSEungwvP3YkhuCLB7/xM3UfaY/H3wXjme6RUcF5wYlCsaL+Nw9jtXezz3sDk6cI6szM/yYbUNpzB3vh+prWO4siRIwwYMAB/f39atMhzC6tQq2RWLKvVylO1I2DXRpp89xcGn6K/T5PZjN0nEFdiKo6tcxHZGUij7mCumA0gISblPYojcDy76bB+zYBDBbMRnGpONmT911QcEfifb/6GRPBZu9d56ei0IutUahhB7J6zGL0sRN1VnyPrYrD6eVKtZY1ir71GkzqYPACbHvhapXm1YusWhejo6Fzy8H8VOVv+a+1Gyj1AoS2mlDIRKJJyzW0XmlBE+TagJP1rIZRLgZqTxz4/HA4XNbxbcFePbkQ09GLfnmOcO3uhyPZnYy5yam8s/jKA117uX0AfOuGpr5Do27BYmycgeShgOFJKzIpAkxK/YN/reHXXhk7D7uL07jP4BOX5eNpsNhITE/nss8+u69jCnoLVNwM8/Uk5fAjbsWNo2VkFBCoGA9KZjSvuGEIIWo3Vt/Pn+oViNqs47OAVYEMKDSX9MOYAI4pmxxeFWr4eSGtFqnQfyhNBlzWoloiXT6bx4pBnqF6MMM2BDGmCMeMftNMnUUKNKKQhXXDQPpsDXywkpPnJYtv6RoaScjQOgyJIcxlQJQghkVIgKJwV2ZFlx5ntwCvIBxcKIHBoxedOfm7RaPYu2kXt9nWxeFrwDffHlpqNyVqy9f7Rj59kvlvXmpVcNDlLcahTpw6pqanYbLZcesB/C/+fQk//VRw6dKgQc/jBAzHsOb4dD28j734xjho1qtK1W9Gs6FXqhBHia8Vpc+IVVjDsLz4pDbvLSZQPWHLXpLrPpZQSxVC+v9TWD7Wk9UMtC5QtXLjwimn4rgbmqFvxef4HDGE18bf4sL1TD3b17EulAU9S8RE9ok0oBgyKruPLSTMD4BEVRsbuFDyrZKFlGkGCa9U3uCx+WHzCcDTpS5ekBFzrfkJmpcOVuVAWgvQL4EjG5f1wlXod0Y6tRKoaBnMmBkUDIWk05AHqmgagCBdSjiny8+05dxTftX+Vmp2bsHveZoQBslVBskP3T81psejdP9m9cCeeHkbiYy7w6p538QzxJTM+lWeWv1bi/Brc1zj39ez+X2BLt9H1rZ60eeK2Yr/zVR/+mSvMj648SMzaA9S6rXj2rfzI4TpYu3Ytd999d6nalAX0ZAzl1qRTapTLKzhy5IjO5pMPzz3zCqmOi4TXt+Lr681Dfbrg4VH8E1S1OxHAdx8tAmDbhgMc3H2cWdvf5NNVowmorGEwaBgMkp4RBwiu4I2n0cDkVaOL7TMns2F5Q8+euo7w3XffJS0t7bqOZarZEsU7EMVkcnuyC2znCho/vZ8ch/eTb5DwTDUSBtUh/pkqBL78N1V+3E7wpIMoZhsGsxOBEZMjDcvIZUR0HYpf33EETt2MsfK1p6SuUKEC589f3m3I1LQbLpsRzWVANdYEkccRpaWqOM5Zce4tWqdo9fVm0PYpdJjQL1dn6eVnoULVAEwK9Jmsx9Gv+nQFyScTycp0EtmyOiYPM69sn8A7pz8lpJicU1JK9v++lcTjF8hKSseWno3D5kLT4LdXf2b+8KLJoM8fPEvckYvk9/r54fHPiTtQNAl4UYiKimLVqlWlrl82EEiplOoozyiXs9u1axcNGxbUXL05YRSNm9Sn3xMPXba9EIKe73bHUMOP0R/0IzkplUc7vUq3W0cSXjmYhi1rMmbTlwSbMvXDO4P0RD1R3KZfi6dxff229xjd5M1yJ1TNZjM1a9Zk4sSJ+Pn58eKLRfPEXglOzvmTE9/9VuS59KN7ufBUFJWqnaLaqyOoMrwgq5Hnbb3wvO0hhNQZ8YW0cHF4nmXb/6OzaMIFaKiaSuY4d+ipECieBfNL5Ycjy860us8wvfGwy84/LCysVALV7OWDwS8Dz6oXUWwHkAqoTn0uUphANSB3DLhsP3W6tcAzzJ9GD7fD6mnBICSebrWM0b1FD4sKZ8BPw3NDSIvCjKgBzIwawKmtMfz+/Hd81+tDJjUZy7v1RlPvvkb6fkqBHb8W7eqtOVTMCiho+qrPfQRVLz0XbZMmTdix45rpjK8cmijdUY5R7gSq3W7n2LFjREcX3KK0b38LJ/ZfoGvH/mRlZXN3+0cYM6pof8pboh9l5Kj3GPRedwJDfPHy9kCicekOqWnEMVpUi8HToPDsjL606dmUh8fdjyPboTt4XwKzpwmLV+mzjf5bUBSFI0eOkJiYSJs2bZg8efI1x2QfmzmPo9N/LPLhkfVeTwwmPbYy/bPXOPNI+yL7EB4pYHQgrKloKSoJwyti26KzSPmO24PBOwuzl4oQpdM8OTNtSE3iynZctm5oaCiJiYlIRxZZn3Qme+Ebxda1BGSimDQMRoG0GVDc0zGGZ2OukoRiLJgY0OVyFXi/8f1fCK4SRFpyFhtnLCfucCyahO3z9ZQ5zR/SDWrVSzAmAUhNQ3Fn4vlr8FQUo4Knvxea1MuOr9mXG1qqFCNXKtarhNHTgkkB0F23FAHfP/F5iWPnR/369YvM43a9URahpzca5U6Hunv3bmrXrl1IIS6EAA8b6SnJnD0by9Yte7DbnRw+dII6UQUNWKluRXzChRRAX8EdSf+t0FiKQcWkaByIr0D/Xs1o26sZSedTeLHxOJp1acizXz9VoP5ry0aW3YVeIy6eTmTP2hjuejSPICYwMJCvv/6aNm3aFJl2uySc3Hmaj3pNo+Mzd3LfyE60/GJ8AR1ofigKKAZQDG5HHlPRPyOjbyoKAhGUiTNVBY9sHAufwtLiAQx+QUinGTQFQ7Pe2Hb8hbVpyS5dx9YfIMNpQBQy9xRGWFgYycnJaLYM1DN74Nxu7B1exOLhXaiuaDYcuWMKUlUQ0kCO04yaDYaK/pDhxJmRhMk7kOy3AhAmDZsWivcrR5BSsufbFRitZhRhRLiDQ4QQuZFK3d/qSeP7mxF5iatboXnk44bo8s0IKkZFohgUxlUfAUhcydnoayCNKk2K5uFVjEa8a4QRu0sXiEahPxCPXQHzVFRUFImJiaWuXyb4H+FDLXcr1BzezKKwYfPvrFrzC7VrV+fzmeMJDw2jXfNHGdg3T7H/wXsziU09QZoax4OPlJzKd/XJxiw/2oTwHj1yy87sPEFgJX+Cq1yjVeQ6Y0Cjt/ho8Pf8MqVgmOCcOXNISkqiT5/S82ACHFhziOw0G1t/07d6zgPrSZr4LM4U/cayHd5I8rCqJA2tivDyQVUlRh+FyO9+J3L2siL7ND59EMWajpKlYvRNwWAw4kj15+RDrYl/rjbWF1ZifHgKthWLSf985GVVKes+WAQIZCl+tsHBwWRlZSGFASXAgLGKwDa1eZF1Te3GI1WB8NEwVHAhvHSB7dRawfFUSMzGvmwUkBd7qGXqD20hBL3/fIOev77Cc5vfRTOZMAg9APSWJ3TGKIPJQI1bamIoRf6xvls+5rH1H1KlUS3WTF/C+JrDUYT+4BICIit7EmbVyDpwml2z/ynU3p5hcwtTXTg5VIFDE6iqwJZeunDcunXrkpKSUuQu7XpB3tShXh+sXLmSdu0K0q0+1nMUTer0IKRCIC1aNsblcjFi4HusWaHf/MsW52UjnTzxy9zX8374o0A/88cvZPqQH3Jv3OFHPmf4kenc+56+Eh1fbxQrh80gIj2O9k+0oDzDaNFvzuBKBaNsunbtiqIoBXgOSoN7ht3NgBn9ePHPEQDEzphJ7DEjh5/SeW4yPhuAUARSM6A4EvEMykBoWWR9WIv016Ox7/gZLf4ER59+mD2d7iJz9za8qlQny96ehD310GwGyLZgSw5EEZCV6I0ptDamht1QzHYUkwNH7MkS5/jMmrcxmASBNS+vDwwMDCQ7OxujTxCWug7MVSXCWXQSOqEYECYNxQxCAcW9OfJ95h9sF72xnfdB8dYzCNhsTck8FYLSclRue//qYfhVrUDGxWQsmgOzIgkK86Ht01fGcwpg8fHAI1DXI2/+YpUeSQUo7sdI5B0NdBWAlKx7fwEAjgwbJ1fvQ1M1NFVDd1TRf+PC7cjStFdLLN6lc4MKCgrCYrH8u3pUeUWx/OUW5Wp2DoeDlStXctddeSvLs2diWb5kA+fPXWTmp/M5cOAwRqMRX28/PK3ejHtnKD8v+iS3/r6YpeD28eva/S5SEjM4tEuPdFn9wxbWzt2C015QB7Zw4kK2LdiOMysTVQhcCGZ3GPcvXPHV47MtrzDul2do17MgW9PKlSupUqVKgaCI0kAIQYseTfHy1wMDXEZ/QCD99a2lkC4UBQxGDU0zkp3sjaapqFmeyCwN+5znyZzUDmdiHChOsmY/hv3IX7jOnsRlt2IwKwR8eBZl8LecdlTEyy+dhBHNMBqNGFv3wRDdEUvFy2yJheDFw58wcFnx+tAcBAUF5dIXpm7yJnWLF67E4pn4pQZaKrgyJWpUnqO9qdcfOCoPxnq7TuIS+M7fBE0/inf3Fwr1Eb//DEhJSKgXL2x5p1Qr0vxwpGWwtMNAlncbiS0lg9G7J6FJ6c75olPzeVUMAqlhMkg0m+6etvHjP/l9wDRiFm/Hw8+TYatew2oAq1FvqghBw65Nrsi1rnbt2vzzT+EV8PXETR1qGWPLli1ERkYSli+k0G7L8WnUWPDnL4x55RVeGPUMNsNFElOSeaTvffj55zniBwUHkJy1C4CagV1wOVX8tSB+2/k+4/8eicPuxJzPMTpmYwzLpurb5hE/D2FBv88AicUImXFJeIUFojpVzmw7RuVm1TGUYKH9NxFaJYjQItQSU6dO5f77L89MBDqhcXGcrg3/+I2Mg0fwiqoFgLnL29h+eRnDrf1g7ffuQCAziikL1eFC8VZBy6Bq0116Vlm7ARb0werjh4d/GqpdH2f7V6toHngIpBGy9W2zX9/xhcY/tGw3qkul3r1NC50rDYKDg7HZbKhH/sDTP53sRIGx91fF1re8YCN1wTdkbfqb0L55niQeTdrg0aRNofq2C0kYvD0weekPoIvbDpOyZS+3vdCVym2uzu0r48R5XKkZaCkZnF+3j+pdWmMSEgMSFDAJyZaP/sDl1jcqSOIOniaqa0uy4tOIaKln+zV7mLF6W2j4YCvWfa0Tz/w9+S/qtC85wiw/GjVqxJYtRfMYHD58mCVLlrBx40aOHDlyVddaFG7qUMsYf/75J/feqxsm7Hbd0l6jVhUefeI+Hnj4Du7ueAcGg4HoqFr88ONnTHjjVe6rOJL5n64osj+XU7cuBFf1JjQikIBwP0Ij83gek88l88voeZg9zVRrUY3qbetjwIEZB35mF2tH6ZbRHXPXM/uRT9jy3err/AlcO9LS0nj55ZeLPZ+elElaUiar2/VizW09cSQWHWYohCD+jUGc7K1vWzOWLSA7JRBjUE1y9HOGOx5Hc5lRGnbHVKctwtOJzLaCw4JqdICPP6LbW7gyrRja6lSMt73Wh8zo3oCGVsLP75dBX/DbkK9x5FNdJJ9OYOWHi8hOzbrs55CzQnWtehOhOvGKqo7vLXq2gIwPbyV9bDiuS0hG/Ho8Sfh736N4FXTdkppG5rmLqE4nBz/7iVUPv8Ta+wexqkNeyueDs5dy7Nc17P1yEd88+AET6wxn7tMzCuiF/3juM6bVHsTU6EHMu+81lo0oaHlXPD3JdJlIcXpwdL2eL8ukSH1n4LbYGxTpJlsRaAgWPjMTe2oGapYNs5cFTVX57bmvqHlnPTqN60VE00gAbh3cAVta6XSooOeX2rFjB+PHj6dHjx40atSIihUr4unpSZMmTfjqq6+wWCz07Vs40ePV4H9Fh1o+llvo2/3Zs2ezYsUKEuKTaVnnYe64uwW9Hu+Aw+ngg6mv8ebYaXgoIaz5ew+ff/0g/XqMQzVoePsX3srFns3Tl3V7oh3Zx0+SdOIMlbrexeY5G0g+k0jdjg2IPx7PLY+3pac7ayXChIok5JZaRD+sC5NqbetQq0N9arSrW2ic8ojiVp2aptGvmr51Hd4otzYAx3efITgiAN98Ia35GSGFpx5xZqpYFa/P94PqwGD2APLSy4jTW9Dm3QmKhucLmQghsAC0z+Mb948MxX/UOGBc6a4ln7fClllr2PjFSvwrB9GkV+sSWukRPwAZd3yCsuBZEuTT1MqZZ+JhPappfD183rz8CmvHO99x7KeVCCQGRSClxNcC+f3wmo7qw9Fle4hLd+DCDKrKkRV7mf/MV/Se/jQnVu7m1NLdmAygOSVpx+NIOx5XYJyk/cdxOsAmFU79toFFFaw8+sso5vfKIQDK04vqng6Cqq1r8efTnyCkZPGIL6h4SzTxu44Rv+sYC2zZDPrtBaSUjI8ejclq4qWdpaNujIqKIikpiUWLFtG4cWPuuusu6tatS1RUFOHh4QXUB88//3yp+iwR/yNW/nIjUGfPnk29evX09BgpGVQICyI0PIgxD81AovGycTLbNuxDCMHGDTtJSU7D5tDZeO59rPCWzMPTStXKlahdrwpDRz/CptvvAwTSns3fU7aQFpdK++fu5o0db+EdfKkzuaDegK5EtNC3UME1QunzZV7iuCWvzOXIst08veQVPIOKd0S/USjOWi6EQHE7Mp6pdTdHV+xFnbWBNSuOkr7zMMbQQCbtfDu3fvX5q3Jfh731RcHODIVJWMxVWqKNTAGUIvV1nzR+FjVTFwQGDwtD90wp9hrMim5hfq/WMHKEfuvh9yAsJup1ubwaQAiBj48Ph845OfV9E2AdtZ7ur0/d244wajgq3YuUEvX0LgwV6yJMRRttXFl2JAqqBEXq8286630Ca+ax6PtUrsAdU57h2LbjbPzCvZORULO9/hBOOHQOpxRoKqiaxCKFTgadzzWt2v238s/L3+X2eezzf7jv+YcxCE3nBpDCHSgBvhW8sCekU6VlTY4tWIciIH5XDI375+aY4/jf+3I/ixq31sFoLf3tXrduXVwuFxs3bix1m2uFVgbkKDca5UKgbtq0ibFjx/Lnn38C4OfvzaYDc/j0nR9J5Bxe+BMgglmz9Qc+mzqXwUN7c3vjp7DiTXSzovO3+wf6sPrAl4XKrVUqM+DHlmSnZmHxthayfI6IKewA/UbdYTgyJEYPwdtHPsaRZceeYUPLl3j9/P6z+FTwxSfkxhOrFGd8EELwc9JUAJa+8ztH/96Hf0QQaupOqnhJMtNTrnlsRSn6J+XMyoasPDccNbugF8KEas8B8MqJT/PPOPeVlLDqw6UAvF13FG+f/Piyc/H39+dc/AWqP9AOj2CdJEVz2nBlWUAKTL0G4Nq7lOxvB2O+YyDW+8eiupyAxGDMC+Bo8ebT1OxzN3HbD7H3I53uz56QgahTUADU6NSMGp2asfGLNYBk4IoxhNfSuYtbPHMv6z/9C6dNRdd+6pFMUtUQbuNV7LYYEAqaBk4pctkAPPw8cKZlkxMUa/E2U6tTUw7+uJp9361ACN03WHOqVGpWdPDAI19cWWroSpUq4XQ6OX36dKlSvl8z5OW5Tv8LKLVAdfMLbgPOSSm7XHLOD/geqOLuc7KU8pvS9v3GG2/w1FNPFWDoBzh74Tweij82LYOlK9bxpvFZho3UdXFxZxIxYOTQ7pMlGldy0Hr1omId1UvCt0/OwJ6h+wFq2RJN0+j6YT+6TO6bu9pLOZfEJ50nUalBZZ7769rDPq8VpbnGTmO70Wmsno/ev2YYH3Z+H6Nf4fzxZYGvop9AYMTLKMl0Kqjun92UWs8wIuZzJlR7DiF0ofnbS7PoPrEveiIaiaYJLv1qg2uUnII8B0FBQZw5c4aH3swXkKE5waWPbwyqjeLrwFCrLcZ6HVAd2TgmVQJVoDyzGUuFmgAoJiNBDWsQ1LAGwQ1rEbf1CGGtilf/PL/hLTRNwz+ioNFw+L5POL5yL75hfvz24ASCG1VHyecJkJ2ZjUCiSVClgYq31gGgy1fDmf/gpNxwBi3LRePnuqCpGg363cWP974BmsRosWAwGRh+YCpCKBhMV5+5VlEUIiMjWb58Of3797/qfkoLfbX+/0igAsOBg0BRS7AhwAEpZVchRAhwWAgxR0p5+RhB9FxInTsXJnU+FROHEAom4cWg5/Isr1JKLjpP4q+EYlfTeOre8Xy7pHCqaCklpzYcJrxhVSw+HiUKGkemjcX9P6TyHQ1pOjjveRF3OJaclZIq4eUqI2g14HbWzdCzaE8++xHeIb407t6MarfUKqrrco8aTaoyYc87eAcU71ZUGlw4dI7kUwlEdWpUoFz3pNQdIg2KAbuLXDKRHORoKQ7M28LOuVt5/fgnfFB7GA4JZql/9r2/74+Phw9V3WmZL4eQkBDOnTtXoEyx+GB+9k+EMGD00f1ZvZ6ZA4Bqy0AYJFIAS5+Cx9dc2iWhzWoT2qx2oXLNpbLl8yVUalGTyq3rFDkfIQQ17tQ5Kh5d8z6WfA8we2oGq4d8ikGA1QDPHMjLchrWsBpa7mrdrUeV0O4tfXHRdfYotk//i65fDAXAaL6y5HzFoX79+mzcuPFfEahAmRichBCV0TOUhqEzKM6UUk4VQowDBgA5xpWxUsq/3G1eBvoDKjBMSrnUXd6MPILpv4Dh8jLRJ6W6AiFEBHAfUHgPrUMCPu5UAd5AEjr79WVx/vx5jh49Wmh1ClCjXjjp8iJe0oM2t+mcsSNfeIPvvp3Pg93uxUvxp7JfHSpULJxCAuD4qv3M6/sJ/7zza7Hjn9t2lFUT5uNIyyJ+zwnithwucP7Z316gUa8WYAQNBQmsm7EGIfScQaMrP4/RbKT3J/1o+UhhXe5/Bf6hvkWSdpxas5+DC0rOcZ+Db7pN4pfBX3DxsB5y+VatEbxdewQp2RrgQtXcKxG3hdrp/mm+cuJTXDJvgy/QE8YlOQw4pYJTE6hSMOe5r0otTEGP54+LiytUbq7cHFNE4TQ3Bqs3wt+GMKpoiQW5dm1HD3OkZ0eSFy4ocqzkExfZ9PEi1k36rcQ5HVu2k+l1n+Kn259nTtM8vbzR0wJoOoWkpfDKMrpna8KbVOfxJa/T+5fReAXn8bxGtKxNt69HFDDglQUaN27MgQPXL6HjpdCkKNVxGbiAkVLKukBrYIgQIocY5CMpZWP3kSNMo4E+QD303FOfuXfjAJ8DA9HTotRyny8RpV2hTgFGA8VZYD5Fz81y3l2nt5SyUNyaEGKge4K5epmffvqJLl26FGKaH//a56xfsYvqWhQKCllpNvbuPchnn36DvzGMUEMNDBjBIZj09VA0VeOn574lqFoId43uCkB4w6rUuacJ9R/QQ1l33d0RgMpvjyeotS7Af3pYzzdktJh4ZPVkzL76Ki3uSBxznptF7KFYNJdGaFQYiUfi8mIPpR5VU2RuxP8hLB/9LdlJGdTs1ASTp4ULR86x9oOF9JwxqFDdmnfWJ27fGQKrBmPLyEJz6G5r6cKKp6rh0iBTA5f7l5F/xzBq/3t8ED0GyFutumvhdAvbUSsu79CfH6GhoWzbdmUJeLWMYIQjC+lKL1AuVRXpcKClFx1tFVgzjHs/fprg2hVL7D/zfCImDChKTjo9HQaTCf9KAdjiksBVeGPX8d2ycU+6EkRFRfHtt9/+O4OVkQ7VnQsqJ110uhDiICWnf+4G/CiltAMnhBBH0TOlngR8pZQbAYQQs4DuXCYNymVXqEKILsBFKeX2Eqp1AnYBFYHGwKdCiEKqASnlzJzUrzmJ5P755x86duxYoN6RA6eY9tFcDsTE4EJDCIXIOuHUq1eHjrd3pJI5Ck0DgzTgsus3rdPmZP9fu9i3cCcAMUt2suObv+n2SX8qt6hZoP+jk/IiqwKqh4KAWvc2wzPED6NF3y5dPHqB8/vPoan63X/h0AUmnf2YSec+psUTLZHoguH9M1Mv9xH+p9F56gDu+XgAJk89A+g3nd/l6PK9zOz4dqG6PT8fwHNr38JoNWP11h9MLgkOzcz5bIWLdhM2VUGVCqoUetoLN7y8vHj91Ke6JfyS+6p+tyZI4OzGk1c09+DgYNLT0y9fMR9MQ/ejVe4ADywsUG6pFkFEoyN4HP+gyHZCCGrf05TAGnlBKec2HWZmo6Hs/iaPbyHqwTYIDxOqJrl0zRHexp1tw1g+rN116tQhJSXlXxlLolv5S3MAwUKIbfmOgUX1KYSIRE+Hstld9JwQYo8Q4mshRM62thJwJl+zs+6ySu7Xl5aXiNKsUNsC9wsh7gWsgK8Q4nsp5WP56jwJTHTrF44KIU4AUUDRoRZunDp1irVr1zJr1qwC5aHhQbRs2JT4g8lYHFYm/TaUAHf+pMMbknFJO4FewdiyHbkuQhYvCy+sH4fJU7fOzhv6HQ6HRs1OTQhroHsCpGQoWE2S/cne5NCv9Fv6BhkXU5nTZwqNH25LqwF62GuDexry0tpX2DhnA6unryywEm3UuTFbvy3x0v5nENGqoL7Qq4IvmRfTiO7arJgWeajduRH7F+8BQJNmFEUgpZprvS5q9/b26byH3cQzuiU/6VQCEdERRN11Rel9CAoKKpA5F0BNPEPmtMex3DUIS5uHC7UxWn05sNwbx6xXabLwZwyenjqx+F8NMddMQpjTcf7gg+mRkgW1LTWL35+dgZrlYOuk+YTWDSesdX3MPp54uNIwmCjkNnXLm09S76l78KxQtArr30atWrX+1XQoV2CUSpBSFs1044YQwhv4BRghpUwTQnwOvI3+sb8NfAA8RdF7TFlCeYm47KNQSvmylDJCShmJrmv45xJhCnoWwQ7uCwkF6gBFJ0PPhzFjxjBkyBD8/Arm/fEL8Ebb6yRE9cEkNfxD8xa76cazxGoHGTSuC6pUcYm8aBf/iEC8AnXH9Db921OrbU1CovNoznYmVGNTbHW8axVcsdrSskk+GU/84TxCYiEEviE+nPxpNRWtTjxwMqLicDRNI7pdPSad/ID3T+vqguy0bL55+iv2L9t3uUv+z2Popnd46fin3Dr08tlTH5nxNEOW6l4PqjutsSoFqtvINCZmSqnGDKwaTLCfgdkth7L21VI7jxAUFER2dsHoIJmRhJZ4GjW2eIf+4M53E3h3e5T8QiSwGdIlkZkuyCo6jXMOzm48yN8vzMSZmYUiIMiazbYh75IdpzN3WRWwGMAsCvsM+1YNQ7M7ivUl/jfh4eFBcHAwa9euvf6DSYEmlVIdl4MQwoQuTOdIKX8FkFJekFKqblXkF0CO0eYsUDlf8wh01eVZ9+tLy0vEVfuhCiEGuyc6HV3ifyuE2Isu2cdIKRNKau9yuZg3b16xWzKD0C3DVoOJzHwhc5/Pepv5P/5O0xbR2MlCiqIpxu58qVuhsueL8DEFCK4Zxoidk7D4FHwKp5yKR8u2Y1AkPmZBhg0+f/Qzhsx9roAB5/CqQ+z9aw/HNx/n7b2Fkif+v0bFupWZcPpjRkcMQ0owIXLN+0Zj6X9+B+euBCk5tmgLt41/ssg6CWs2k7JzH9WH9EMxGgkMDMwlSMmBY/6jmP3T4PivQNE62YqPF1y5CiEwtPsF7ZgnwqaCRUE9+B1Krd4IY+GV2+Knp4AmCategezTsbg0QVjraMwBbhOE20VMyoLufuuefY8La/cgFI3GLz1J9Yc7Fur730adOnVYs2bNdc8vJSmbSCm3Yfwr4KCU8sN85eFu/SpADyBn9fMH8IMQ4kN0lWUtYIuUUhVCpAshWqOrDPoCedunYnBFAlVKuQpY5X49PV/5eeCKvn2j+we/YcOGQjpUgAzVibfBhNnDSHQ+Yt77u3Xk/m4d0TSNmgGV8fUrTBh8pbh4JJZt8zbRfmgnPPKFsYbWr0K7V3uxZcYyTp9MBaDL6/cVau8VpLu/KMXRqN8EoKficJFHenwl6PrjWNa+9BXNhvUots7p/2PvvMOjqNo2/jszW9N7DyGE3ntHQIqAHSyIDRUVFcWu6GvvIoq9oQIWEBQQGyi9qzTpvYYAIT2bbJ053x+TtqQQEAT9vLnmYnPmzNmZ3dlnznnKfU+ajmPbbhIHD8SenECwasXi8X8vWZiJooJe4D/ZkFKiOYoxBVefiyu9OiLQbATbDr+KnrcCc5fKyghJ3ZqSvnwLiR0bsuvAEVKGDqTjmGFl+y9f9wWu3AKsYf4x3v1LtyCxgq4TmFx7yZIzibS0NNasqSl8cvpwmvJQuwHXAxuFEOtL2h4DrhFCtMaw3fuA2433lJuFENOALRi3511SllKMcwflaVM/c4KAFJzlSqnrrruOMWPG0K9fv0o5ot0vb0dhXjHjfri3ymOFENStm0xg8F/37ayatJTfPl9GUqs6tLzE3zfY9sbetL2xaomPUjTo1pBHljxGWELYXz6XfyteTX8Lp9OJ2Ww+qZlpKaxBdvq+M6rGPk2ffxhn+mHsyUakfecjk3k2vh+6ppcVYRAk0PJUUP1lTZYPugm9IJ9GT99PbL8eVY6vXLMTOaU+YIZ1+xAdq+Y7HfjR6LLXza7uzorhT7E7KZS0642Hcfri9Sy9+00iWqZywRfl+dNeTcGkSHSpENu9dY3X+nehY8eOvPrqq2f+jSRop6H0VEq5jKr9nz/VcMwLQKWlpZRyNXBSjvuzalCffvppmjZtyh9//FEpD/XpL6oM3JVBCMEHy6pnVToZ9Ll/IMlt69J0QKsTd64GsfWrVq/8D+U4PjXudMMWH4Mtvnxml9y3HZ9P+IxrK8QShCZRAtzIBv4uIW+BA0WCK7Oy9Ifu81G4eSchzRsibnOj75uHtuJF1JYnlsRRhECoip+8Se5Wg583b1s6s/o/SN9PHiYoOQYdE56/jyS/VmjSpEklP/SZgME29c9f4Z3V/Izw8HBatmxZZfJ1baHrOm8+NRVN06rcv/OdL1jQYyjHllWfjxgYGUybIR1rVKP8J+FcCGicC+j05HA+OrKSY8cq5I56fUiPFXZ/59c3+ZZr8AVFcWDWQnLX+iezH5r2I+vvfJzDsw2aSKVuX8zDFiBC657wHEKbpDJo5SRSruhT1tZi5KX0+vABUi/rRvHhbDwFBh3hzVs+ptsrw7lx4wfVDfe3429NnfoXEEyfVYNaVFTE6tWrad269SmP0S7kBia99iPtQ6tOfN79+Wzw+dj20l9TAf0n4WT5Cs5FOHMduGuhgZSz+zCZm6tX6AwICCA9vTydUFi8CKsb2vtLXx/6fjHevEKK9x9m66sfo7s9bHrsFTJmzSW8Q0vCO7UhtI1B0OzOyiV/o39FXU1Ye9+LLO41jD/HjENqGr9ffA27HnycBpe04YoV7xLRrG5Z30YXdztpgcXTBbfTzed3TiwptzYQGxuLEILt22t/vaeK01QpdVZxVg3q8uXLqV+//l9is9GFjqR60pMjejT5bguNn6pay91xrIDfv1iO11Ur2oH/8DdA8/h4t8tjfHbRSyfs++3QsUwb/CKap+pK55CQEL96fuuIzVhu/p2A/i/79Ytq3wRTkAVVaLj37cOTk0f24t848tNCghqk0vL1Jwisa2TR/Db0btbd/hgFWysriWpeL0UHy99PSknOH5vwaoKshatYdvldOHOc6KhsHv0sluDyIKinoJD9k6ajHZeZ8Hdh0m0TWTdrHe8MLmfyeqLtk9wYOpx586omcT+d+DfMUM/qGreoqMhP7qQUh7YdYeMf29iWuYdbbrua4Goir16vl6PsBwHrd8yusk+ne4ew6oWv2Ld4K9EdW/D9yz9wYP1+Rn5+O6rZxKJ3f2Xlp4sx2820GVLux937+26QkNqpZi31/3D6oZgUUro2Jii2UrGdH9yFTpwFTgKjQ6uVpgkLC/MzqI7xg5GObAKuewZ987dYrpqETzNzePZ8AITQURTQvD7af/4GlsiIsmP3T5tL1m8bCWnegMKtu7HFl7Ne5a5aTcG6jez9fDYgCG7XnHZvP1u2X2CkSnkLijCpClLTqTPKn3Rky+OvUrB2E84DGTR+YjR/J3RdZ8f8zQA4c4vK2h1ZDkyYWL1qtUGBdIZgpJGd28ayNjirBtXpdFbp+3xr+Kf8snkp+7RDJCTGctXQyqlKAFM//YVImYQLB3HxVYvS1buwI8WZuTQY3B2AVe/8jFNXeSbtXp498A5dhp/Hlp/W8NODk2jYswnWEDsmi4kPrngbKSWv/stLS89FCEXhyk/vPGE/1WIiulkKMc2qX+FERkZy+HD5EtbS+1ZkwTG0nb8g9y1HFhzCXRyKLOHEMmSqwRwShCXM36BvfeNzpE+jw7uP4TmWjetoDpYwoygl/bOvKNq2E59mQUqF7D8M4ySEILB5Y3JWG393/+R5QtOq5vDNPeam0GmjyYCeJ7z2UhTuPsi+L2bTaPQNWErSsDS3hyM/LCCye3tssVEnGKEEEkyKxKJI3BUCYy9uepHXxr7GmgUnx4lw8hCnJcp/tnFWDWpERAQHDx6s1N7v9vOov70u3kQfF15cdcqSlJIvX5uLQGDFWDbpus6KD+fRcXhPcvZnk7ntEC0v60C9S7thCjIizEFRwRQedeLRBRnbM5hy/1foWfmoQvBau0fR7QHcOu1upC4R50hN9X+oGiarmWtmPFpjn+joaL+gp62PQeoivcXI/EMoUQ2wFBQZ3AJA16/fJKRucqVxdF3H59EMFVGrhU3PvItisdB3mUH957OE4LGEoztdgIAKRslb6ARUpIT8DburNah52zMAlWWjxnP5bxNr9RlsfOItHLsOcGjuKvov/gzFbCJ7+Wp2jvsYx449NBpT/YNJ6jqbpi4lpnkKsS3rYlUlEgW7Wn7yAaF2mrVpysSval+hdqr4b4b6F9GrVy82bNhAbm4u4eFG/fKWZTv56L5p9L2pG8OuvrjaGuIZExdhzvBRT4lEKcmPHtf4Hmz4WPHaLNzmALxOD7YQG7/c8S7h9eK49uenGbP+Zf74YimpXRvwbDfDR2dCEGEFjyaIToqgKMeo/+587T+Xju8/GIiJifELSpVCmAMQUQZ/7Yp7XqBMeNBm54/RrxCUlkyTe8qT8X0FRRiU15KQBikEWDWQRbgys7DFRKFYLKAohkwJEHPX1QBsfPlTPNlGUYimw5pnPyW4WRpmu5Wg5DhcOfk4Dx0jvEVpObRAtZarBZwIDe6+jvWPjccSHFJWgWavE48pLJiI8zrVeOzOH/9g0dNTiWmewtUzHsWMxIvEjMTn85XlCzdu3PiMR/olnPMBp9rgrBpUm82Goijs37+/zKDGpkZRv10K0XUjGVrvUQbe1I3Rbw+rdGzDFnVQVQVFCFwFRkDCZFYRPh9CVWh+cRv2rthJUtt6NBjUnuiSZaGmaaihQYSnlPq/jKdygc8gQL533hgyt6YzYFRvuo8e+Hd8DKcd/6VNlSMmJoYNGzbU2Kdg4x4UFECimk1krVhP1so//QyqJSyYxqOuwhwazIJeN2BSDW2pFZfexvkrZ9Bq3GNIKZnTyShbTaxv8LYenLUQ6dMwmAyNFc/iqx83bJ/dAk4jGGqJCCamXRo5f+6h9xSDycuT7+CPx94nbVh/4rpVnSMd3aUV/Rb6zx7X3/EEWpGTrf97jeiFU6o87sCyzSx48FNMikJSxzQ2fr4AswmsJdIsuXsyiS6hIkxLS6OwsJDi4uIy8cPTjv98qKcHt9xyC08//TQTJkwgKiqKyMRwXpz/AMfSc/n244WkNIuvdMzbj02jON9Fsc+LSVXLiIo3xkSx8/e92CJMPDT22rL+F7xRrqczbtDrHPwznZQ2yYTbBSFx4TjRKdifR1yzOHau2MmGSfPZNW8j9Xo0pm63U9NY/w/nBsLDwysxTlUFvURVwBYZRnTvTuRt3487rwBLcBAHf1xKZNvGHFq4Fue2bQbNuFRKCHElvmIXSy8bRVBaMppmzHUjuxgG0OvRAIEiDGkTP3gN/SoAT04BQjtKdICX4g2bCEqMZdcXc8hcsYHCvRkM+OmNWl9zwpABHJw8k7hL+lTap+s6X3cehTCpCAUCowLZ/PkChCK4ffFzfHjek4Bk3ZRl9H/KUMmw2WxERUWxePFiBg48U5OMcz8lqjY46wZ17NixRIQnEhtTl06d25BWtykNG6dgN4Wwft9u5AxJnY6hhIWFERsbi91uZ8r4XwD4+eB4ivOdRCcbkdjmHdLY9NseWrSsOkixc+VODm1IRwJJLRLZtvcIQmoUpeehKoLMLYd594p3uOK5wdQ/vwV1Ov0zJU3+QzkiIyMpLi6ucp/r8FE2P/Q8fqzhwNE1O/HkFPD7I+/RZMTFrH/mI2LPa0txxjGE2YZN5uHVlZLwlY47KwdPXiHZ63YgS1QdXFl5BMaWBkoNQxGQGI3P6caWGI5j034GzHmH+Vc8hDevCDXAStxVA8hauJzwXoarqcGNgyjce4h6V58cMUnayOtIG3k8IRwsu/0FcjftxlesAyq3b/0EgMyN+wBY8eo32FQNj66w8cslZQYVjAT/pUuXnjGDWqrk8E/HWTeoZdR9QrB+zXY2rc0mKHANoVEuMNdh2Zof+XXABNxuN8XFxUgpaWTqjyrMtOvUmtjYWKKioggPDycyMpKLHk1lw6R0Lgy9iytf60hi3QTCwsKIiYnhh6e+xaIYJB1NujVk/ZSVFBZ6CAm14Cr0IAQ079+cZgNaEp54bnBS/ofq4fV6yc3NJScnh7y8vLLXWVlZZGdnk5mZyYYNG6qdoe5+/UOc+w4CVhQo021qeMslbH3/WxqNuITwlvVJvqQn4c3r0+HV0Rz+ZSH7Xn4Hr65VUBYwFErtdWLx7DakU4RiJOc3vecatrw1BRSFC34wZplLr34Qi6pRuOsA538zlo2vTqLx7UNYfftTePMKOfLzMpIH98McFECn12pOn8qb/wtS6oT26I1itdbYN/uPrQDUv6ADyZeVB3tjWtQFYM8v68pMmiXA34/bqlUr1q9fX+P4fxX/RflPF0qc6TZLJFIzIdHZur0yt6iu6zgcDoqLiykqKmLlypXs27ePo0ePkpOTw5YtW3A4HCiHG6MgeO+xrzhs24LH46G4uJgr7UMIUUPR8HD56Cs4Xz0P1W4hr2UhSTuDkXXtbFq8hQPXvU7bO9sRERtBQEAAgYGBBAcHExQUhN1ux51TxLgez9HswtZc9eaNgJETaQ0+s7Xq/xa4XC4KCwvLjGBBQQEFBQXk5+eX/V9qHEuNZek+KSUOhwOHw4HP58NqtfptNpuNoKAggoODiYyMxGq1YrFUHeQJ69KB3JVrKE2VKkX9a/qz7pWvWDTiFYb88TEHvl/Kge+WkHxRdyI7t2Orx4zZptJu4lj2TZqNt6iYutddRHjrxmQt/o3IHh0IiA4DIKZLC7a8NRXVZhg7X7ELzeFAoBNUNxFbRCgdXjaKTtJuvZJD3y8ktm+Xaj87ragQ3+F0rPWbIDWN9LGvAJD94VjqT59f4+de7/pB7P9mPs1GDiakQeVMhgFv3c6KsTNQfR6Kj+Sy+csFNLvWIIBp2rQpCxYsqHH8v4ZzP2m/NjjrBtXj8WAySQIDI8jPz8CsBNOpe9XRdUVRCAkJISTEyA9MS0vjjzmbKMhy0Oe6zgCsX7md2/sYN9nc7dMIjwjl3sTREAz2cDvFOU66jOxGjya92b9/PxkZGRw9epTfY45g3WmljiuFou35jLvvNfbIvfh8Prxer9/2SNxIVFVlw4zV6Cs+x+Goi0dXmF+0g+W+bWWMSiaTCbPZjNlsxmKx+G02mw2r1UpAQAA2mw1d18vY200mE6qqoihK2aaqallbxdLEUj5NXTdSXZxOJ2+88QZRUUb+YWkFmaIoCCHw+Xy43W40TcPn87F7927i4+PLvguv14umaXi9Xnw+X1mb1+vF7XbjcDhwOp1IKVFVFSFEWV9d1/H5fGiaRlZWVpmbxul0UlBQQFFRUdmxpZ9DqcErNYh2u52AgABCQkIICwujXr16REREEBMTQ0yMQXySlJREcnIycXFxJ5QPX7BgAcOGVQ5qAkR2acs+YaiyihJVVn9IsrfsBV1DEfDHvWMJ79Qcl2ai2CFY9ci75O04xLZZK7hi/Vfs/mgaR35cxJEfFxG3ajoA7jyD79dckrY3v//t4HYRfV57bDERfu9W58oLqHPlBTVeT+abz+FcvZzEsZ9iTWtEcIf2FK/7rRZc8tDivmG0uK/qzwKgfv821O/fht/GfcvWKYuJblFOm9mwYUNycnJO/CanCCn/i/KfFng8HiwWC/n5BQDcc+9N/O+Jh094nCP9GIpJ5cWrP0RK6DioBcERgTRta9wEZotKeESoEfEuudmcuU6EgAtvvxg0DcsFVg5sOkTDrg0QQrBg/BzmvPYTIOgs27Fo/2L2LdvG9Fve5+I3htPsEkN14Yk6dxtzGgFxlkD2CIFJSG64/WYe6teQoqIiiouLcblcOJ3Osr+dTicejweXy4XL5SprczgcCCFQFAVd19E0rex/KWWlNk3T/AxpxbLbjh07smLFCoQQhnRHyQaUGUGLxYKiKGRnZxMVFVXGJlTxQVBq9Cs+DGw2G+Hh4YSFhaEoCl6vF13Xyx4MpX3tdjsjR47EarUyYsQIQkJCiI+PJyEhgcTEREJCQk5oCE8XUlNTKSgw7q3DM34g44vpNH7tWQLrpWCLj8WhhAMuZMk/MB5CTe64nAM/LGXhza9gkyDRyf5jI7kbthNk8eLVFPJ2ZGBE7o1rCW7TBLdPwVyBUjKmUwt6T38ZVVXIXb0Br9MDKBxesv6Urie410CEEJjjjTLYlOdeQXcWneCok0OnB4bQ6YEhfm0NGzY886lT/xnUv46goCDGjn2Vu+66nwb1G/LSy0+fkBxC92n8cPGjWEIC6Xp5G7IO5ZZpylusFn4r/rSsr1+NvwmCwoJQTYJ3uj7JEY+KpoE91Mar216hyaBW/PLaT4BEFwKhCBRVQbWYUE3GORU7jJu3VHTmp/3xBKoKfxRt4ocnPj6dH80/Gq1atcLhcDBqVM0cpmcaycnJuFwuNE1j5+sT0HWd/R99TtOX/weAr8iFVzfkayv+nAMjgyk6eAxhMuHWBHZVoCoSze1Bs6qEtGpE/u/7yvr/2uN69MAQfNKEr8CfVyAkLZllF1yH5ijGHh6GM9dN5ZB/7RDUtTdBXf2LXRR79aTYNcHrKMZkt+HMzidry17q9Gpbbd+EhAR8Ph8HDhz4S9wbNUE/DUEpIUQyMBmIwyiv+EhK+aYQIgL4GqiLQTB9lZQyt+SYMcAtgAbcI6WcW9LejnKC6Z+A0fIEOYnnhBc4KCgIkBzKOFjJmEop2bxph1+JqlAV6l3Wg3qX9WDn+oNsWbWX54d+iKZVTSY5PuNNelzbkWAhGf7+DdhDAqjXqymqaqS9uPMNMooJV79JSfYMwz68EUVRSO3RhIe2jqfxIEPH/dXW/6M0alsiD0iQCXqHNi9bdv8H4wd49OjRE3c8wzCZTFitVnJzc0sUM83kbd0LGPeWVxOACqh+Ueai7AJAoHs17HUS8ekCTRdoUsHpMhFQJ4kr1n8OwRZAw1XkwXssEwUdhcpELeHtW2IKCaLzxBcIbZZKw7uHnrFrXtF/KEu7XcqSbpeT/nXVHBfFhzKZ2/NW1j72NjP73M/Su99m9uX/Y+7wl6vsL4QgJSWF+fP9/bSn656XJaWntdlOAB/wgJSyCdAZuEsI0RR4FJgvpWwAzC/5m5J9Q4FmwADgPSFEqRF6H0P2vkHJNuBEb35OGNRLL70QJBQXFflzVwJP/W8cnTtczL2jyvV/5va7k6xFK2h935XkZzmQwO8/beSx/q9THTZOW0GQSeOL699FtZi46tM7ufJ/F5IUoJGWZEhHD/jfEEoTOI78sZtpIz9G6jpHNh0kc6tBsNHqilICFVGm0OnWwaXxty1j/wmIjo4mMPDUZk6nG6nBkWx6slRPTJJ0/RUAzO5wA0IY8X3Q/Xx4dS/sVlK9A4X7MtFQcWsmzDExuDQzBYcNN4LV6cKmgsSExWLCouqVVKCllNQZfjVdZn/KoV9/I3fzXra9/TWHl68/I9erF5fTHu798Msq+5gC7AQmxxGUmliWspS/M4PM1TvZNrVy8MnlchEcHMzzzz/PgAEDaNq0KXFxcac10f90sE1JKQ9LKdeWvC4EtmLIP18KTCrpNgm4rOT1pcBUKaVbSrkX2AV0FELEAyFSypUls9LJFY6pFrVe8pdY7dXAISnlRVXs7wWMB8wYMq+1ZngwZqjGk+74UtOwcCMAlZhkBE6KcgvR87NRhI7jWC7tBzRjydcGcUNkDexEoSEqRQUeGvZtwaweI5AOY1baJEzDJowZRYchHQiwmzmweg/b566jICOP59NGAxKTKrhr6bNc+NRgvIUuut1eLn+R5zWTSY2ahP/vYLPZ8HjODUrE9iHxFP2+laYP3kbq0AqTDF1HCDBJQEgqapkGJ8dgj4ug6HAuAFGN4nHtPUB02/rYkxOpM8gInFqiQvFk5mEKtNF2whjWXj+GgAR/PajDc5ax9n/vEZiSgCP9CGZFQ5fw+91juXRt1QbvryDh9hs4+IEhzR7cpOpcakt4ML1njQMgeUhfDsz9gz9e/Rp0ne1KIb+89Rbbtm1j48aN7Ny5k+zsbCwWC/Xr16dJkyZcccUVNGnShMaNG5cFQP8KjIze0wshRF2gDYbIXmypSJ+U8rAQovRLSgRWVTgsvaTNW/L6+PYacTI+1NEY1r6S1RJChAHvAQOklAcqnGytIITgoYfvYffu3QQH+wuX3f/gbdw28lqCgozZTvrcVYRYPXg1Bb2gkG2/latVN2yRwE31H+OOt66h46AWZe07fvgNq8eD1Sa5+p3hTOu4kgJvAKEWNxbhw1lhhfbNPZPxeXwM+2QE39xW6hMVaJpk1ScLWfbxQhRg4w9reW7/23QbdR4r311MBP7n/f8dNpsNr7dmueW/Cyt8WQy9cSQpQ/r6tXd85yE2vToZ54GjICov1xJ7tWXnlPkIVcF99BgenyB9/mrq9PSiKEZq0wVz3kXqOsUZRwlMiqf/79MrvX/6vD/QUXDsO4IQEhTDaaQgObJwNXG9a5SYB0ArLiLvh1kE9zwfS2zl6sGKqHf9EOpdP4T973/K0Rnfk796PaHtWwPGEv3QoUNsGvMuDt3NmjpWtmzZgmdbJudpKcxzbOXIQ0uxhAdSt25d+vbty9NPP02XLl3OXNkpnGzpaZQQoiL91UdSyo8qdhBCBGFISd8rpSyogXS9qh2yhvYaUSuDKoRIAi7EELK6v4ouw4AZUsoDAFLKzNqMW4qNGzcz/vXJxMaFVbm/1JgCHNuTy9GiQNyaQnBqEhfd2oMJj3+HXRGER9lwZueSczjP7/iMN14HwlDQUO02ijRjiVPkVdhZGI2Uxrwf4PwHB7FnxU4a9G7KXYuf4pPLX6fD8PPI23eMnvcOYvlHC40fX8lHu/ydxSgCzNJ8Mpf8r4fNZsPnq5r0+e+GyWYlN8KGYva/3eO7tuZgzLcUHzDI++oM9g/2hDVINlKkpU5eHvg0G9ILB375jciOzamTZHD5rhp8G55jOQQ0bUThlj00e3Y0sX3KU/9CGtThyKI1hmNBB7dmAjSsqqAoo3Y/FcfKZRyb/DG+3CxiRoxEqNUn8RcXF7Nv3z5yFi3F7PXy5djX+OZYBrt37yYjI4PEwDDeSB2AIiFkq5fkrsm03hkHKlwT0ZmGg7vS84XhtTqv04mTSJvKklJW+xQSQpgxjOmXUsoZJc1HS6WkS5bzpR98OlAxKTcJyChpT6qivUbU1uk3HniY6mflDYFwIcQiIcQaIUSVeiRCiNuEEKuFEKsr+kq/n/0LJiWAgjz/JWJRUTFDBg9n8qSvy9pi26SR6Qkh7Y5hCEXBcSSPtCBBrA2Y+DZ3NsmgXt6ffuOoFhvtEw7SKMZYvo3YMolrF73EtavfQZdQMW5XsHUvR9fsoCA9h7yMXAqzHKyatIz9WzMpyCzAJw3WoIT2dY+/umo/vP+PsNvt58ySPyAggNzc3Cr35f+5HZvqI7RVA6Lb+fM2JPUrUcCVoKGWTU/iL+lD0qXlxtcgoZZoDidS0yna409JqdgsCFUhomMzNF2gCAGYUPER1+vEs1OA4G7nEXPrKMIjv8c3IYql879n8uTJvPTSS4waNYqLLrqIpk2bEhoaSkhICN26deP6VQt4pfAoPxXl0aFDB8aNG8fBgwfZm5uJ2ydwaSrJWiDvvvsu5hAjTzaqZSotbjy5UtfTBVlScXairSYIYyr6CbBVSlkxqDIbuLHk9Y3AdxXahwohrEKIVIzg0+8l7oFCIUTnkjFvqHBMtTjhDFUIcRGQKaVcU+InrW6cdkAfjBSDlUKIVVLKHRU7lUzLPwJo3759mRm79LL+vPnC59x9x61+g6anZ/DD979QUODghhsNOrSCPBeZRSYCkwyvwsb5WwGFMIuH3w4noArJBTkFfuN0//Ezjq7bTVSzch7K4DgjqXrEDw/5BZNWz9lKbqHOF7d/wsXPX43LB67Dudgy81jywTwQAolk0DNXVriuEh+Qrv8XmCqB3W4/Z2aogYGB1RrUtu88gc/l5rd7X2f9nztQbWYSexu0d9bQYAITIvG5vRRmFiKEjkVA4+EXolSQwm73iSGzrGsaxfsOEZTmn1Z04LvFSE0HjxcJ+HTjfvFJhfzNewhMNO5lXdc5cuQI6enppKenc+DAAfbs2cOuXbvKilDGXuygZ0OVm1+6HZM9tKysOi0tjQ977yAwIJWgW1efUKrbqZnxSRVKJOiH//YmP973KSarmYiGJ3QVnnZIBD79tExKugHXAxuFEOtL2h4DXgamCSFuAQ4AVwJIKTcLIaYBWzAyBO6SUpamFN1BedrUzyVbjajNkr8bcIkQYhBgA0KEEF9IKSuyL6RjTMOLgCIhxBKgFbCj8nCVcfMVDxOtNOSrdxbyv1fKxdMWvL6Ckd1u4cmv7ytrC0uKJCQ+jJB4o9b+qh4m1v9UQIjZw/b8MExCp/kLj/mNf2jHUcb0fwdbkJWP9/trjCc2Py6nzuXGJFTyt6eT2qEe3Uf0Yt3EBWgobJ2+nIDQQFSTQlLz8lVCSTo4WelHialTs3/r/wvOpSV/WFgYmZlVL60jO7TwS/0p2LqvzKCue3Q84lgGwWE2igCkghtJ4cathKQmVBrLnXGEvJW/E5Ca5Pdg7fLOI2z7YDqR1/RFO3SQ7Icn4gq2sLNOIBPefYkDjxzg0KFD5OTkYLVaCQoKIigoiLCwMBISEmjUqBGXXXYZLZo1pcWGh1EDItm573u/99Z1He+4T8BBrUT+ZHAQer4Tj2b0lbrO7l83YLKfPdfV6SBHkVIuo/rlYmX6LeOYFzDcmce3rwaan8z7n9CgSinHAGOgLJL/4HHGFIyp8DtCCBNgAToBteYb27hnJ3XMzfEKd1n5JcDutftxZDgJDS6Pg6X1aMx9K58r+zuuZ2cSF/+JQKPX/YNocllnv7FdLhfD2z1LiKqguo2bx1lQjD3EcLBfH2mQT5jtKp+mv47FqhKj+ih9RF3yzGC2fjkfn6ZhNUP9C9vS7bbeZef4wq7XeLz+A4DEHhBU20v+18Nms1Ur7f13Izo6ulI6XkUoikKTu4bg2HWAJndeXdZ+ZOk6QODKcyKE4bNUpJNtL35AwsVGlkdBQQGZmZlkZmaiP/k6isfHwu9/ZJ7NCP4cPHiQo0ePUlhYiP0NO3fGn0cbeywH8gpZHlRE3bp1Of/882nevDnt2rUjLCys2vP0/vYBWuEGKBA4f3sfe6c70H0+9j3xGBEDBmEXKqDheiEEBJhH/IYptmmVYw2Z8SSf9XoCKcFT7MYSYGXE4ucQytlxXf2/J5gWQowEkFJ+IKXcKoSYA2zA8LNOkFJWZjepBgo6Bz3r0ZHkZOcSGRVBcXEx6nk6z9/7EKYqBNjcR46y57NvyPh1BbkuO4qAAx/OoMc9/vpTb983DQnkazrTD41lyk3vs2vRFi54cggdb+pV1s9bZPz4H9k2nl+emEqrq7sBMP+Fb7BYFCIjbfgy8zg8cz6fzVjCwzveA8Bss5Ryu6Caz47877kIq9V6zsxQY2Nj+eOPP2rs0+Bmo9RSSkl+fj6ZmZlYr+1D8ZfzEG43qjA4fPbpGt+6DjEsLo7s7GxUVS0rvf2kXhvCVAvphzPwJUfRoUMHrr/+epo1a0bz5s2h2MvXPe7Fp0uueuFexlzardrzcS94G0w2rOeVu8HUppfjmf0USAVREhU9+MKzONevJn3daprPycfzThiKxYXQBPqUtnBv1QqqoYmReFCQus7cp6dz8avXERB5FjNVjotl/FNxUgZVSrkIWFTy+oPj9o0Fxp7sCfTrdxFO31HsplhUBOkHjhAZFUFyYmscDgcffDSR/MK9lY7bMGw4+UUmVEw4tSAm7jMjFcFtx/Ub9uAA5ny+kvDYYHZsO0BQjPH0tkcYmQOaDqqAinOp3o8PwRpgzEjWfroAsyJxHc3DLCRCgOW4mde6Jttp3bo1AaFnMK3kH4ZSwpdzAXFxcezbt49vv/2W3NzcMiarUpay0tfZ2dnk5+ejKAp2ux273U5gQAAvh3RCoIGEI+cl0LdZH0Y1bkzr1q2JiIggLi6OWbNm0a5JM3J/X0OXPudV6UuXVittRg8mtF48KX2rL/PUvB68v76ElPgZVCU4FmEVIN1Ywg1FAHNSAqpaXpQgbtoNnyWW3dDur9ujZ+zBlRFG8COLMUWVu6pUXUNRoDj39HIBnCpOR+np2cZZr+VfsGAxAD7pBiDfYTDaSGn8GM3mcp/OnIvuo/BgFi3vuQKPTyXY5sOnw/T9VuP+0eHgnqMk14stOyYxLYb5jvdpHj+EYZ0foU9oLImhKi0u7QDAyA+u493bPqdBV4NU5at7v+L36X/wxIr/EZ0ajWq34Ct2IUwmNAl24aPLqP5+1+Byuc6ZqqBzBeeSD7V3796MHTuWRx55pIzNKigoiOjoaBISEmjTpg1169alfv36NGrUqMZE9auqaAsMDCQjI4POnTsT069XtccKIWh5W9UKvhWhmi0QVhdh8qcd1IqykF4fCAVZsB+A8O49KZg1jaA2RkaCOTASb4iCzCuxqEc24jkahSwy4f6wFabHyxmjVMWYdXsOn1SW4xmB5D9ylNOCli0bs2HDNkpDO9ddexsHDm5h7/61vPP2BO5/oDxI5cjIQaJweOmfdJ3zLav6XY0iwFGyVJBIP2NaEU1b1sOzysneQkGMtTydx2o3oyoCn8NoUzUPYWEmfnrsS67/4m563X8RS16ajoqOREEISYe7L/Mb2+v1Yrf//+JCPbBiC39+Np+LP767yv3nkkFt2bJllUJ9pwvBwcGnnbcg6JEVldo0xQYoIMHc1lBvde3aDlLHc6hCqla795FzS9ZqUmBNKkIWFqOE+q+shDCW2YMnnViy+8xDlCnP/pNxVnN8OnY8jx07dnLw4HZ0zYtPK+bO6x7A7XDxUc/nSdsX6GeoBv7wGo1vuICenz2BJcCKrU4cOqCVUK/V9HU88sBwVBTMZoU+L5WnyYZGByME2AKtbP15LXt+Wour0MvmJXt4OuUe2gw/n2EzH+PW1W9w15Z3uXXrBJQKUVRd0+ntjCJ8T0FVb/uvxQ83vcXBJZuZ0KFynceqKSt4t8db3BxwI/cn1Mw4/29AaGion1T1mYLJYgNUpChftdkaNyEkrpDgtuXBJ1NKfzAp4LMY2lexArVFCKKR/8w7bUA7VLsNRamZ6f/vQGlQqjbbuYyzNkNds2YdijDq9hMSEvh55g8s/GE1j7x4M95iD6rZhGLyD/IEJkTT8oFygtymH75BUIid+MCROBVBTEL1TvVfp6wEQPfqZOzJoiRlm0ad63H3J8Op17YOqmbMqAznuEAHHIWFfHGZQVh9/673Ko3rLSiitYxA21J9FPnfDE+Bv17T3j/28O2DRiFGDeV+/yokJCRw4MCBWvXdMnEOh5ZupNfb92AOODlDpqgmAp877N+46TsCg3IgZyHwJADaqtfQTTpKhBc8IHr+iLb3VUwt/dVRVbMJk82MOEdyp88Nj/tfw1n+JA2uvKVLl9Pnkg48/9EdCCHY/vteuoy5gqs+GGFIXhRWFlmb/MaPnBd/GxfVvw9dNRGkmsnNqFqMDaDzwJaEWwSxETYGPVguNCaEoPPlbYhJiSSyXiyP732Hu364m7h4K8/se4uPu46p8Qqs4cF84N2E9+p2Nfb7NyBj9U6+GvgUh36vPr04PLlUi0tSKxr5fwGSkpLI2J/BR41u4pNGN/DzVU9W2/fgwj858ts2PPmGzpWu6WRv3oemaXjyTn6VY+k+FKxgia5w77cZiSmmK3qBBV1LxRrTFT3YhXff1Tj2lJ/bwHHDueP3V7GFBrBiwgJeaPIAu5ZuPelzOF04HWxTZxtn3YcKsG3bDnr0KE8heefWyThyimg3sDlPjnmHyZ98x/c/v0NKcgJRKYaSpM1qMerpJZitArdLx2yrPm2p11UdiYkOJiw+rIwsujrUbdOAB1YbBQDXLniKL7s9g67D3mVbSencwK9KBiDdV4g1KvQUr/6fg/WfziNvz1HWf/JLhVZ/oxkWF86z21/m5WYPo0ud5w68+/ee5FlAYmIiUTMOkIsdBchbm0VB39FcPe/NSn3Pf3807lwHgfHGfbzlkx/Z8PYMwgPcWBU3ga2aExYTAGYzDR8bjThBkr4SFk9AUxMiNKysTc5qi2LXMYVqmG8pMZAKyMW7Eb7tcNezfmNMueVDts8zshx/fHwao5c8xd+Nf4sEylmcoQoee+xR9u3fxogRwwHIPGxEIEd9fAOjJtyIxW4hJTWB5MRYPr96Ai92eYacg9kArP9oCd2jYxjzyEV0SgkkKUChfqStujcDoGnvJiQ09q9kyli/j3HNH2DD9JVVHhMbG8v9u96jxY29mXLDu0wvY6Aqh6Zp1QrB/ZvQ+/nraHnj+fR+6cYa+2XuPIImQZdKtRLO/ybUq1ePnR6jtFUCFkXDfaTq2aY5wEZQYrkvMzg5BlX4kJqGqkjy/txJ1qKVHJ2zlINfzjzhewvVjOmGHWjNx6O7Xei5m9F1DalLEOXGWBbrmPIzMTuz0Z3+ZbgZGw+gILGaBVd/cMspfAKnB5oUtdrOZZxFgyo5cvQoyclJCCF4/O536NrwRgZ1HkWL3o3pMtjI0zu/bxc6xTY2ZqJKefJvSus64PGy9J25ZB9xoCPIz606ibk6pH81lYxZ3xEjs9nwzIcseqSyj7QUdTqmoVpNpHZvVGmfpmlYTyDh+2+APSKY7o9dRUBEME0eLE3/qXyDL3nnVyQCHVmm5/RvRoMGDZiau4I67esSlyCIDyii73NXVtn38PL1bPmo3FCq+fuw2/KwqF6K3GaCwhWajn+OoMZphLaqusrpeLg2reHwozeRPeE19F+vwHcwGOfGKEzDygNltjovIqJVCDOB9M++uGfJU9jNRl5q3n4jhSr/UDZzHvuK3P1/T2yglA+1Ntu5jLO65P/h+5/LCEVUi+SQcx3K7mI6x93M1KUvULdBPAt+/J1F67YytFcnrnrkEiLrGEul2yfeys7FWwmMCMIeaueD4RPocm25/O7WrTsYfPlwnnjiAYZdO6TK98/67FPjAxBJSATpP/4Or1SdQtJkYFuaDKw6Gfv/i0GtiN63XkzvWy+uet89F7Bj4RZ2FO2hqOjcSBo/k2jQoAHN1GCi9hnVWD6LYM0Lk0m4fFClvsvvMgiQbNHhFH//Cb6DR6kTKskutBBo8ZBw6YWEt21B+Cev1fr9Lcmp2Fp1JLDL+SghaVhM41DOn4qwlQdpTVHt8ZnDwZuB3D4R2jxUts9ssyB1o2jltw9+ofHAtuz8ZQN/fr2csJQoOt/ev4p3Pd049/2jtcFZNaiZmUfp3Kkvq36bx7QfJuKVRezN+ZPAoHj0En2om++5lOZt69O5ZwvMx/FZNujZpOz1mAWP+u1r1+Z8NE1n5O0PVmtQVdUHCITQkVKh8e0nTrquCqX68P/BQFKrFJ7bM56wsDDG5Oef7dM54zCZTPSKroNhFCRHiwxD5sp1YAkN4I8nJ5DQsw3J/TpQSgESVCcWt92GcQdKNF0lsns7Um+/AT1nD57JgzB1vRcKf4TD88FsxnR11Z+lGhZJ3BNvlfzVFaX+NVX2U/p9jdzxOaLlvZX2JbRL5fDaPdRpXx+AVtd0IzAmhLTeJ8UN8pdwrs8+a4OzZlAVRaAIK+vW/cmTT7xMmzat2LVrDxKNxgMt1GtsUIhZbRa+eWkez176Ec9Ov4Mug1rWavxSwb6aCDqC4nxIVzHXzZlfbZ/avZf2/y6xH2BitwdwZRvR6pHbPqy032Kx/L9Y8gNk+wI5kB9MUFwgstCBFIKfb3qZJpd05tCPS0j/cSnJ6z7HYjKK1gt3pdPw9ffY+vgz5P22lkZ3XUXKjYbWFZ4ipOMIvtWfYAraitB1pKr5EQfVBM3rBacD/esEQOAtagyO/VgfSkft8XaVx1wx4U7WTVpIsyEGuZDZZiG5fT2+Gz6e3s9eS1TjpCqPO134t1RKnTUfamRkBDHmBsQoDQiVcTz66IMlewTffOPP47p/q5F7t33NPr/2A9uPcFf3l1i3aFvl8aPCMZtNHMuuvK8UqROXUG/qanRN592Lx/HlyE+r7VsT/r8a1FJjWh0sFsv/i6AUQGtzPYo1E8cOOXHpKl7dxKHNx/BkZmEz+bCoPjSnG5fXEP6L692OBReNInPZZgRmP5YnJa4FSkJL5NF9ICQoAoQCWmX3icw/gPS5y/8+uoTDN3bi8Mjz8eWbwKtjityKKdSDZ1pKpeNLYQsNoMs9FxKSGFnWNuPacRz9cy/fXPMqE7s8wLoJc0/Ph1UNdFm77VzGWZuh1qlTh7C8xuQe1omMCCMiPJwwUyMK9b307NXFr++UnS+xaflOOvT3X37s35rBjnUH2LhiFzsO72Tdui28+PJDjH/jQ7KyjGyA2ujg6D6NozsO4yl2V7lf6jq/Xfcgk+cbs92BD/Xn4gcvZOyg13HkFOHz+f5fGtQrfnqSbwY9S/v7L6lyv81mI///wZIfQJMqTt2MWWjU796IQ8u3EhATQuKAzmTMmENIo7qgKphL9KRUVcEWF4XDUUz7yS8SkpqMXngMbesvmNoMQRZuR43yIH0mMOnIAjfe5S/hsg4isG0HVIsF/dgWPJ91QDHriDb3opntyF1vAKmAgHATBAlwaagJZoR6cvOn9ncMZOETX9Lgwg7s/GYZzpzCM/DJGZCScz6CXxucVR/q3O0TePzx//H1rx9y84ODkQE54FCJjPDX+LMHWisZU4Dul7ZhwponSWoQS+f2l7Jj+17uve9momPKn7KZmVls3LiFPn3Oq/Y8TFYzT6x/sfobTko8uQWAQYCyf91BivKL2LvGIKhQfer/S4MaVS/Rb6kvpeTQiq1Et6iLNSQAm832/2bJLyWYhI4Qkks/u9dvX6+f3scSFoJiUmn93B3oHh+2yDB6fO7PaexZ+Ca+lZ+C2Y6IaY1+aCWmtI6QsRRhEex8fTGqvgwlIoYGk6YjAmMRqjF5ldtnotoOIaQkanAGdF6BuqoteCVKiB0pBNLpRdO0Kgmo32k0EoRg1Lb3y9qaDulG0yFGfnivJ4dW0uQ63ThdPlQhxKdAqdJI85K2p4FbgdK0hceklD+V7BsD3ILB0XWPlHJuSXs7yhn7fwJGl0hKV4uzWimlqirXXDOUZcuWMXfuXCIiwwBISTH8NVJKvvtuLjcOfZirLrm30vFCCFIax6OqCtNmvMeceZOJi4/G4TCWRhcMOJ8mjbswcMBV/PxT9X7SKbdPMKpEVlZdASRUlR4/fMhDc+6l/719GPXlyLJ8dtWiUuQr+o9tCkhftpmfR4xn5UtG6anNZvt/EeUH+DMuC7Oik9a3RaV9tqjwsjLq1Iu6kTa4aoV1S9ebMfcajalxHyxD52C9Lwt14K9oEa04vLwBiq6g6QJbQyMYKwIiUW7chIy/EHHdKggLREQHo1hVlIXtcKtWhNmMRKJnOwGJtvbZSu/rLCj5jqqwFUdXb+e7ix4jZ9tBig7n4HNWvYo7HTiNlVITgQFVtL8hpWxdspUa06bAUKBZyTHvCVGWwPs+cBuGzlSDasb0w1mvlGrVqhUzZ85kxIgRbN261c8wtWreh9279xOgRKEoKi6XC5ut6uT91NRkUlMNrsd773kcgUKP7l1YungVAoVLL72OvPzdVboA9s5dh13A1Fs+4uld46scX6gqqW1SSW1j0PwFhgXyxp5XUcwK79rG/7+coR6P6OZ1SbuwI42GdAcMXSmHo2Y/678F9laxLMzIYNYHH5y4czXw6QEc+d1BVOphAhuGgmoUi1guW0XG24OQUiHHFU6DxPIyZ+/BTPJ31SNaqvg0DTQQRU6EomMuBG9SLLgcqDY3SnggMqByAYo9JJCmV3arklsgf89hCvYdJXPtDlaP/Yb4rk3p/3FVwsd/DaV5qKdlLCmXCCHq1rL7pcBUKaUb2CuE2AV0FELsA0KklCsBhBCTgcs4ga7UOcGK0L9/fxo1akS3bv1YseK3svb9+wzKNZdeSGCIpVpjWhE5OeV8j5MnT8XpKkSXbqTUeerJV6s8xofALQXNL6+dAmUprIFW3B43QghMJhPOA/s59NoL6G7jKe71erklejS3RNfMuPT9uDnkHyv3NY6sN5qvX/7mpM7lVJF/5BgHf68+cHcysIUHcf5rI4hv3wAwDGrpDNXn83F/wuiyrRQPJI7mgcTRvNDtmdNyDmcLderU4fDhwyfuWAMK/ljNmhn7mHfdy37tQlE4VhhKVmEIQtPY+f60sn3HPngV5+rl5H3xDMTcg77Di5CGCqAISsN8JB1LYQFCVXDvA+1Q1Wbr/Oevp8djBtvrkaXrKcowVsYNruzJ4F/HUn/IeUS3qU9i93LXmyvXgbfo5IppaoKUtduAqFL15JLteF756jBKCLFBCPGpEKKUdCIRqChTm17Slljy+vj2GnFOGFQARQSyedNOeve6qKytcaNGKBgSI5t3z6nVOEeOlFd2PPjQnRVY4328/MoTVR4TkRJJSGwIV4w9XirrxMjJySkrOz1w7wiKlszlwFMPAzAy4UG/vrkHs9k4e23ZOR3Zc5SRiffy/Ss/81CzJzm2P4vbYkajO2D+60txOU/fzVodpvV+nDk3vs7HTYx70leQz7YRI8icOeMER54YAQEBZTPUw1urNjali8ycfTlV7v+noH79+qfMiVp0JJtZbYex7aWPCTC7MdkqC+X1nPIKiee3RVitNLq7nHEtru8ikm7ZS7DpbUwtr4Y00IVA1wXqoHnoAXZ0HWSAHUsSqNoEvM7qCaWz1m7jt9GvMfeiBwDDrRYYH4E1OIBBXzxKsxuNJH+fy8OX5z3EzCsqadudMnRErTYMQdD2FbaPajH8+0Aa0Bo4DIwraa/KhyBraK8R54xBffiR+5BSIyamvM55zKN3l+XdFRU5azXO5ZeWc50OH34tu/esx2w2UadOUrVqkKMWP8O9v714SuedlZVVltRvbdoWTReE9L7A2HncVzJ7zNdMGzWR9LX7uC1mNE92fhHdW/4dzRz/g19/5SSjsieL2Xe8Vakt/f2P8R7cz+H3T23p+tvrM1n81JdIKQkICMDpNL43vUSZt6o0ygozj38sGjduTHZ29ikdu/bDnxFoCCRmRSeyChnn4AZ1aTP2YQYsm0TadRUKUIICEAj0lCS8669ABIdBgwaghqKtGYfP3AIZFYkurRBgM7Yj1ccTgtOS0IUC5poLVRSzifiODYnvWLkU+1QgMeSIarOd0vhSHpVSatKQAvkY6FiyKx1IrtA1CcgoaU+qor1G1PoXK4RQhRDrhBA/1NCngxBCE0JcUdtxS9G1a0ckXvLyy2/K3D/y6WzuQIwlkRapl/DN1HKWI6fDUEgthdfrJcBal337ymfvZlMk9VJb4fF4uPmWk5991gZHjx4t88vWff4VmvywmIgLjJJDBWmkEJb0bXxxa9woFOSX52bKCtsfX67zG3tUnYc4kzi6qLKOYtgFF+D1KejB0eRuO8B3FzzEwQVraz3m1m+Ws236UnSfjs1m4502U/G+b0Pf8SuqkKjCn9avWZ8mCCFR/+EZMw0bNqS4uPiUVAq2TF2ElCYyi4Jp9PjdNHtsRJX98h5qQv79dSj8onzloyIRCiheN96oBGRBIXh8xrZlNgEXLkCE3Iva/BMQoeA1YU41KqnyHown975EdE/5SsgaGsRlqydx+aqaJ32KqjDok/vo8czp+l3VbnZ6qrpTQoiKrEiXA6U3/2xgqBDCKoRIxQg+/S6lPAwUCiE6C2NWdwOGunONOJkp0GigWrLEksjYK8ApZf/a7XbGj3+ZDh3KK6EGPzyA/hd1o03XpggBISFGwGrvpkNcFf8AHz44vaxvWHAjhFBRFStCqEz+3J827q03T37GteTu1/m20604DlVPEJGTk3PCCH/prGzy6K8p8kjev7YyYxXAq9uf9vu724iT8+meLAZ983DZ62Y39QUgrHUL2s6fS5tvv6Q4M5eijCwK9tWejf6KGY9zzdznUM0qNpsNeSwAT3oo4Xkfo4iSHHVRblBvmTySB355mBd2nbS+4zkFi8Xw8Z/KLLXJxW2wmnSsqk7SxT0JrldNVZKvCKGAvmtJWZMmDa0Kb14R1lWLwVcfZedOFFmAt00AUvNi6ngP5rR+mHuvxtx3s3Hcn09jDfFgC3dR+GQTdGd5NoYQ4u8nB6+l/7Q2KxkhxBRgJdBICJEuhLgFeFUIsVEIsQHoDdwHIKXcDEwDtgBzgLuklKXllXcAE4BdwG5OEJCCWhpUIUQScGHJ4NXhbuBb4JQVvxo0SMPtLl/ah0YH8+BXtzH95zfJKFhK/0FGTlxAsI2oxDDiUsvzTTt0bFU2Y128dBZXXX0ZYJTqWa1Wfp7zLQCXXDyUmOg0li9dzQlSysjdtBfN5cFxsPpL2v/ESoZr/Xmx3qhK+87vn0q86uXxmXdUcWQ5Sm/d8PBwv/af313N0PAzJyGS2Kw+t279iFu3fkTXhyvLzyWe14rBi9+k6U0Dqzi6agTFhROSHG28DgpCaipIgd7+jZIHi8SsSLzOcl2vhGZJWOz/fPpDu91+Sn7U1u2PER6RRWx8zStKa+eLIMRCwKOLytqES4fiYswmK0pyLD59K3q9usj4KPTACByPpVL0Qge/caSUsPl1dK+C7lXQRCzpw3tTtLx8LrSg6xUs6FKZAyNn4y6W3/Is68Z9wawed5C7vXZKBSfC6WSbklJeI6WMl1KapZRJUspPpJTXSylbSClbSikvKZmBlvZ/QUqZJqVsJKX8uUL7aill85J9o06Ugwq1T5saDzwMVKkxIoRIxJhGnw90qKpPSb/bMPK6qFOnTqX9CxYsoF27EzPfx6ZE8tm25wGY+8An6B4fi5b4c0c2btQeKSV169Zh1+71Ze0//WTcNP3OH8KPP0+ld1//qqyKGPj9q6y6+g7W3/0sdrtGzyWVI++G99r/aV6cXcC0i54m3OJm6HMDqNutMQDdru/K8s9XYAm04C00DIqgak+3w2s87c62a9EWEVKrfttnLMeV56DBxZ0JiDbItgMDAxmyuD4/zZhGYFgilrBvIc9DQloUqvWsZ+yddgQEBJySQTUHBtOmz0qqjoOA9PlA6tivfg+rrqM7cwDDzeSLjwdVQc3MQHE5sfhMuBLTQFjA5zHuTdX/sxZCIM6bgrLzBhSzhiQbJTQNNTQCAM3lRkiDfWrDU+Np+cy9AOybvZQNz30Eus6h1bsRwK9XVx3oPRWc62WltcEJ72ohRGnFwRohRK9quo0HHpFSajUtFUqicR8BtG/fXh63j4kTJ7Jq1aoTnnTfeneiKIJfdr1L+oqt+NzeSsQRbrfhF7LZKjvXJRK3nkdEdPUaVACWIDtabj4+PQCfx1tlHx9gQvoZ1VnD38SVnccOzUz2uBk0HWGUZg4bezXdr+8KwPN9y+nZqvrELBYF3acTGHXuFwxsmrKQlc9OQUrY+cMfXDHjf4CR2F/g1FHDjCDLsxtfP5unecYRGBh4SmJ99gsfQG/SAkxVpwUeeWgoWkEukT3XIFQrirMAT3gcliF7MXmKQdfwBEegB9ghxY7IykJGxUJhJrYX9mAyVc4aUJIuBLMHXQpMd/1BUlhY2T7VZkXXDVdV/fvLCafXPvURCjpJAzuz58fVZaqppwOS/z+lp92AS4QQgwAbECKE+EJKWdEb3R6YWmLQooBBQgiflHJWbU8kKysLt9tNvXr1auyn6zqHjpYvwa+b+2yVLDx5+XlIdMY85p+ELNERKEgkt9x8J6vXlPuj1q3ajsmk0qKEwgyg5TtPsuWeJ0m8tup69awLBfv3H2D27NnG+FJiS45j259H0VDIcVvYt2gjCKjbswVjB71R9YWVrHg/yjRkM26INJb65hNIYJwLOLB8C3qJfytzc3nqntVkoW5hJHkHsgirY2RvTLtvEmu/WQPAywcrZxn8kxEcHExm5ql5vJR61XOOmmITEQGBKNqfiOxCiLCi5BorVs0eZHTKzYLwCMMXmfIWSs4YpC0Y36oBmLpXHdW3P1Z9bf75K6cjdd1P7sejqUhUzEnJBNZNx7HvCKbQoFO42qrxT8/0gFr4UKWUY0r8EHUxSrQWHGdMkVKmSinrlvT5BrjzZIwpGP5Dh8NBYWHNBAyKojD2o3t5/RPDUFpDArCF+s/i8vLyKCgwxrnqqsGVr6nEE/P9D0aJ5JJ5a/hjxWau7/sUNw96zq9vZNs2eC0R7J2yiPxVK9h48SCOzShPrC4oKCA4uHym6ypwsm3On9htKrqE4IRQvh/5HpOGf0jm7kwuffwiLn38orIATSnJ0MOz/X2lVzw+CFuAmXs+P3uSFLXFwLfuQJOlUdhymDK8tHamsOLdcl/+6ulrKHGl/usQERFxSsn97u3zcL1nxfl25Rmqtv1jbOZv0Q9sQAsIRERYEBF2ZIiNwswMTPv3Ydq5C2EJROqgO92Y9o/ElJ+F7eB2ZMCp5TILRUHX4ei63WVtMT3a4NMVjq7dTcdnbkXTBamX9Dil8avC/2vGfiHESAAp5anX2lU8EZOJdu3asXz5cgYMqLlk9qJru9e4/2iFGazZXHm5U4r4+Hjcbi/DL3+S0LAgxowdjtlaub+vyAkSMqdOQfG5Ofb5RKIHG0GcgoIC4uPLMzLsoQEMn/kQ9vBAwktmZT8/N4Of31vM/PcWcM24oQCcf1svRsbfV3Zc/bb+M/NL7r+AS+6/oMbrPFcgFMXP6bF5zkqSYmx03LiYOUEaXe582q9/qa+sOqKOfyri4+NPyaDqP16KzAkHUxUpV84jCKEhVB39qAvZNBxUE0pxEey/Dopc4POihA5GOfAx7vj6qIqGZgpAi4gFV2U+YD1/D/rcS1BaPojSeHi15zXtgscpOpJL2iWdOP+VW2h97xXsWbCRjE0Hif9zL1Hd29LqvivhoaoJrU8GBh/qXx7mrOOkMsellIuklBeVvP6gKmMqpRwupTylusmePXsyb948ADb+uZ3CwtoTaxTkO/jsw5nkZOXTqFFDli37he3bK+dP9u1rEFOYTCbCwpIYcMFlPDf+Tp5/cxTX3jGQq27uW+mYli/cR5OHRxB/8whQVYK69kD3Gj5Vh8NBSIh/4CahVUqZMQXo+9DFdLm2Cy0GlJfted2Vfzx3xo7mrtjRrP1hda2v+3Rg39zVZKzYXKu+v495hdUvVX6GVqzFTujUmINvvI1Z1+gToROeEl3W74bpt5bl3T5e975K4/yTkZSUxKFDh6rd/3TK3Tydcjc5R44LXNW7BpCgVJ5/qa2fwD78V2IfuA5LpAfhdOIOT8DZohMmPQRhFYhAC5amd6KFRyA0J6rXiak4D3vIaOyNJpaNJb1OvKu+QN/wEaJ4F/qfVZdilyK8pMBAKMZDL6JBIi7dhCPXxaqXv2HPgk1sm7a0dh9OLfBvmKGeM5VSAMOGDWP69OmsW7uZnl2HcseI/9X62G+m/MITD77N5E9m8+efm3AUFlG/flrZ/oMH06mb0pzGjRoRFhaCz+ehsLCQJUuXce0tF3Lh4OqXLnF9u5B8RX+CWrbCHGyiePEcdgw2DK/T6SQoqGY/ksvhYuWXK/nm8W/L2t67perEaQlMvO3zWl/3X4Xm8bL4/g9Y/EA5Dd+xJ4eQeVtrfLn++bc/d7ycvPlryJm5gIOr1lQ7Znh4OKnPP40nMIhxR/1Tgeo1rufn6vgnI/9wHj+//AMH1u7j0+EfEKVEoGYVoHv9H5bOXAdfX/UqpX6Otzo977ffftkE7M9mYH/CyGEt2HOIZbc+T+5mY7mtTe+Ca+5T+HJMCJsN275tWJatxnQgAAJDwWYDcxgiuwCTqxgNBV2CSLoYEVhOKu1dMx33rIdxb9wMTR9GuWBWjdc38MN7EHYb22euxJVXMrlRFKQEc2QoOgpHN56etClqSS59rmcCnFO5K61bt8bhcBAYZKVv/24MueqEbFlluHTI+eTlFnL19QOoV685Pp+PPXs3kJxsPGUdjiLS0w/h8fjIy8srOUrnZJ8pnlwHJpOCLHlUejyeEzJNBUUGYbGZyD+UUxZAS2wdz9b5O0t6+N8lT2188qTO6a9AtZg5b+xtmIPLr0FmbEMArpWzCRpU7sOtuDg3RRyfIVFa/mxcy/6H7yPYl0vkcXdYQHgggqrTxd7o/zKxjWIZ9vZNf+maTieeaf4ILoeLaJOR5tblnkF0uccQJ3y+/VPoUjLvrbkoQsGqeHkkvgHrHn6Ndm+Ua5wdWrWNI+v3lgRDwaDdLMfGz35h4QvfcN6jl9F6xCByN+wie802jk5/n8DFk8CjQUEgINACHJiiBCLWDBGtMPX4qnyg4DB0l4b56AE0S2ila1GT24IAYQlA7ViZxq8qSJ+GYlKxhhppWoM/v58t364gKCGC1W//QObW9BOMUDsYUf7TMtRZxTk1Q127di1SSpKTE5k28x0uH1J7H2JkdBgDBnVn5DXP0aZNa8LCQqmX2pJ33jZmgk2aNCK/IJ133xuH8XM+tUv3msLRddB1KDp0CE3TavTTgpH3p7t9CAmrvlpF3uE8Lr5rEOUmRTDrpVm8d/RN3jv6JpGRkTUNd9qROqgjST3KeTyDbnoZS7uBfsYUoP/vM8EuCOzbnviGDf32KZSU2pb+bbcjJTi8lV0bVf1uvntqKke3ZrBh1roq9p49OHKd+LySw06BVxNsnr6iwl5Z5jvWAbeu4tPh2IbdfmPEt0kj1Owh3Owj2uolLNB/ej73+Rn4MDH/JSNTpM4lPegx4VEStMkoAYVoVgUCNFAlEje6NRmRNgpTj0f8xhGAOScdYbJgKqhc3acmNifg8Q3Yb/qi1tff/ZnrKfZIZt1uSKwntK9P35duILJREh5dISD+9N2rp6tS6mzinDKoy5cvx+PxlLE3nSzefOVLNq/dS1pMOy6/3GCt2rt3P7quM2zYTbz66hsoSmm6vDHFjIuLqX7A43B0ziJys824vCacHjP4NDRNw2Q68UQ/ODoE1aJSp3Udnm73FGMals5gDI9i75G9T+5izyACul1M6B1Vyxj3X/w13V58uFJ7fKf6KALiS1LOGk/8gsInX2Rhbh6L5yzixXqjyqrJQqODUMCvfj+lc7mBfu1Cf6KaVZOWsPXXjVWejzunAG/hmdWtEkIgUMn3qWT4ZQ0b82wpJAKJgoZbU3DnOvC5yomYA+PCibYXYTHpqIok2Oyf06xLQy21NA9TKArhbZphSyo05FJ0DVOKjqWZDzXYjHYgE7V55VWMosagx8YiIyOQKZULZwCUoCiEakwAMl9/nGPja14NLXpxOrou2DN/k5/gZf1+rRg6/SEGvja8xuNri9NZKXU2cU4Z1Ntvv53mzZvz0ksvndLxz75+F5de25OX3h7NRx+/xd59Gxj3+gsUFxfz9dff8NVXX1c65s8/V/r9PePbn9iwoWrKgpDmjTCHBpJbGEJBcQjbpxhVV9Ulcx/deZgnGz7AnJdn88yfzzF23+tYQ4xCA11K7AqYFVARPNak/MbWdZ38/Zl81ecxttbC6Z++9wBvNryDNxvWXOJ6IuiaxuH1u0/csQpcPvkhRm77kMu/LCd0sdlsaJrG8jv9Y5Rj1r5Im74p3Dn52rK21gPblp4Fph0Heb+tEbByFTj5/olv+O6xaRwPzePlx75380Pfu0/pnGsHiZQSU8kvpXhfOWF2VLCCRdFREQgEEhWrSWI1Sda+61+5J6UkOaiQOkH5dLurn98+syIxqcb/pRBCgFdHc0mk1BFFXmRAIFIqiL5VzzAVtSHCZEYtzEN4PWju6lMQpZQ4163C+afBP7xzzmo+aDKSpc9P8evncroN3yUCV355WbgQgoQ2qVWSUp8q/g0+1HPKoFqtViZPnsybb77Jl19+edLHx8ZFMu6DB0mqEwtAUpLhPw0KCmLXro0sX74AgMREI83pyScfJSqqPBq/f1861197NzffWHX02Z4UT485kzCpOlIKLEsm820DhTfeeIN33323Uv+3B4zF4/Sy6N15ZW1RyVGMz3gTIQzCNhAoFb6FLQu3MjrxPl7o9hyFh7LJ3X3iNJxvLzi1B9Dx+Kj1aGZePZapFz+LrnnxfjcE34ZPTnk8u92Oz+ejxa3+aW5F23aSuGcR6S/4EykrgYaXVlFLvaxgC7FjD7VTdDSf379YVtZX6jo+RzGaLvG5vCfkZThVKAisijGL1MsW9wY0AQGKTkpAMQo6sTYnhwoDSHcE4Cj2P5/IZgZDnEQQ29Of9EYRpXuOe+8+nyCssSjXbEQEpCEddaDVe1jr9aryXNWu49G9HnSzBd1sQe6ZXO11CSFIem8GiW8bBEMLHvgEpGTTF4v8+t268AWCkqNwo7B5dvWByNMBWcvtXMY5ZVDBoEH75ZdfuPvuu5k79/TJ1qam1iUmxkjfKSUhcTjKl4o+n4/YuCheeOlRxo6ruT45KiybqNAcNM2E5rby/fffM2bMGF544QW/H3Z4iuFfMlVRt97h6o5+N8dTq42Mhk9uM6SsXZog3W3ju/eW8WjyPTWeT5sXLq9xf22hmA2DZg60wr65sO8n5NJHTnBU9bDZbPh8Pi4eM5TH9rzDY3veAcBeLwUtJom9sj65e8pn9y9ue4OXD77DPdve44615WWq7gJjZrR9fnlq1/qXPuXnPnfS4t5r6PjaPWeMHUlH4tbBoK3VMUEZQXiQz0mETSPE6qNtZAENGobi0kwUeEzsnvqr3zitxj2C3ezFbvYQGOPvd1SFxFy55B5Tk+sw33QAc2RDTMM2YLlqBZbGlUlsSiFUG/a+u5E5JpQDGWjzambwUoNDUYOMlL+u/7sagLSB/lwaQdGhYLejaYLfJi2pNMbpgpRnlg/178I5FeUvRZs2bZgxYwbXXHMNW7duJaxCnfHJQkrJrFk/kJAQzzXX3MiAAf3IzjbY4RcsWFTWLzgwFSklBY49J/Thul0qQlHw+cyoipdevXqxaNEi+vTpQ25uLmPHjkUIwQMLHqc4v5iA0Mo6Vle+cAXtLmlLwx4NUU3l8XNboA2vw4goe/XyWcuaGb/RbnCnKs/nvCv7c96V1Zcu1ha3rX0TV0ExthCD9o0GV6LUKycznjniHcw2Mxe9c3utxrNYLBUUE8qhWCzYLriczFdnkv7bDsLrxZXt2710K1/d/CHnP3wxAapk3+LN3P3ro6yftYb+D19c1m/DV6sAGwUZOTQeXns2rJPFoxueZmyrpzABNuFDCpXVE+fR8eb+ODUjat+iuQW7ZRONb27Fx/cspWGgHV0KPAXFWEKM7151ObCavQih4z6WgyW8PApvUgW6LolJi6vyHGoL3+o70A9/h57pAbdESWp44oNK0OKaXrS4pleV+6768FZ+eXYGA54ppzl2HCtg5WeL6XhdzUU2J4Nz3FbWCuekQQXo1asXvXv35rnnnmPcuHEnPqAa7Ny5myuuuI769euxf/8BFixYXFaW2rp1KwAWLFiMEKJKToCq0Hb+IvZ9NYWCb7+k6deLjLa2bfn999/p0qULOTk5fPzxx6iqWqUxBbAGWGnSu0ml9qdWPsFHN37EwIcHsv3HNSyZsBSQpLSre0rXf7KwlRgAoZoxDypfMmb8uYe9i4wZojPXgT38xDXcdrvdL5BREa1vOJ+4lnWJb5vm1/7VLR+iezXmvTCL5t3qkvHHLmyBVj9jCiBMKtKnEVL/hDI/fwmRkZEEmTQkYFMgxOxh09TFdLy5P27NuFfaD/oNi3MH7F7HEaUbDbEjAU+xq8ygWpNTafnqA0jVTnDDVL/3aHJZe/b/tIquD58cL7ss2mvkn1pKaB+PfY/c40YUa4gmQ7FcXj3bpu4z8koV04nJdyLqRDF0gr9s04oJC1n63jw2/Lj+pM65OkjOff9obXDOLfkrYuzYsUyaNIkZM05d3ygtLZWnnhrDgAF9AHA6i3G5nCAlBw4c5P33P6Vfv0vxaUW4POknTIECKM7NJfPjSbhzfH7kEQ0aNGDDhg38/PPPXHXVVXg8nhpGqRoWu4VR00aR1j6NgJBA7KokxCRxZp5dfftl42ZT5tcMqx0DlsViqZbBXrWYSOzYsExeuRS61zDAEWnRXPzhXdww/zlCEiun5tzw54fcuHkCja/qVfuLOEWYBYSaDb+jokDu7mwcWfkEmXTsJh1Ti66gSvTQYFaEF+Jwq7h9CvMGP8Ss2z+g4FA2nsJi1k/bRIGj8v0V5jpMncBcIuqE1fqcpPsY2pLuaL9fXd6Y9hQixow0W1DbDK/xeG1pG7SlbXAX5db6PSviz5m/oyqQt/eU6Y8r4XT5UEtE+DKFEJsqtEUIIX4VQuws+T+8wr4xQohdQojtQogLKrS3KyGl3iWEeEvUYrZ1ThvUxMRE5syZw6hRo7jvvvuqXD6eCKNHP0zGoaOMHz+WDz54i4kTP0Lz+UAIdu3azY8//mxo8pzE2JsvvxqzWnW1T0JCAlu3bmXlypVERUWVaSpVh8M7j/Bcjxf47tlZlfb1uu9CHl7/MkPevonENjWzcJ0OLPl8AU/UuYcn6tzDkyn3sOmn8tLd5kM6l7yqPZt7aZT/pL63kl9Mzv4sLEE2QpOjau7/N0AE25BIbIoPp0+h0KtwZOtBfFKgSwHNnsDXviV6ahKx0dHYzDoWFaTTSc7SPziwYisFew+TPm81e2ZWztqI6dOV8I6tscZUndNZZcDNHIqIuQARf2lZk+ZtQcasZNJX1OfI5OmVj6kIrxdcbuSSVv7vdXg+2srbkN6aSYp63T0Qa4idq965seb3OQmcxij/ROD4qqBHgflSygbA/JK/EUI0xSB9alZyzHsl6iNgCPvdhiGL0qCKMSvhnDaoAO3bt2fr1q0sXryYzz777KSO9Xq9fPD+p0yYMBGXy8Wtt95Upv+E1Fmw4CdmzPiSfv1607x5U0xqOC1bVE84XQZhJPbrx/E3SinZ/Phz5M6cw65duwgODqZXr17k5+dXMxC8edlbZO7KZP77CxnTuHJ+56FlW1j04Mes+7h2qq9/Bb8+PqtMrkVKmHbHxLJ9jS7sYNRCHTejBPii67182vw2vCX8Bs79B3Fs3YGiKKiqWqZ8WhuoNhWQdL29T439nHv3s/N/z+I6cHoqdWqCbjETavESZNHZXaiQ7TWTvelACaGHxGSORtSfhqnZd8QlpLDfoeDyCQq9ZqKsLiLCzQSlxBFxXnuajry00vjxF/Wh1fgnMAVWdg+5p/TG+7Yd95s2vD8l4v0uFi37D4RiQW33KUrq7WgrRqPt+gqkROpG0Yp3y2+VxvK7JilxprXEm9aS4iVPlbfv+AD2fgl5NXM7dLi+O2M2vkqLS06fTM/pSuyXUi4BjpfRvRSYVPJ6EnBZhfapUkq3lHIvhtxJxxINqhAp5coSpv7JFY6pFue8QQUIDQ1l3LhxvPXWyfFnmkymsq20PLRjx/bcMuIm3nprHKmpdbFYLPw8ZwYZGUZ60tatO/jpx19qGpZWM6ehhoeS8oJ/UnTWhEdJKPyU0HVjMGnw+6cTWDJ4E8q7cRw7VrUuVZ87zgeMiZnHWdlFENkkmZiWqSR0qH2A4VTw6fXGZ1vxhq34eslr36FL8Hkrzzg9eUWgS/b9bJC6bLn3MTaNfADN5cJsNlco9T0xgkMDMAlod0XND7b81WvIX7GKgjVnvrKquMBLkUeh2KtQN1gSkRjCoeUbiLG5iLI5+bLt7Uzr8Sy5h3w0atQIVZhxaWZ8uomQ3p2J7dGGZS9NZ+evG1n09NSTe/PcP6BFKqTGQ3AIBAfDJqMoxPvHK3jfCkZb/SFyw2tYm3chevTTWANchAyoTFvpB4sF25FdWA/vxFdUnqKodHoP5fzvIarqAOiZggR8UtZqA6KEEKsrbLedYHiA2FLZk5L/Syt6EoGDFfqll7Qllrw+vr1G/CMMKkDdunXZsGEDr7zySq2PEULgch/j6WceISgohh9/nIMQgo8+eoe7Ro3065uSUodSH+Hkz2u+6S1hYbT+9mtiuvr/6NXNX2IOcKGYvCy67imCf78GNDMWzLRv356DBw9WGqvfqL6M2z+WSx+/kLF7y1OFpJTsWrYde2w4l097lPj2DWp93aeCfUt2VWprcWmbsteZW0rPXfBhz6qra9IuMn6EiTdeQ8J1V6JYrZjNZgoKauf/1Tw+io4VYA60EJFacwVbzGUX0/C1F4m6+MxF+AHWfrMMzenGKwXZXisun8CUnceGpQdxawYJCRKEhD/emMalvfrx1sGfcGkKxZqJHfO3oFottLm5P1FNkug0+uITvicY3793/6tQvx3SZgGrCRwOcLvwRITi2nUvnp2vgBRoQXbkkc34tk0hqPsgkr9cTcTwyqsdP9R9nj0TQ3EURGJKrotzuSGOKWzRiLjz/36RPk7Kh5olpWxfYatZorVmVHWhsob2GvGPMaipqam89957PProoyedxP3ii6/hdDq5//5Hq+1zxZWXl6k9Tpz43qmdpGbCnR8EUmANtLBjfX1QfGD20qZNG9q3b8+uXbvQdd1vlmexWOg7qn9JWayBH5+ZwYRr3uXpZjX/MN5scD0fNbqZ+Z9WriT6qxjy+g1lr/ct31GWeq4fx2Ix5IfnuPyHZ8vOP+6yQdS59YYygcTazlDdDheKSSXyBMZU93jJXbWWwKZN/IKCZwLmADs2FQq8JkCgYbAtCSShFh8mBXyoeFHRNu1i8+2vcMziLClFBZPHTcG+I0Q2TGDorP+R3K1prd7Xl7MA0ichgnIRObkIdyG604N+JAtp96LLXehd+6K3q4+aEgmKQC6pXTobwOHdURTtDyX3M42jTxdyeKp/xZM7r5A/X5lMwe7q6QhPJ2Qt/ad/IRPgaKmUdMn/pdG0dCC5Qr8kIKOkPamK9hrxjzGoANdcU6InfhJLSIB3332DevXq8c03XzDy9lEsWlQ5QXnYMCNlRZe1q82vCp5iCz6PiqtApVXcZOolH0W99zCWB4uYNWsWF1xwAZ06dWJ1n4tY0+cijq79s9qxlkxahleHKrhF/BBlNREd4CXjtZ9O6ZxLYYq2UnEO0H7Ueaglif4+r8+Q1gCUYAt3rXjB79jQenGE14unKtjt9lp/X0IR2ELsxDRKqLHf0R9+ZeuYl9j69OtsefZt9GoyCU4HWgxqhy7BpGiY0bAJnTCzgzCLXmI0JSaho6KTNrgnyRf3wGqzoQpJSIlmU1BS9Inf6DjIgJboqgXNo4GmIxUFxaqihgSCxwVeN7g84PAgfB7QFAiq/X2b9eIrgMDtslHkCMSz198UZK7cyJ6pv7L32wUnfe6nBlnrf6eI2UBpBO1G4LsK7UOFEFYhRCpG8On3ErdAoRCic0l0/4YKx1SLf5RBFUIQEhLiN5MDyMzMZOTIkVgsFj7/vDKX6J13PEjm0Wzy8vL5+OPPGD/+nUp9AgLs6NKHlDqLFp08aW7h3m3omormU0DRsEbnYks4hmviIIQwznfy5MnccMMNZWsJ6fAn9fjx8alMHWHwkmoeHcqI7qqHTxf4dIGn6nTPWiM+KRZFGIQlQkgurZATaTKbyhjVb5o55qTGtVgsJ5S1KYU9LJB7V7/Mxa/dUGO/8C7tiB7QC8feDI78vBhv7plNKUuwO4k0O40UKVXHKozvJt9lcE2ZFElIUjjNHryelo+PwG63E9CpDoFmNwnBDrz5NQflfHtm4nP597HYo5HOYlSHA+F0oISGoodFohf5UPKPYcrPxPfdFnKnWsmcHgqpYYiAyilZB956l3UXXY7neB9+KyO6r+sqYBSpVERi3460f/EOGt922cl+XKeE0jzU0zFDFUJMAVYCjYQQ6UKIW4CXgX5CiJ1Av5K/kVJuBqYBW4A5wF1SytJf0x3ABIxA1W7gZ06Aczaxvyq89NJLFBQU8P3333PNNdeUyWcsWLCA2bNnM2XKFO666y5atGhB69aty467485bEELQvXtXvv/hW9q1a8N1197ElCnTGDfuRe69bzRBQYGUPl8iIyNO+tz23TUUqcWiCB8hkVloLhPSp+I7uovs/w0g7MlZqBYbb7zxBm+Pvo/ZX0/jYbeDirUxa6csBwnO/CIG3tqBnz/+DYTgq7s+45p3hlfp17pxy6cnfa5Voc3VXTi4bj8At826v9L+zrf3p/Bo3gl9m8fDZrPVaFDzDx/jw94vcMVnI6nXpXHtxoyPpdH/7sWdnYsnJx9r9Ml/XycDq+ojwKqT73YjAIuq4/H4CFDdxLRtTr/PxvhlPwQFBeHskUj8of1QVIDucVc7tu/XHojDqw13yg3+D1g9JBItworiyEfYLMbcLCwI9ZATkbMPS3g0xTIQa4N6kL0P2eqxym9QTWi8/Ruvsvr8C3B7Bao5l2Z3+C/tFbOJ5IFdT+Zj+ss4XZVSUsrqNFmqTB2RUr4AvFBF+2qgeeUjqoeorT+yJDdrNXCoVAalwr5rgdKibwdwh5Sy+vUshoz06tUnJ/VhJFYrdOrUiaZNmzJhglEJ8swzz/D000/TuXNnVq1axaJFi+jZs2eNY6lKeXK6phexfPkqHn30SR577EEGDvQv45RSsnL5Opo1b0BoWNXS0yt7nI9OEIriIyF+DyarILz+EcxhTlw5AXhdNmz3buanC+4FILNbEg9PepPPPvuMK6+8EoA/Z/xOcXYhXW7tw5f9nyR/fyYHis2UzlJfPvgWv7wyi2XvLWDAU4PpenOvk/r8zgbat2/PsGHDuP/+ykZ697ItTL+h3F/96J7KK4eqkPXlx3j27yH+kecQxxfAnwF81/ZaQKBKD7pQMQkfRR4z0VGSXgunVOrfrVs3Bg0axKMPPIivwFFtfimAb/m1sGsGqGZM1/nPtIu3X4+uZSIUUAuyUT3FeA8fw+RR0A4LREwoakwxosGzmNJuwrPoMUTyeZjTak/M7lrQANOxY+gREVj67an1cRUhhFgjpfxL+VOhaozsHlA9T0FF/OR49y+/35nCySz5RwNV89rBXqCnlLIl8BzwV6Ju1UJKic/n49dff2Xu3LkMHTqUbdu2sX37dgBWrVrFwoULT2hMgbLZXkBJ7t+dd97HihW/8fPPlVOmli9dw8UX3MoDo1+stK8U+a5QDheGkV8ciOYNwVsUAqqG1ARqgAd7nUK2Ty73c8YsT+fTTz/lpptuYuLEiQC0GtyRLrcaD9Eh0x7h+kUvcvySf9l7hk9rzjOnXj32d8Jms1FcXDVfqWFMSx/otfeNOZYvoui3ZeiuU1P0PFmodgsgUVWdlP5tCYszERXkIkjkULynsgRIdHQ0GRkZqDZrjcYUQET1QFhMCEvln2JAo88xR96A6nYhvC6QElNcFEqYgrkhqJGFiOJi5I4n8K57H9aNR581BD2zxrmMH/SG7+GLiEBTT1wheKYhpazVdi6jVgZVCJEEXIjhT6gEKeUKKWVpDdsq/KNjpxVCCAIDA5k7dy5ut5vu3buzdath58PCwqpN/i8oKCApsQmDBg4BwKc50PQiCgsN39L48a/Qv//59OrVk6ysbL9jmzVvwMWX9eHaGyonZZfC4TUkKhxeKx4UijQVxaSjFQagAKJIp81D12LIX/hQIkIY1K0XkxsMJnj8fF5//XW/8WxhgQTHR1C+EPK/kUqZoc512O12ioqqFltUbKWzS+Padv+6nqWvzEA/AaVQ8ivvU3fCN6iBp08TviZctPwz6rYMJSLYRYDVjdnnJLMoiF1Zcax48M1K/RMSEqoU66vWGNTgKhfFuzAd3oNwFCCFAgjc+RIKHYiiIoTLBS4XMul8pE8gJXin9kTz1o50OyCpH7Z+e7Cfv71W/c8k/g0E07VdL40HHgaqXu/64xZq4bz9q2jatCkzZ85k/vz59O1rCOYVFxdXK+O7ccNmjh7N5Ndfq6497t37PCwWCz3PG8gllwxkwifvEh4ehhCC8IhQJn5Zs0JkcIuG5G3YSeyAdlh370C1epB2DcVajLDoSARbLupFs0RJsctE4ouPlNlIIQTPPPMMOTk5PPfcc7hyHHxz5UukDWjHLROG88mIT4grCTg8u/8tdE1HURWeTiknVn56/9u8knZXmVbTI7sr87OeDQQEBFSbh3rv7y/xXu+ncOcUAZKVb/1I1rZDtLzmPELrVF9yqgaHoAaHVLv/TMAcaENXfeQtWYFJ1Ym0C7KdIRS7K0cDk5OTWbfOv+Bg62ufcWjWfLpNfwN7fHnUX200Er3OYIS5modD4R60gCAUjwvd40Uec2PyuZBhQQinC2kyIT2NMck89DQbWoEH3Dra+pdQOzx3Wj+DMwkjKHVuzz5rgxPOUIUQFwGZUsoTsssKIXpjGNQqSTSFELeVVjdUVzl0sujTpw9RUVF06dIFj8fDr7/+yqJFiyr169a9C6NG3cZbb1VfGNCiRVOGDbuSlq1aEBtTnw8+qH3Ap//kJ7h86Qe0G9gIi9WHlCoyWwWvgl5gRqhG7qKigM3iI65TS4KSYug/7X8MnPcWy5cv57333uPuu+8m/bftFB7KYes3y2lwQXvSEoMQ0lOmPKmoVX9tJ84JOLOQUvLVTR8wf+zssrbAwMBqZ6iWIDt3r3gJs5CYMEijG13SvkZjerZQ5547UKLjKPbayC0KwOExoUudzi/fw+xrXiJry/6yvvXq1ePoUX+paMWkIkwmOC6wqO39Hu3TFHxzrqUqmBq+gho5ANJeQnW4MLV+AuyxaPka0mLDk25GbX0zIroj0mKFwwKyBXJDZd/uuY4znDb1t6A2S/5uwCVCiH3AVOB8IUQlDQYhREsMl8ClUsrs4/cDSCk/Kq1uiI4++dy86pCYmEhERATh4eE89NBDjBw5kpyc40t54Y3xL3HHnSMAePzxZ3jkEf+Kn5CQECZ//hFt27bCYrGwZcvWWhN7CCGwhAQik5uxM6chpu6DEWavIQdo0sEniK5zkND4w5SmTTpXLyL/6aF4l31L8+bNWbduHdOmTeOZr8bT/cmrufwrQ06k3ys30vvpa07I8vR332qTb/mIJxs9WMaqNee5b9ixYDNL3yn3QwcEBFTrQwVQzSoKPoLMXvJ3pLPr+z/wVlGCe7YR1KgBraZMJFtJJM8VhFe3k+kKYsdPq8n8cw+ZG/aW9W3QoIHf/ZezdT/1bruKPosmYo/zf1j4tk0DJPLAPKqCYovD1OwNzKlDMV1yAFOjEYjkJ/BsCsWX3wVzWguUpL6GEGSxB3leXWS/hvjM1f++pK5RNG8qvpyqpXvOBiQSXy23cxknNKhSyjFSyiQpZV0MVpYFUsrrKvYRQtQBZgDXSyl3nJEzrQY+n4/c3FycTie5ubk88cQTNGjQgNmzZ1d7jNfr5dVX3mLca2/TuZN/JkVeXh4//vgLHo+HD97/jI4dzj+p89m/YDP7DwSRH9oeqYGI0BAROk6Hjtnuwx7sQlEMAmtTbBKmhFQsdY10oZSUFDZt2sTChQsZ89VrBCYb6UB1ezan5bDKgbYn977JY9te4+n9bwMwcq0RNHto59sndc6niq2/bMJb7OHDS8cDcGjdvkp9alPCGGCSqAqYVePhZbKd/QBJVZBSUu+a8/HpUOxVcPkkyz6cR6enh9PkqvPK+lkzfdwbcTGHVu9i4yc/s2jYE8zuU7Wsjr5hNr4cO1p+zYbCcziDrJnfons8WDpfR8gru7APn4n50oWIQEOQT0b1AIsNrHZIrp6Qx/HTJBxfvkjOi7dUuV/3OU+J2e0vQRpL/tps5zJOObFfCDFSCFFaEP8kEIlBfbVeCHFy+VB/Abt27cLhcDBhwgQaNmxITEwMBw4cYNOmTdUeYzKZuOLKSwHBmjXradv2PDZuNPoPHnwtEyZ8hpQ6Uuo0a1a73MhSpHStR8fbetFgSA+8riCEqiKEglZoQuogdagz3BBpMyfXJ3bst9hadSs7PjIihL2vuJh5xRL69OldI1OToihY7OUlg6GhoTy0+91KhQ9nCrYwg3BmyDhjuXrVB7dhD7fT+dbyh5DNZsPtrj4PE6DJiP5oEmxJ0ST3aHpW6shrg9XPT2L7B99xuCiQHI8dny7w6mZmPjyF7x4qJ+PW8z2Em4LYPPs3ApOiKfYq5OZ5KDySVWnMYlki32211/jemV98zpEP38ex+o9q++grlqJkHkZkHUZ1p1Tbz1KvObomkK7K+cF65gr06THo31cukS0oKGDu3Lk8++yzXHnllXTq1In69evXeN4ng3/Dkv+kkviklIuARSWvP6jQPgIYcTpPrLaIiYkhJyeHmTNnsn37dmbMmMGQIUOQUpblmjZu3JDNW8qDBEIIpkz5lOnTZgGw4c+NtG7dDU3LZ9iwK1EUhUULDUG43JMsc/39tmfweXTSrr8QU4CH4h0qSoBEKmEc3l2XgJAC1J8mkTV9JsFNIzDX60j4zeX0aTg2IRwOkJB5eC/NmjVj3bp1RESc2eT1U8FTG/390buXbMWZ60StULprtVpxnSC9qceDV9LjwSvxFBRhDqrZsJxNKFYrUoJDU9BRcGk6Hl3FrEhWf7Oay8YNBwzZaJdPsPaL5dTp3ASnZuQSr3ptJv1eu9VvzPD75uE7ko4lpWbDFH3tddhSUwlqV336pe5WEVYzQuqQVb3+k6VxO4IGXIWpjr9ixJEjR9i+YgndhAA9m65du5KXl0d+fj4FBQU4nU6io6NJTU2ladOmDBkyhHr16pXlUf8VSAz9rn86/lGVUlUhIiKCqVOn8vnnn3P//fczePBg9u7di67rNKhvPP23bavaC+H1ZXNB/8tYuHBZmQNyxIjhDB16BWGhBl/CTz+enFBgQGoynqw8TCEhbFnSDmtEHjsOR5MQ6KAwN4Y6ETl484MAgV0sROxeDRgGde+6vexcup/zow2XwJbls+h26T107tyZJUuWEBf31zSHzjRaXtYBW4idet0albUFBgae0KAC5G7dx4JrnqDORd3o8PzIE/Y/G2h0wwDWfbYAnw6KIvHoApNiSCz7KhDGJHaoj6nCJDu0fjyFh3Lo/eLwSmMqVtsJjSmANSER6xU1J75bR/4Am0pKho9jP9d1nb1797Jq1Sr+/PNPdu7cSXr6LHJzH6awsJDCwkJDqDI2hp+ei8VVFMyFF15IYmIiKSkp1KtXj8TExFPmuagN/jOo5wj69evHiBEjKCgoICQkhLp16/rt1/Sqo8xCCIZccTkLFy4rq7cHo3TwVNH1i/L0qqiRD/Hz/6aT4w4kpPkGwmOPEVknE1GyAja3tOPZUs7o/8ag8cYYr9qwW32ocZ1YuXIlF1xwAW3btmX58uWkpvrrEZ1LUM0qTS5o5dcWEBBQKymYrZ/9hE+q5O89dwIlxyMwNowCNQin14MHgUBgVnQUAW613IBZA6zs1I9Qz5xAcHw4V33/7Bk9r5ycHBRFYe3WfM4rCYbNWhHBsy+3pKCggMLCQhwOB6qqEh8fT7169WjQoAHdu3enTp06pKSkkJKSQkxMjJ+7pcMZPevjce4v52uDf4VBDQgIwOfzYbPZ/NqrM6QVcfvtw6lfP5WoqOOX1MbXGxxkpN4eOpSBz6eRkpJcaYzqYGvZjnz3j6gKNG96gECzE8w+1M4BIAT61mNYW5QbbymNxOXP5z7PHV8YVGyKovDrr78ydOhQOnXqxJIlS2jc+OT8umcTAQEBJ/ShZu07xqYf1xNqgqAmZ5b39a9ACAEx0XhyjlBKXaNjBCLq96jj11dTVNxewdqpK0loXZcJrUeBx8t1K1/HHla7B3ZxcTEbN25ky5Yt7Ny5kz179pCenk5eXh4FBQUUFRVRVFRU9vnGxMRweXs78XFxFEcN5M47U0lOTiY5OZk6der8JfXgMw0pwCf+IsPPOYB/hUHduXMnMTExJ5R/rg59+lSOoHfr3plly1Yyc9ZXANRNMdwHmcd2ER4eXql/VYioG01Sj2bUTSlCHgzAaVch0Ipt3SGk04yaYkKI8qfywIcG8uPYn7GHVZbCCFgYy4XaVXTu3Jl58+bRvv05WcpcCTabrVqhvlKs/mo5GQ4zh7Gg7cyhc429zy5u/OxWXu/2LKXqN8bEVHBgkX8dfGZgAXW0BJI7pOJzeZFuL0LApJ6PMnD2Q2zZsoVdu3axZ+s22i0pRkp4hT8odBRSXFxMUVERHo+HkJAQYmNjSUxMJDk5mf79+5OYmOi3hYeHI6X824KRZwr/LfnPEdSvXx+fz8ekSZO48cYbT3xALXDTTdezcuXv9O17EevWLUdKI40kIb4xefkHsFqtJxjBSOYeOvEujj1yARIVzWXDFpCPub5qSGnmein8PQLXjA5EPPomgx4YwOzXf2bV9NVc9cIQPwlqRZcIVeVW6xCG9BvE5FnTa8VZcLZht9vLtKaqw3l39GP66wtQBTjm7WDY33Rup4I1U1agKAKTMH7+CoCQaFIwefJk9u3bR3p6OhE5QUiTzuyHvmToQzdyl6kXigC92EPjxo0JDw8nJiaG8831QYQgkNw34k7iG9YlISGB+Ph4oqKiyhjVToRzNTOitjAW/Od6YemJ8a8wqHa7nY8//pgLL7yQevXq0aNHj7885vDh13LbbUZpZ/du5exTPp8Pr9dbK4NahqvH4B53D6oChdlBmLLzsSSZ8XpU3IfC0L1QNOlu7pvUvewQs9U/F1OXxhIzxKTzcO/rGTRoEFOnTuXii2snqXG2YLPZSrhdq4cuwaNDpFXglYLcI7mEx9VuFXC6UFxczK5duzhw4ABer5e8vDwOHTpERkYGmZmZZGVlUVBQgJ7v4xLOQ0UiSgI/mgSr0Hn++eeJiYkhPj6ePQF7iHKFEh4TzkujX+DAM79CSWFwqRKu7tP4pOVIPGhYguzccu+df+s1n2v4b4Z6DmHQoEFMmzaNkSNHsmrVKoKDa0M7UDW++WYmH388iaeffoz4+Fiee3YsBw4YmkoZh7cTFBSEz+fjzjseoqioGJvNziefjq92vB0PvoP0pJKcdBCJGfdBO84dNryeAMJb7aU4PYKAOplABYN6XHJ7rlvHCzh9dnLnOujE9YwdOgvHBEeZksHfiQUTlzFlzAwue3wQF47qW22/FV/vIvFIb166bSJjPhpeZZ+giEB6DmzI5gXbsKuCkMiTq9PXdZ2srCwyMjI4fPgwmZmZZUYwNzeXnJwc8vPzKSoqori4mOLiYpxOJy6XC7fbjdvtLnNLxMXFoaoqgYGBREZGEhMTQ3R0NE2bNiUiIoLIyEgyn1mJSzNmVQJBl5vOo99TV1ORjfSHH37g7rvvZu/qvaz/egVbNAtBgQrDvnmorI9QFUw2M5oLrl70xkld878RuvhvhnpO4YorrmDBggX07NmTO++8kx07dpCQkMDo0aNPakl0zTU3o+s68+YtpHXrllx73VW89OI4brhhKNcOu40PP3oDu93OxIlGvbRAoUf3jgy/uerFqikgAK8nnyJHICarG3OIA0uyQRiih1oJtmUhgxQ+OPomTqezTKG1IoLM4JUCFcXQvpI6Jszceuut5OfnM3Lk35tq9MO4uaBp/Pj6vBoN6o7fjiClZN6037n95UvIzs4mLy+vzMjl5eWx+/Od5O/wEGuVhFh0HulyGzsTs3A4HBQXF5cZPY/HU7Z5vV6/v81mM3a7naCgIIKDgwkJCSEsLIywsDAiIyNJS0sjNDSU8PBwwsPDiY6OJjw8vKxkOTg4uPY+yOuvP2GX6OhonE4n239cw8ZvVwFQ7IHoxv5BTWtKEr5iNyb7qfn//y0wFvynx6CWlMkXUkLtJqVsL4SIAL4G6gL7gKtKGfKEEGMwOEg04B4p5cnlSlbAv8qgCiF47733+Oijj5g+fTqhoaH89NNPREdHc+21VZNPVIWKZXfr129g/foNAKxYsZrdu/cw+PLrWbd+CcHBQRQWOpBI+g/oVe14rb96l21XXIrmVdFj26BqO5AFHnQNfF4T5qYxcNggi6nKmAKYQ1V8uRo5PmNZpCMxmQTfzfiOyy+/nOzsbB577DG/B4fm03ju/Fdp2DWNYS/Xjry3tnh09j28c9NnXP/aFTX2S2kaxbol+9DdLmJjY7FYLFitVmw2G3a7HbvdTqvi5oQQg8OnYFM1nLFQp04dQkJCCAkJISgoiKCgIAICAsqMZVBQEKGhoYSEhBAcHHxG8yNPBdHR0SguyQ+jPyEoIZyON/eizTXd/froXo3DG9MBydE/9xDXOu3snOw5AYnGadUG6y2lrFia9igwX0r5shDi0ZK/HxFCNMUoqW8GJADzhBANK8ignBTOrbvwNEAIwe23387ttxtpR7/++iv33Xcfw4YNq/Us1Wq1HpfqYxynmiAiIpJnnjUWd8tX/MSqVWu4/vqragweWEOCyffF4CnyYbdKnG2HkLlgMz6TJLHVNpTfskAX5D8ejMkOHrUv4WNm+o3x6d43kbrOK03uR0iNi1+8hiZDuiGEYMmSJfTu3Zvs7GzGjRtXdp2LJ6/gyPYjHN5+hGEvX4XP5+OrERNoeWk7/py9joNr9/HwyqewBJyEP7gEManRPLvoBFLFwC0vXsiwnqP5ceWXpDWfVG2/36euIqFZAkkt6lTb55+E6OhosopzSevdlNwdGfQYNQBbeBDuQsN/ag22o1pMpHZMJXvrQYITzz2Grb8TkjO+5L8U6FXyehJGxecjJe1TpZRuYK8QYhfQEUOT6qTxz86zqAX69u1LZmYmu3fvrvUxgy+/hFIyPFHhIxo//mUCAiz88suvAFx6ybXcOmIUTZt0Zs+e/VUPVoL4ywdhMkkSrxrEtKkm9qYncnR/HfRCE6rdhxrmwZ7ixRLlxRw5v8oxhKLQPDKfOrZ8Nj77Ecc2G+/ZunVrfv/9dyZPnswtt9yCphkP146Xt8GnCFI7GcUAPz//HbsWbuGbez8HWVIZfYbjAHa7jUzzJtKa15y/23Fo53+NMQWjOERKie524TySQ84Og3B6Qq8nmNC7nOVs8FcPceu6twiMDq12LFdWPt+dfzdrXppcbZ9/Powlf23+AVGlNKAl222VBoNfhBBrKuyLLVEypeT/UnG0ROBghWPTS9pOCf96g1pQUEBxcTEpKdWTRRwPR5aKqtgICTZuclHyT1FMHDx4iA/eN3hSbSV+rz179jB69KM1jtng7hvotfxb6l53GX/sCsAU6CAp/jAWYSHzz2QOH4xAsSuIIBUd/8qiUSOeJSaoM/eMfJHOr92DVdWwmTQiUsulmxs0aMCGDRuYM2cOQ4YMwePxcF29xzjs8LFysfEwaT24A24piGmewo0Tb+eJP1/CGnjys9OTgdVqLTPw/58ghCA0NBQ1NQST0Dm20aD3i2qUgCXQiiu/CJ/Lw9ftb2Vmv8p6WxWxe9o8vDkF7J32d0k6nx1ItFptQFYpDWjJdrzkUjcpZVtgIHCXEOK8Sm9WjqqWrac8zfhXG9RVq1bx3Xff0bx5c8zm2lPCrV92gEBzDE4HCKEghIldu/8kLs5f8XPhwu/LSlYXL1pWq7F9RUXc3jWLkGYdiB/zNKZQJza7RlSTY+gxMejBQSjHfZ/ff7WEeD2FqZNncyALfjgYwc8HwjAdZwwTEhLYsmUL69evZ8CAAagm49xMJXIpyS3r8MqBN7nnxwdq/Vn8Vdhstv+XBhUgMjKS3GQTIdF21o+fztGNu/EWFlN8OJvNM1Zy5LfN4PXiPmqUi2Zv28sfz0+sNE5IShwgCYioXPDxb4E8uRlqzWNJmVHyfyYwE2MJf1QIEQ9Q8n+pdEc6UHH5lARknOp1/Ot8qKU4cOAAXbp0AeCbb76p9XHFxS58GInoZsWOLg1f6uDLb2TtuoUEBQXhcDjweDx8+83skiWzYNCgfrUa37ljF+b8YwSSjuPtHzGHRGBOLEBJq48MDgapI4Iu9zumZ0BDQkwm5juLeXH4OwQpQbiqeLCazcFomo+cnMN07tyZwrqFzJz+HUl1E6o9n1FN/kdxnpOP01+tdRL5ycBut5+wUurfipiYGA5kpFM3Jx9FwJpXppG59RCKgCUvfsstC5/F7ROIkuyCeVc/jQCO/r6Zi2aPLRvHsWcfgWY3ovjf/GCSaNRcAFIbCCECAUVKWVjyuj/wLDAbuBF4ueT/70oOmQ18JYR4HSMo1QD4/VTf/187Qy1NgZkyZQpDhgyp9XFLvl9LXZmCLjUCTZEkmFoSpCYSFx8LwEsvP02XLh1ZtmwFDzzwOPXqpfDhR+OZ+nXVcik+n48li1eUCbQFt2lFnUcfJqJ7SxA6mstKQGtQjuWCzwduN/rib8l/onw5HxliRyKQVkmgUn16jaYZhisiIp55vyzCdCyCK3tdS2Zm1TpaUkoyDxfgcHpJ33ZmSEkCAgJOWCn1b0VcXBzp6emoikARgtyNO7DYLajCKFk1261gDySxb8eyYyRgCw/zG8eTlYPV5EOVf4/K69mAQd93WmaoscAyIcSfGIbxRynlHAxD2k8IsRPoV/I3UsrNwDRgCzAHuOtUI/zwLzaoSUn/196Zx0dVnX38+8xMtkmAkI2EfSkkBIkohIgssqiAGBAqBFFLrcomKO9bqEor9lWw2qpUC1FcKK24tqASZVNcsLKqAUuUJYYlYU8ChKyznfePO9nINjEzyZDcL5/zYbj3nHOfuTk8Oevv0QKvxsXF1avczo//ix3wxUxrCSPIGEKIKYIJY7QTSc/+5UV27NjN3AcWUlRUTFZWFr/5zV011pcQP5qbb5rChMTyPKE3jqTt7KfxCSrAHHEeW0AwjrQiHJszKNp0GCOCj8HKpbVakDX/iLZ0H9KTDdtfIq+dwiSKAFPNOxZCQ0N5dP4LdL7Yk+55cQwcMJDMzEysVhufrN3NXfGLsVgsiAi94rvSOTaKLn1+9jx8rfj6+qKUqjUMSnMlMjKSM5mnAKUJqTjs/HLNfJQCg8nAiW8PU5hv4fTBLADGb32RhKdmMmr1okr1nN30BRa7EbnyDxLVisLhUqq1DqUylFJXO1MfpdRS5/UcpdQopVRP59+5FcosVUr1UEpFK6UaFGC02TpUgFtvvZU9e2pWOK+OR1+5h3FTryfc0Jn2Ekq4BNGeCP6y6B0Anl/2FEOGDCIxcSwA424dw4z7HyK4TWd++OFAlfrS0rTwvFu3/qfS/lZRdpBg7K2GYTp2FAMGcBjAAeJnAV8bcm4JyTNWkXX4HHs/P0z3X3Ri6Z/uZercIaw4UflkTUFuPvd0/yXThk3m3Lks5vxPEh1Hd2L2yru4+pqrGRQ9iuvb3Meiu5PJSDvJjRHzyMvLI35sH57d/mi93lF9EBH8/f2rBK1rCURFRXHuQg4mHBix498miJDu7RCDArudTx9aiVHgUob2bgLC2hAU24l9yR9Ursg/EDBgU+VTMrb8AnJ3paIaO1SJx1A4sLuUvJlm7VCjo6PrtV0KwM/flz+supeHfn8X2Y5LGBWcpxirU8R0woRxfPHlBhKuG4DJZOKeX9/J1q1fUFBQwN69/61SX6dO7VHKgdVmITamPNSJiODAjKXEF8Po3eRnhZOfGUHmwWiIcCDtbNjOwo61+yrVt+ulzaT+80sKzlaOGVRSUEJ4SQhjY4YDMH7M/fwz5d9MnD6HDz/8kHYMwiHa73iFwmqxMb/HY3z09AZmdvTsIlVAQACnT3uvzqmnCA8P51L+JX757Sp63j2Gm15/BL9W5rLZb2NgQJVta5sTF5P20nr+fXP5yv8NG1di7tmVAS/9sexa2mPP8d//fZIzm770/BdpBBTu6aE2Nc3aoSYkJLBmzRrOnz9f77IzF02kg6EtXQIC6eJr5unn5lW6P2nSeIqKzzD2lpv4LnUbn3z6AdOmVQ0FcfLkqbIz3x06ls+Lin8gRWdKKEpLp2jbSwRE5eDT9gK9V6zHcdYHo0VhO9cJAcwVfkohvToQ2D4E/7aVV3xDOoXyfz/+mTtW/Fq7oETbEFLDT9iOHbvDzkWLnYv5teuVNhQfH58yQZCWREREBPn5+Zh8TVz7u2kER2v7bMe9PJuuI/qS+Mo8OvbrTOI/yp1nqX+1nC1vsz8se4sLBzI5+Gr5YQ+lBIcCY2DtkXCvHBQOZXcpeTMuO1QRMYpIqoh8VM09EZEXRSRdRL4XkWvda+bPY/LkyYwdO5bevXvzySefuFSmsLC4bAHJ6lAU2e3Y7EY2vvttWZ6SkhIi28Uwdep9FBUVcV3Cjbz6atVTQHa7HavNCihEDKR+d1kPG65TDQAAE9hJREFU1s9fc3qH38PHbME/pIDCs8e4dOZacnd3xxF4FUFG8DGWO9UfU74l78R5Hui8kO82fF+5uiB/DEZnRosCZcDk0I6yflv4D+57ZByBUWDDjvgYOF1sp8AOOVbPNlKj0VinyHRzpPQ8/+V0G3E1t778AJcyTpCz/wi5aeUhqDsPjcXXRzF6zR/KrrUfGY+plZmOo8tHOH3/tJD+r/+Z8BsG0jxQOLC6lLyZ+vRQHwJ+rOHeWLTtBj2BGcBLDbTLbaxYsYJ33nmHadOmsXfv3lrzPrP0NTqHDSPxRu3Y6gvbHiHT38IpWxEPPpFUli8p6T5ycy+wbu1HbP30C9LTM9i08VPWrascuvqzz75CKTvh4aEopSgoqLww0/XNL+n6r50Yb3sVhx2UDXzadCP04Vfx6T+ekEdfx2DUwgO16+GMKGAyYrVrw/bTO2v6cUC2fS/+VjsFxeXCx7Mfm8K2n/7BnU/2Z7/1XYqVg2KHDYvy3DBKKUVxcXGlOPUthfDw8FrjafWYOJTRbzxK7N3lW+6GvbSQyamrCb2q/Fx/xKA4bvniVbpMHF52zRjgT+ve7os42tQowKEcLiVvxiWHKiIdgXHAazVkmQD8U2nsBIJLN9F6A8OHD+epp55i3rx5Zb3P6vjT0r9hp4Svd2jb0PoO6EHrEDP5coE/zEouy3f6VPl8YN6lfJRSXLx4kSmTp/PTT+UObPly7QBHdnY2gYEBmM3+FBRUDcsS2G8SfgvOYpiZTkCnDvh06ErovKWY2oQS0acj0srMY9sWkZ11mqAgK9dMiWdQWDHt25cP9zb+7+t8NGdFpXqzrPu4pM7w7Vdpla7P/+08Vv19FQqFzQ1nT8+cOcOcOXNISEhg1KhRjB8/nmPHtGOxKSkp2Gw2JkyY0ODnXGmEhYXVOtVhMBqIuOYXGHya7XbweqBa1BzqX4HfQY3fxqXzsCIyo/T87blz5+pjZ4P51a9+xdGjR3n44YdrPLljseVRZMvBbPbleMYpJg1eyI/HDlAoeRw4erAs37GfcggwhmEQYdKkRK65pm/ZvezsnLLPpUP8wEBtc3thYRG3T7qfx35fHsivFIOfH34R4VWum3xN+Jr9MBgMrLnhcWyXHKSv/ZrEf/+efrNuBTR1rF1rU/nm4x+xF1cdWp/NrjqHnJSk9bhLY50PM19+HNo1kpOTiYyMZN26dXTs2JHMzEzS09OJi4ujuLiYpUuXkpCQ0KDAh1cqwcHB2O128vLymtoU70eBUnaXkjdTp0MVkVuBs0qpb2vLVs21Kl0fpdQrpedvw8OrOg9P4ufnx5YtW9i0aRObN1cvd9jaGcvpLy88wvzpz3FoX6bmCEQx47flhwNsRSbMPm2J6d6fmOj+pKaWz2X++GN5yOpTzpXt2yYmMnhwAiDs+Gofy5e9QW7OhTptzj+XRxtLIbfPH4HRZMSOgWK7CWUwsjFpaVm+Y99ncrZYOG8RjP5+lYaZ695bz9iJQ6qrntD2lZ1cbb33miguLqZDhw6cPn2atWvXcujQIXbv3o2vry9du3Zl9+7dLFvWMsWTRYSgoCDS09Ob2hSvx51HT5sSV3qog4HxTtHWd4CRIrLmsjxuPQ/rKXr37s1tt91Wo0M9npXK4Z92Me3OSSx48m5atwvguVcXcCrvPyz648yyfHZlxeYoYfETDxDTO5revcvj0LcKKl99DwsNARwsXryA3rG9MIgJk4+RuH69MQdWr3takf0p33Hu8Gm+Wr4FgItFNpTDiklKsNms7EjehMPh4MEJT/Fx4WF25Wu9/tKAbW3atGHi5LE11v9++vNlnwvJYfbs2ZX2yrpCu3btqpyECgoKIjMzk8cff5yMjAz69OlTrzqbEyEhIbpDdRGlHC4lr0Yp5XJC0xP8qJrr44CNaD3V64DdddXVv39/1RQcOHBAhYaGqg8//LDBdT3/fLLyMbVTHTvEKpMxRBkNbZXREKyUUurEiZPKZAxRgeYopZRSeXmX1E2jpqhHfrekSj3HX39LZX+5vcp1u92uPv3zenXqh0w1MvI3KiHgHjXEPF29Ezddvd13uvpz9zlq37tfqzDzABUWqKVSCgoKVElJiUvfw2KxqmPHjqmIiAiVlJSkrFary+8gNzdX+fv7q+TkZJfLtCTi4+PVM88809RmeBTgG1UPP1JdMoifCvT7hUvJHc/zVPrZs+EiMsvpkF8GNgC3AOlAIXDPz/bwHiY6OpqUlBQSExPZs2cP3bp1+9l1fbLlSwQjRUUWlFKISNmw+cUXVgKUbRdq1SqILZ++W6WO/MM/kbX6bcRkJPSzyqLSBoOBUQu1I695F7W5I7uCIos2mW2ObEOPkVeVF6gwYjebXVcm8vEx0blzZ9LS0ujXrx/jxo3jgw8+qDF6QEXatm1L586d2b9/v8vPa0lERkaSmZlZd8YWT/OIelqvjf1KqS+UUrc6P7/sdKY4f1E9oLTzsH2VUt94wlh3MWjQIIYOHcqWLVsaVE9EeBgiwty59zNmzCiUcpTJ+Y0ZOwow0K5du1rrMHfvSptr44i6Y2Kt+YCymep/ZQay/kQr/p16jq0b9hLdqzsoCGrdsE3eYWFhHDhwgIyMDEaNGsWlS5dcKldcXEyPHi05fEfNREVFcerUqaY2w+tRNI9FqRa7X2P27NlMnTqV1NRUli1b5lJvrCJFRUXcd/90brxpOJOnJOLn58e6dSkMG6ZJBg4fPhSrre6dDAajkdi/LnHpmQYl2sYRpSUrDn43+wXMmOlEDOt3PFev71AdQUFBpKWl0b9/f4YMGcLnn39OSEhIrWWCg4PLtknpVCYyMpKDBw/WnbHFo7x/ftQFmvXR09q4+eabSU1N5dixYzz22GP1Lt85bASTxjzI/8x6Gj8/Teh50qREwsLCuHQpn5UrV5OT477N7FowFgOCcFblk2svpgALiOZkAXKzL9ZRi2v4+vqyb98+zGYz8fHxnDxZ+/ri9ddf3+DefnMlIiKCixfd83Np7rSkfajNki5duvDKK6+wevVqdu3aVa+yIoKIYFDl+qSvvfYGOTk5vPHGu8x9YCHJK16vUi794HHGDZ3D7q+rCqnURvyg3gQFBZBy6FlKsJBPEYVSiMNhI0gFYFb+xA3oWa86a8NgMLBjxw569epFfHw8GRkZNeZNSkqqUXO1pRMeHl7tYQ6dy1AKh7K5lLyZFu1QATp16sSqVasYPXo08+bN4/jx4y6VE6XNlrRGGw7PnPlb5sxeSPdu/Rk0aAAATzxRdQP/80+v5lDqCeZOe6bOZ+z/zyH+cNNz2Gw2co7k4mszEBYZzOb9f+OGIdfgiy+BeDYsxsaNGxk2bBgDBw4kLS2t2jxZWVn1CjHTkggPD2+RWrD1xZ1zqCIyRkQOOrVFag/25mZavEMFGD9+PJs3b+bs2bMsWrSo7gJAnIqlryOOHs7ttz17arsFioqKGRh/Y7Vllj3/Mv94aw259kxysi/w5ur11eYr5Y+3vMjBPceYHPwgETFhJM69AaPJSIfu4bywZQEmkwm7AazYPbrh+e233yYpKYnBgwdXqy/bsWPHFntevy5qEkjRuRxNs9+1VDMiYgRWoOmLxAJ3iEisx8y+DN2hOklISODee+/lxIkTLuUvxo5JDFid85dvrXmv7J5R/JEK630p6zfTJ3YIycl/xyAGrBRzkTPs+Hpvrc9wiGAUwS6w7cu9rHy2fFuVxWIlPrIzsT7h3Dy0L9sLq04vuJMVK1Ywb948Ro4cyWefVY6+OWzYMOLi4pg7d65HbbgS0R2q67hpY/9AIF1pyv0WtMNIjSYkoTvUCrz//vvccMMNLuXNk0LOqXxy0ebHPt74LtrSkYnWvh1o5dMBP5M2HfD992mkH87g+LEsLPZ8QLA4Cnj3vQ9qfcY5axH5VhvZdu0oqaNCDIybgudyMDOb7JJizh1vnJ7hk08+yZIlSxg/fjzr15f3rg0GAzNnzmT37p8d26zZEhoaSklJCRaLpe7MLZp6iaOElWqCOFNFIQqXdEU8RYvdNlUdERERfPzxx8TExDBixIha95DuylnFwNDflIVqjoqKoo1PFywqH5sqxo69bJP/L29PJKp9O9IPH+G5Z5Ox2C7hYzJze9Loauu22x38dugz5FFEicOGAYiidbWCCTYguEPrBn5z13nooYcIDg5m2rRprFy5kjvvvBOA2NhYfchfDSaTiYCAAI4cOUJ0dHTdBVo0Lk9bZSulBtRwzyVdEU+h91ArsHjxYpKSkrjjjjuIjY1l+/btNeb19/enuymUzo5gPlr+KQAGDPhKEAESgkFMKKcY7j2/foCZM+YzcKCmu62wYbHlERJWvSM8uPsIGftPolAUY8EXE8XKgbWa4U6Yjx/pezLJzsqppibPMH36dN58801mzZrF8uXLAYiJiSE/P5+srKxGs+NKITg4mMOHDze1GV6OQimbS6kOmlRXRHeoFTAajSxYsAClFDNmzCAlJaXW/A6H9otv9TObAAgilBCJJIL2tJFw/I1tsFgstG4VzLhbxnDsWCYGQ3mgtf98eKjaeqN6hOEbYCIAfwLwx4FgxU5JhQBl1wz+BUqKSbflctyWS2CoZ1f7L2fChAmkpKSwaNEilixZwvz587FarS1Spq8uwsLCOHr0aFObcQXQ8EUpYA/QU0S6iYgvMBWoffXXjehD/hqwWCzUJTGYL1YcdkVggPYaO6Dl9xUfcITxxuYn+Pyzr9n25U58fX1JP3wSkwTSp08vjhzK4fip6hfAtn/0PRfzixk7ZSCb3ttdFpOqVUS50/zrJwvpZ74LRIt2Mij0frq3jyAoT9E+JpKntz3spjdRM8OHD2fbtm2MGDGCCxcu0LFjR4KDgz3+3CuNiIgIl7fjtWjcIHaulLKJyFxgM2AEVimlqt/v5wH0HmoNbN26lSFDqtcRLWXglL5kSx5R0WEA9BsajVn88cVEIGaGDr2OG28axq+mT+Fvy5eCEkQMzHrwbu66ZwJ/Sa4+2mjMgG7EJnTnjgfHEj8ipmw6/uOjL1TOKJU/F5wuBLuDzP2Np5zYr18/vvlGk26YNm1aoz33SiIyMtLl3SMtF+XynzprUmqDUqqXU1tkaZ0F3IgoN/xW+FkPFjkHuOMAeBiQ7YZ6Goq32AG6LdXhLXaA99jiLju6KKUapBgvIpuc9rhCtlJqTEOe5ymazKG6CxH5ppYVvxZnB+i2eLMd4D22eIsdzQl9yK+jo6PjJnSHqqOjo+MmmoNDfaWpDXDiLXaAbkt1eIsd4D22eIsdzYYrfg5VR0dHx1toDj1UHR0dHa9Ad6g6Ojo6bsJrHWpdIrGi8aLz/vcicq2rZT1gy51OG74Xke0icnWFe0dF5L8isldEGhS80AU7hovIReez9orIYlfLesCWhRXs2C8idhEJcd5z5ztZJSJnRaTasKuN3E7qsqWx2klddjRaO2lxNHUc6+oS2pGxn4DugC+wD4i9LM8twEa080LXAbtcLesBW64H2jo/jy21xfnvo0BYI72T4cBHP6esu225LH8i8Jm734mzrmHAtcD+Gu43Sjtx0RaPtxMX7WiUdtISk7f2UF0RiZ0A/FNp7ASCRSTKxbJutUUptV0pdd75z51oCjfupiHfq9HfyWXcAbzdgOfViFJqG1CbbmBjtZM6bWmkduLKO6mJJhVnbg54q0N1RSS2pjzuFpitb333ovWISlHAFhH59jIhXE/ZMUhE9onIRhHpU8+y7rYFETEDY4C1FS676524QmO1k/riqXbiKo3RTloc3qo25YpIbE153C0w63J9IjIC7T9KRVWVwUqpkyISAXwiIgecPQhP2PEd2rnqfBG5BfgA6OliWXfbUkoi8LVSqmKPyV3vxBUaq524jIfbiSs0VjtpcXhrD9UVkdia8rhbYNal+kQkDngNmKCUKlN7VkqddP59FngfbVjlETuUUnlKqXzn5w2Aj4iEufod3GlLBaZy2XDfje/EFRqrnbhEI7STOmnEdtLyaOpJ3OoSWs85A+hG+eR4n8vyjKPyYsNuV8t6wJbOQDpw/WXXA4FWFT5vB8Z40I5Iyg9rDASOO99Po78TZ742aHN5gZ54JxXq7ErNCzCN0k5ctMXj7cRFOxqlnbTE5JVDflWDSKyIzHLefxnYgLaCmw4UAvfUVtbDtiwGQoFkEQGwKU3Fpx3wvvOaCXhLKbXJg3bcDswWERtQBExV2v+apngnABOBLUqpggrF3fZOAETkbbRV6zARyQIeB3wq2NEo7cRFWzzeTly0o1HaSUtEP3qqo6Oj4ya8dQ5VR0dH54pDd6g6Ojo6bkJ3qDo6OjpuQneoOjo6Om5Cd6g6Oi2UukRUqsk/RUR+EJE0EXnL0/Zdieir/Do6LRQRGQbko2kdXFVH3p7Ae8BIpdR5EYlQ2iEEnQroPVQdnRaKqkZERUR6iMgmp6bAVyIS47x1P7BCOcVddGdaPbpD1dHRqcgrwDylVH9gAZDsvN4L6CUiX4vIThEZ02QWejFeeVJKR0en8RGRIDTN1n85T20B+Dn/NqEJqAxHO+P/lYhcpZS60MhmejW6Q9XR0SnFAFxQSvWr5l4WsFMpZQWOiMhBNAe7pxHt83r0Ib+Ojg6gqVChOcvJUBY+pjRMywfACOf1MLQpgIymsNOb0R2qjk4LxSmisgOIFpEsEbkXuBO4V0T2AWmUK/ZvBnJE5Afgc2ChqiA/qKOhb5vS0dHRcRN6D1VHR0fHTegOVUdHR8dN6A5VR0dHx03oDlVHR0fHTegOVUdHR8dN6A5VR0dHx03oDlVHR0fHTfw/4pB99yc9AswAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Extra Credit: create a function to pad the bounds by user-specified distance\n", "* Assume the user knows the units of their projection, and specifies this distance appropriately (e.g., 30000 meters, not 30000 degrees)\n", "* Play with padding distances and replot for a visually pleasing extent (i.e., don't chop off California)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content", "hide_output" ] }, "outputs": [], "source": [ "#Student Exercise" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "hide_content" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVMAAAEVCAYAAABdSgYFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddZwV1fvH32dubrG9Cwvs0rV0d5cgAgpKiKgoYhEWJqiIoKACNgYGIigq0t0hnUuz9C7bHbfm/P6Yu8UmsNTvy+f1mte999ScM3fmmec8KaSU3MM93MM93MONQbndE7iHe7iHe/j/gHvE9B7u4R7uoRRwj5jewz3cwz2UAu4R03u4h3u4h1LAPWJ6D/dwD/dQCrhHTO/hHu7hHkoBdw0xFUKkCiGq3OY5PC6E2Ho753AP1wYhxE9CiA+KqJdCiGrXOXahfYUQG4UQT13PuHcKirt295AXN5WYCiHOCSEynIQwSggxRwjhfj1jSSndpZThNzifm3qDCyGMQogJQogTQog0IcRlIcQKIUT3XG3OCSG6FjGGEEKECyGOFlAXKoRYLYRIEEIkCiH2CiF6lfIaKjmJhL6Uxrv3AroBCCH8hBDbhBBxzv98hxCizVVtxgkhrgghkoQQPwohTEWM19B536Q7Pxve9EX8j+BWcKZ9pJTuQGOgGfD21Q1K68G9A7AQ6As8BngDlYGZQO9rGKM9EABUEUI0u6puCbAGCHS2GQ0k3+Cc7+HORirwJOCPdk99BCzJemaEED2A14EuQCWgCvBeQQMJIYzAv8Bc51g/A/86y+/hRiGlvGkHcA7omuv3NGCp87sEngdOAWedZU8Dp4F4YDEQlKuvBKo5v5uA6cAFIAr4BnDJ1bYvcACN0JwBegKTAQeQiXaDfuFsWwuNQMUDJ4CHc43j65xHMrALmARsLWStXYEMoMK1XJMC6n8EfgP+zpqjs9zPeQ28ruH6PwkcAxKAVUCIs3w88B+gd/5+FggDzM5rKp3XKBVoVdRYuf6bUc7/MgH4EhBAbef1djjHSizhvCXaiyIciHXeN4qzriqwHohz1v2W+5oAjYB9QAqwAJgPfJCr/lUgEohwrula7qtC+xawho3AFOd9k4RGxHycdcuAF69qfwjoV8x1UYA+zvMGOMvmAR/matMFuFJI/+7AZUDkKrsA9Cyk/U9Z1w7wADYAs5z/7U/AV8AK53+7DSgLzHDeA8eBRjeTvtxpx80dPBfhACo6H9hJuR6YNYAP4AJ0dj4cjZ039efA5qsesKybfgYakfNx/slLgCnOuubOm7eb8+YrD9TKdYM/lWtMN+Ai8ASgd547Fgh11s8H/nC2q+u8EQsjplOBjddyTQqoc0Uj3L2Ah5xzMTrrBBqxWgr0AwKLOU8/tBdTbefa3ga2O+sUYDPwLlDdefM3ctZVcl5rfUnGyvXfLAW8gGAgBucDCjxe2DUrYu4S7cH1cY53Mut/A6o5/1sTGre2GZjhrDMC54FxgAEYANjIIQg90YhkXed/Ou8a7qsi+xawho3O+yWr/V/AXGfdw8DOXG0boL0cjEVck0OA1XnO73KVHwQeyfU766XrW8AY44AVV5UtBV4u5Jw/AR+gMRW7yPtS+gnt/myC9hJeD5xF25XpnP023Ez6cqcdN3dwjXCkAonOm/wrnG965x++AogGjgA/AB/n6uvufBAq5Wr/InAUUIHFudq2Ioe7/Rb4rIgbPDcxfQTYclWbb4GJzhvChpMQO+s+pHBi+j0wP9dvH+e6k4DMq65JYcT0UTRCpEcjFolA/1z1FYAv0LhtFY2QVC9krBXAiFy/FSCdHO60Eho3fgx4I1e7SuQnpsWNJYG2uer/AF53fn+8sGtWxH0jycUtAc8B6wpp2w/Y7/zeHo1rzM15bSeHmP4ITM1VV8N5rmpoL6s0oGoh91WhfYu413K3r4NGDHXO/zY+679D44a/KsF1MQODgeG5ys5cda0MznlVKqD/O7nvUWfZb8C7hZzvJ+e6jwCvFlCXm6i/CBzL9bseJdyJ/H85boXMtJ+U0ktKGSKlfE5KmZGr7le0Nz5AEBrBBUBKmYr2ti6fq/0otC28ADo4BfKJwEo0LgU0DvhMCecWArTIGsc51lC07Yo/GlG7mKv9+fxDZCMOKJdr/vFSSi+0N3ehCoGrMBz4Q0ppl1Ja0Lb6w3ONeUlK+YKUsqpz7mnAL0WsbWaudcWjXbfyzrHOoXF/ldC25UWhyLGcuJLrezray/BGcPV1DwIQQgQIIeY7lXvJaPI/P2e7IOCydD7NufqSq76w/9MfbWewt5D7qqi+JV2DAfBz/rd/AI8KIRQ0AvlrcYNJKTOllL8DrwshGjiLU4EyuZplfU8pYIir22a1L6htFnqj7Ry/KaAuKtf3jAJ+3+g9cFfhdptG7UJ7MEHjKEKEEFWFECuFEPvRlCzmXO3nohHKDKCOk0h7SSk9pabkAu0GrlrI+eRVvy8Cm3KN4yU1q4Fn0ThEOxpxzkJwEWtZBzQTQlQoeskFw9mvM9oDdkUIcQVtm9pLCOF3dXsp5UU0Ili3kCEvAs9ctTYXKeV25/l6oXFe69BkktlDX+tYxaCg8UqCq697hPP7FOeY9aWUZdC4eeGsiwTKCyHEVX3JVV/Y/xmLdl+FFnJfFdW3pGuwOc8DmvJnKJqMM11KuaME42XBgKZoAk101iBXXQMgSkoZV0C/MKD+VdenvrO8MHyH9lJZLoRwu4Y5/s/hdhPT3JiHJrucB7yEtoU9BLyVq01lYAva1vl3IUQAgBCivFOrCZq44AkhRBchhOKsq+WsiyLnJgRNXlRDCDFMCGFwHs2EELWllA40zvBdIYSrEKIOubjEqyGlXI3G6S0SQrRwmkkZgJYFNDcIIcy5Dj0wDE02WBNo6DxqAJeAwUIIbyHEe0KIas51+aEpQf4rZErfAG8IIUKd18hTCDHQ+d3PeZ2ecq6pTy4Tqxg0EUKVkoxVAkQBFXJrjJ3mUueK6feqc80VgTFoyiTQZJmpQKIQojyaUigLO9BegKOFEHohxINoMvQs/AE8LoSoI4RwRRPnACClVNEIx2eF3FeF9i0Cj+Zq/z6w0Hlf4SSeKvAJRXClQoiWQoi2zvvJRQgxHs2aY6ezyS/ACOd5vNHk2T8VMtxGNGXgaCGESQjxgrN8fTHreAFNObtUCOFSTNv/XdxMGQJFywezZFWVgCPOsjFoN5gdjWCG4ZTDONuvRnsr10RT1Jxzfh4DRucauz8aIU5BU5z0cJa3QiNYCcAsZ1lNNO1qDNpWfT3Q0Fnnj0Zwi9XmO9ub0JQ6p9C2upfQ5I09rrom8qrjAzTt54sFjPkasAdNifEzOXLoK8DvQPki5jMMOOyc/0XgR2f538A3udrdh8b5+Tp/v++8HolAy6LGyv1f5vr9EzlySqPz+sYDsc6yd4Dfipi3JEebH4dGcHTOulBgr/MaHABeBi7l6tsU2E+ONn8BeRUnrzuvXUHafDOaXDycgu+rQvsWsIaN5Gjzk9GUWX5XtXnbOUaVIq5FBzQlU4rzGm4C2l/V5iW0l1YyMAcw5apbAbyZ63cj5/XLQLN6KFTjftX/qKAR7tXO65Rd56x/ilwKWLRn234z6cuddgjnwm8bhBCV0Myl6gohygAnpJTlrmqjoL1RX5ZSfuosW4em5Nh9q+d8DzcGIcRqYIyU8lgh9RJNOXP61s7s1kII8RgwUkrZ9nbP5R5uHHfSNh8pZTJwNtd2VDgF7XXRNKGNnOV+aFvgG/KIuofbAyll98II6f8KnFv/54DZt3su91A6uK3EVAjxO5qcq6YQ4pIQYgSaUH6EEOIg2jb/DTRZ5KtAjNDcLDegmWoUJGS/h3u4o+GUw8agbc3n3ebp3EMp4bZv8+/hHu7hHv4/4I7a5t/DPdzDPdytuG0BRvz8/GSlSpVu1+nv4R6uCVJKbDYbVqsVq9WKxWLJ82m1WtHpdJhMJoxGIyaTKc9hNN6aWCLh4eEoisKterb27t0bK6X0L75l4ejRs76Mi00t4fnOrpJS9iy+5a3HbSOmlSpVYs+ePbfr9PdwD9mwWCxERkYSGRnJpUuX8hwXL17k4sWLREVFERAQQEhISIFHcHAw7u633+Hn448/ZuHChezateuWnE8IURJPsCIRG5vCf7sKDHSVD0bd8HwOLHcK/r+EvruHe8gDKSUpKSlERUVx5cqVbGIZGRlJREREns/U1FTKlStH2bJlqVChQvbRtGlTKlSoQHBwMEFBQRgMhtu9rGJRt25dvvjii9s9jWuEREr77Z7EDeN/gpieOnWaRx4Zytdff07//oOJi4tn1ap/CAwMxNfXF29v77viQflfhpSS1NRU4uLiiIuLIzY2ltjYWGJiYoiOjiY6OpqoqChiYmKyCahOpyMwMJBy5coRGBhIUFAQ5cqVo2bNmpQrV47y5ctTrlw5fHx8UJT/H+qDevXqERd3lxm5SHA6ht3V+J8gpqtXr+PgwaNMmTKdqKhoAAYMGISvrydxcXEkJCTi5uaKj48Pfn5+BAQEEBAQgJ+fH01WRWPUSeIyjJgerIL74RgMVctSYWBHEmbNw8Xfm6afvZVHJqaqKqfefAf3Jk0pP7A/tvRM9C4m8rpE//9E9IpVJB84QLU3xmeXSSmxWCykpqaSnJxMUlISSUlJHFl8FCtWDJV1ecoTExNJOJOG55kQDrKJREM0CQkJGAwG/Pz88PX1xd/fHz8/P/z9/QkICKB58+aULVs2+3fZsmVxc/vfcyWvUEELDREWFkZoaOhtnk3JIJGo9zjTuwPPPDOC8uWD6NixHb6+WuyJxx9/kunTP8TNNRBww5JpYOqkz3h65OtkpLozYEB7otcfRgWsDoFeUUn7+yhebgLbpViWrdtGfaMnqafjsh/aYeWboTPoeSzIFWl3IX77AX76cjbVEwI456NyqpoZFxcXXFxcMJvNmM3mfEoKo9GIwWAo8NDr9ej1eoQQKIqCTqfL8wlgNBpJT0/HbDbjcDiyXd0sGVaiLyfiV94DVVVJTk7G4XBgNpux2WzY7fY8h8PhwGazkZmZmefIyMjIc1itVmw2G02iM2jksOIm7SiK5OO/lvBF9AVSU1NJTU1FCIGvuw9NXRsS4xmP0ctM6KmGSCTKgw48vT3x9fWlSpUqeHl58feo7ShC0FB2ZtahN/H29sZkKmnwrf9dCCGoWbMmy5cvv2uIKaioaubtnsQN43+CmOr1evr165P9W0rJrFnfYDabsFqtANgddk7ujwHA1dWVJ598ktlTelI+UE9Emo7kjLIIYSTJasEgVIbNmMCy578lw64nPSWNK/tPsfLJGeiEA7MSQToCiaBpk8Yk7YqjQr0KeIb6ZxOkzMxMkpOTswlSbs2wzWYr8MgidFJKVFXF4XBkf0ZHR+NwOHB3dycqKoqQkBCSkpJQVRV/f3/cY+qht5bB4RaHrHCJy5cvExMTQ6tWrdDr9dnEWqfTZRNtvV6fTfTNZjNVL1uodiYdi6+JmAfq4eLiohF/BP5fLccmLcSo7oBKywAPHvnrNzw8PHBzc8NkMrH3z50sfOk32j7cid4T+jO+9pukJ6UzZfIU3H3ycpF/j8oJSPX5Qz8SEOLHmHkjb/7N8v8ATZs2Zfv2kgT0ukMgJVL9H+FMnRF+UtD84+1SyqaFtGuGFsXoESnlwtKa5I1AVVUAFi5cSPPmzcnIiMPFxReHw8aUKdN58cVRWDNVqgU2ZNizvXlr2ohsLi+0rALoCHFXiUvTtugxGQY8jHYqdW1GovUnVATrHn8b9fQJqnmppNvMKIoDD5dU7HZJj08ms/2nLQidQqthbQqbZqnhwIEDdOzYkbNnz+Ypf77PNHatD6OMoTwb9y9h0qRJrF69mi1btpR47O3PT+VK+FHcMyRDxozJU7dh9mKkasJkAAUHbZcuJP7kRU7++C8t33sCgPr3N0J1qNTupkUNTE9MA2Byhw+ZcngyMediWfzBYu57pSez9r3N6MYfIIDwo1EkJ2ZwDyVD48aN7z4l1P/YNr+TlDK2sEohhA4t2deqG55VKUFVVXQ6Ix4enqSkaHnnqlWrpMXpERqHajIZ6Xv//fS+7xHmTV9LGQ9X1l/5GoC4NImfmwMhVNJsAkVIdEJHqk0bXxGgSsGpffFUKeOGQ83Ew5RJpmswJEWjCwgi8chJFr3zF4r+1hDTwvDpn2N4bcjndO6v5ejT6/XZL5qSouGEp1nT8wVcg8rmq1OEil11gKJ51Ck6HasGTUKqEnuGlbYfP4PBxUizQa3y9c1I1gjliU3HObjsIBXrV6T76G7onTJmCcRE3MsbWFLUrVuX2NhCH9U7EPe0+VfjRbQ8N1dn1LxtUBQFRXEhLc2Kophxc3MlKirGSUg1+VJKjMKw/m/hZ65OlO0sluScgFUeQ55h81erUJBYVB0uio0ku5EBs0cAEOydiTvp2J3E1a6C0JlJSjKgy3DDPTKa8NkLeO7vMQjl1iif7HZ7gZppk9nIzL9fzv6t0+muiZjaMywcnPIznnVrENK3fb76VqvnsrdXXzIsZTAbNeJo9nUjMyaZ+DWrgGfY9/cejq8/ysBpgzC4GHn6lxH89c7fjPt7rDbGkFb4BvtSrZWWiv6RCb1Y8P5yBODqfS+MZklRr1494uPjsdvt6PV3gyRPgmq73ZO4YZT0SktgtTM02rdSyjyRbpxBevujRYovlJgKIUYCIwGCg0sSqLz0oKoZfPLJDEaNGqvNxVm+eu0KoAxmXAjWhVD3sZzg6OXrVQIUpFRx0duQqqCqewxnXv+I+IW18VZSMelU7C4mMtJVojM96T3nXdy8XMiMjiNy8RqqjByEa1DALVunw+EokdWATqfD4Si5OUpGdDxXNu3H4lBwadSIylfVG93cyLCUwSH1pFs1+adXxllcvQU2h2Brv8EcUlpyblc4Xcf1IKBqIPW71ad+t/o5czLoqN2pdvbvNgOaMf/95VrAz8bXlcDgfxKenp54enqyadMmunTpcrunUyw0Jendz5mW1LiujZSyMVoQ4eeFEFezJjOA8bIYYzEp5WwpZVMpZVN//5J5oMXExODq6kqjRo344IOpnDhxsoRT1rBx43I8PQ1MmPAWPj5eORXObX66PYHo9AMEONzwcPFgwuRx2U1q9GjIqM3v0n38/Xi7Ciq6W9AJI1KYuLAtHCkFVoeCw2JFIPAwWPGtXRGLyYxv49rUfXc0rkEBXLkQx5Am77B7w9Frmvv1oKTcZnGcaTvXp2nr+jTr/9I8aTxCyuHfpytJVpMm3ygAvp1boODApUYIAK6GTKx2BZ2iYo2KxqQX1Otam4Cqgdl9pvb8lGfLjmHlF2s5uu0kYZtPsOb7LTjsDlw9XQHtxXd43akSreseNDRo0ICVK1fe7mmUDFIFe2bJjjsYJeJMpZQRzs9oIcQ/aKkgNudq0hSY7+SI/NDyFtmllItudII+Pj4EBQVx8OARwo5EMGnSJ2zcuJRWrVqUqH+7du3YvHkzY8eO5f3330cII7kyaODl5UlUVDQX/Q+y4fRvGAx5L4lXBX9C7mvG7hmLSEWPSSdJsSkYdXbSrQKDXkFVBS4GFQG8P+Z7/vppPQu3T6VW/UoAvNh7OpfORDP+4c9ZH/P1jV6SImGz2dDpdMW2K46YZsUS++2TlXR+SMv80fb94bR9v9DMLdT74FUSHjmDb4PqAMQkOwjySSXDosduy+TS3nBcfT3y9Ik8EYmUsPDdJaQ7X8UCCK4bRMU65dEbFawWBw+O78E9lBzNmze/yzT6/wOcqRDCTQjhkfUd6I6W+jUbUsrKUspKUspKwELgudIgpKBtWy9cuMCgh0fgYvDHbrfQtm1XDLqynA2/UKIx6taty9q1azl06BBmc87DLISOL774lPvvv4/vv/86HyHNwrHFO0h36LA4FGx2SXympO3s11CEitWhx6oqZNjAYrNRu0ElKlUvh1cuovH0hH7ojToefblXgeNfKy6cvsL4YV9y9kREgfUl3eaXhIudvnRsiee17bE3Ofzs6+wepaVHKuetw2yy4u2Zjg1PcDgwmvIS+ikH3uOFec8waMpDZE37/jFdqNa0Eq5lzGRk2hFCsGXBvTgO14K6desSEVHw/XGnQSARqr1Ex52MkmzzA4GtzmDNu4BlUsqVQohRQohRN3d6sGrVKjw9Pflm9scoOhUXQyAGxRtF0dGwXkdstpILrj/55AssFks226XXqbz4wguE7UjhnXHfanVX4UpkLF9+9AsOqWCTkOxwBVyo0KoedgkgSLPrSba54W5WOPTvcQYP6ErZ8r7ZY3Qf2IItibN58vU++ca/Hmxfc5i1f+9iy4oD1z2GoigUFct2a/p3bE3/Dm+fqzMDFw6PqhUBie3oPjIuR7I3shKRcZ5ciPbH1WCgUdlEGtTPq0hy9XSlbpc6dHqyDToBegUGTeyDTq8RXQlYVZW4K4nXscr/XdSpU4f4+PjiG94JkBJUe8mOEkAIoRNC7BdCLHX+9hFCrBFCnHJ+eudq+4YQ4rQQ4kSu5IkIIZoIIQ4762aJEnAoxW7zpZTh5E0lm1VeUB5tpJSPFzfmtcBms1GtWjXc3NzQ6/TaNlYx4pCZWKw2ypUrR7NmzfDz82Pt2m1ER2uG9yEhwYSHh7Fjxw5q1KiBr68vf/75tzZHtK2k1ZbK0WNHCfH159SZSD6aOosJE7Vkl8c3HCX2fAw/rlzDjqQE2rp641Dt6HRmVCkRQrAvXbI96RJVzWb6+HpjVOy0i13F5hUN4K3epXkZ8uChEZ2oWCWAph1q56srqcz0ekyj/vtlC+YyLjTsV6CZMQ3fe57oFjVIPXocg683FlWi1wuE6kCnONBZHGTu2ot0qAhdznvckm4h+kxM9u+8961AAdoMaHJNc/1fR61atUhKSiI9PR1XV9fbPZ1iIEtMKEuIMWjJELM4gdeBdVLKqUKI152/xzszDg9CS9IYBKwVQtRw6n6+RlOW/wcsB3qiJScsFHe83YSvry9Wq5X4uERS0xMBHf7+/kRHR/Lq+NE89fTD7N69m/DwcObNW5Td7/z5CzRv3obdu/egKEa6dOmMJdMOCDSjhCyuTGI1XiQxIYoKFXPsJ/8Z8QUCGDCiE5uX/cf3UReoanajd4gH7T54EoDWHnr6BpkAgcUWixBmTNJMLw7e1GtiMOpp0yPf+w3QXj4lCdpxrcTUbrWz5O0/iySmDqsNn47tCOjVDXtaBjU8k4jPgLLuVhIzjGiJZ/MSUoA/xv/B7oV7mLhsNFVbVs1T91fSrBLP8R5yYDab8ff3Z+3atTzwwAO3ezpFQ0qEI/+u8HoghKgA9AYmo2VtBegLdHR+/xktc+x4Z/l8KaUFLffcaaC500mpjNTScSOE+AXoRzHE9I4PlePl5UVGRgYREZE4pBWHzKBB/bqYDGXo2bMTISEhDBgwgNdeew2BAYEegQmBDpPiRa1adQBYt24TQigoIis6VA738+GHE5kx42Mef3woAFvmbuVyKlhUheD2NXnCtyatXUNoavbhUlQ6tvgkAMqUcyXTZiIh3Z10i0CVAhA41Jsbgcpms7N9w0Gslvwijh0rjuOf1pKEmIKN3D+f+Aedg5/FkmEtcpt/NfRGPU/89jwPfDSYD3t8wuG1YfnabHrsPZZ1fBZ7RibpUbGYXA3UGvQA5va9cTMKPEwWdEp+At7w/obUbF+TgGq3zoSsMKSnZTJn4iIyM0rn4b6dqFu3Lhs3brzd0ygBrklm6ieE2JPruNrHeAZaevTcN1qglDISwPmZdaOVR0tbnoVLzrLyzu9XlxeJO56YVqlShQsXLnDs+Inssl9//5Qhj/ameo1K2WU/j5rOjKoPMMC7MY8GtqG8uR5vj3yODRtWMmBAP5o2bYjAgCqd1zibjhgZMeI5xo59jcxMzfTi51d+waFzkK7T4xHky0lLAm3806nkaaeGlx3/1loACfdGTbCpeuyqHleTgcsZoBMOXKrnzOtmYOEv63jigff4+aul+epOHYzE4ChDTGRigX3nTF9CYlwqCz/dd83b/GrtaqKYjZzbf4Fjm/ObKnnWqIhnzWAUvZ4dg17CkWnj8l8r8Ao0YNDbkTioOPD+fP3q9ajH8wuew8PPI1/drcaToROZP20VY9p+dLuncsNo3Lgx+/fvv93TKAEkqI6SHRCbZV7pPLJt3oUQ9wPRUsq9JTxxQXJQWUR5kbjjt/keHh488cQTPPHEi0jpYNQzI+jZbTAHD4axfsM2TpzaBkDm+uO4G/R08a+MUVHp6O3PlU/+oseTvVmw4FeklEyePJ2JE9/PM76i5JhJ2e12IiOusD01EYAvPxjEoTlb8BW+OBzxCJ3mOuUbrNnIpmU40GPBxzWTxAwd/0QY6deiIo9+PzV7zAtnr+Dr74mbe+l58LTuWJ+ufVrQoUfjfHXdh4fy35l/qVG/YKeI0KZVCNsTTtdHQ/nht/XXfO56Xerw3tY38K+c3064yfvPZH9XdCAd2rs6/p9/cDVK0jP1SNWa3ebEX9vYMuFnmo7px8blp7h07BLjV75W4NgFISU+jfTkTAIr+dLL/XkAZu1+lWq1K5Wo/wMeLwDQ8sEGGF1MrF64C0u6xu2fORVZojHuZNSrV4+///77dk+jeMhSk5m2AR4QQvQCzEAZIcRcIEoIUU5KGSmEKAdEO9tfAirm6l8BiHCWVyigvEjc8ZwpwIwZM1DtoAgD33z7M4cOH0VKlXPncjImRGQa2BfnQopFYHWAQMWa6/9p3LgVEye+j8DJ/QiAHAJXrVo1ypQpg6pK7R0kodOITiRGJGKXCocSvYlTPHj44E/ZfcrVrUhMupmkDBcMtRoyJMiMy4UYFKeJ1fnwSDrXf5pnB08u1esRUrUcX84bjz1dZdWC//LUCUUijIVbOPy66T32pf1KtbpB18yZZqFcjbLoDUXbsnbe8jsVh/Si8+bfSLOasDkEqRYzqYdyrOoy50ymZcUzpP/1HeE7w7GnWJnU+oMSz2NC71k81+A9UuLTsstGN5vGfWVeYOPCok2pVFXNZjW2/HWA9XN3kp5uQaDF16zXpnqJ53Gn4m7S6AvVUaKjKEgp35BSVnCaaA4C1kspHwUWA1kG0sOBf53fFwODhBAmIURloDqwyykKSBFCtHRq8R/L1adQ3BXENC4uLnt7rkoritADAoPOBYvFwsmT4WQ4dGSqCnYEeuEg0yoQucQmhw5pMj5JCmBEYOS++7rh4iKxWBI4cULbDoWFneCs7T/OObahqireQT74mWxUd8ug/09j82iaaz7Zlwr3dyNZ+BLSoyUSMHjlhJLz9HbDK8hI3caVCl3b649/yZB27xQov9yxdT9BHh2p6NW5wL4TR8xmwhOzibqU88CoqloiO1NfX1/Cw8PzRZcqLej0emqPHY7ebKTOjMlcSfIizaajyqsv5DRSBJlWI27eZkB7v+nNhd+SOxbuzmMK17p/I5reVxcXD3N2mdFNj1Ql+9cfL3J+B7dqnnQ2VcUhJQ4pcRcGnnu3P8siZvDZipeK7H83oHbt2iQmJpKenn67p1I05DVt868HU4FuQohTQDfnb6SUYcAfwFFgJfB8Li/OZ4HvgdPAGYpRPsFdsM0H+Pzzb1FlGqoEMLJo8RyeHfk6HTq1YMwLE7jy11HaeAYRaLbj3b8e6rLdmAx2LCqkpKTg5XW1X7cViWTFijV8+eX0PMEgunXvQLcebXBxMaIoCvvmbkEIHU1njWbHz1upH5NK9W45mvS2U56GKdr32o/lTZr443d/curiCeYuSOe1954qcG2L/9wEwKo//6Pnw3kjKo15eioKCqqjYA5y/KzHOHs8goDy2WZzSClLpM3v2LEjAwcOpEOHDpw8eRKz2Vxsn2vBqU9mk3riDA2++ICorbtRhIJBJ9j33AS6bfsDgPgUTzJT7YQO64dpy3aEAGkteK3jQt8mOTqF75+dyw8xMwEY+FrO9V6e+iUAMZcT2L7kIA8804Ejm0/iGeBBxVrl8o0XFxGPJK+WwsOgZ+GHy3nwpa6lcxFuM8xmM4GBgXeBRl8i7Nbim13LiFJuRNPaI6WMAwoMUiClnIym+b+6fA9Q91rOeVdwpu+99xadOnUAdChCMHz4KM5dPMXPv8wluFIQSnk3UlUjyTY9T0x7gUy7njirG0lWNzIzLWQ9MnmZP4Gi6Dhy5FgeY/2oqGjm/vYtC/74mbTYFIyuBtwCyvD+kB+Z++Nulo6dU+J5Dxp6P6F1avLaG4X7NpgVEwYMNO9UJ1/d979PwuxiZOgT+ZU2AE071GbgM13ycaIl1dL/+OOPJCUl0bJly2LbxoadIz02qUTjAiQsW4zt5CHsmZlU6NcJUFFQUa2J2W1SUgQWm4Lw9Udn0qNKMPvmZPh8sfJrPB0whi8em40104aUoDcVLV7wL+9N31EdiY9IZGKfL3ipzUdMGTKbMwcu5mlXNtgfARiEILh6ACtTv3Ru8SE94f9P7NR69eqxYcOG2z2NIiGkLJVt/u3GXcGZKorC2rVLMeh9AYWY6JyEYWPGPkXr+X+xLGIz837/FiEEiVYDeh3YpMDPz9cZbg+nu6JCbuL67bc/0ahRY55++gmOHTtGkwb3g4D4pDCsaZnYM23U7l4ffX2I3BdO+xc6lnjeQeUD2b7nryLb7Ev5tdC6+g1rcDr65gWrcHNzY+PGjTRu3JjPP/+cF198scB28ScusnLQ++hczQze+VWJxrbaFByqAWm34+ruTohfDIoiSUnLMRuz2nWADoOvLx+emkZKdDKe5byy6y0Zmgwz/lICY+aO5L3es7CkO4i5GIt/xaIz/pYJ8MDHVUE6JAdXhHFwZRjz42dm19dtXZ1HXutJUFV/qtYtz6WjEXywZhxpCemU8b/9VgWlhcaNG98dPvp3OKEsCe4KzjQLfft1QacY8FKq4ar44WkI4dVxH3LqlCb3W7FiHQBCKKQ5FFAdTJo0CaPOG7MhAKPBi0eHPpo9nhBQoXwwvXppXmRNG/VBKFr5uBc+4L95O0izCZJjkklZs5sycTGsm7TwmuwzbzWuNU5pw4YNmTBhAi+9VLiM0C3QG727K76hlQptI1WVFc0Gs6LZYOf5VUx6G0eGDsPk70tyqp60DAOZNj1b+mq6gCx+2qNaMB92/JCp3T7Oc211EgwK9B3fixqtcoz5o05r3lJFrdNg0KPXKRq3KSUOR/7/7NF37qfT4Oa823U6k3p+Ro1mlWnU/W7Jm1Qy1KtXj0uXLhXf8HbiHmd66xETnQRImnUpz6rVRxEOPf/t2smJU/+xYP4/vOJUbpRvX5dTG4+QZLczfeJEjLpySKnH4ZBERkZTp05Njh7V7FavRCYQEKCZ4rRr05wt23YCMGX6K0Ttj+DM1hNc3n4cnaJxskYdLH3hKwJdkpG715OUoaP7rjsn1Nm1ZkAVQvDqq6/ywQcf8P333/PUU/lluyYvdwbtKDoNhj3DQpYp3qnZ8zHpHYCCtNjZNfkX4jM8cHNkIBHojBp3+tCBX7L7RzsJ5MXDlwiur1mrOCSoEvavDKNBj3rMPDiBqDOxhHasyc7FB5k5/EfcvF35LnxKgXP66MD7pMQn8/VzvzPg9fsKXf9Db/ZGV4x1wt2K0NBQEhISbvc0iscdTihLgruKM922bTd2RwYrV68BFCQqF85doWHt+4mNyjGPWZx8iM+i1vJl3EZAYJcpWOwxOGQSu3Zvo3HjHLmyXU0B4LNPv6FhaDN8dJVZsWwBHm4e/PfdOmq0qY5FFVgcAkXasasqXT9+nKQtu0mzlkGvK9p+1OFw8Ov3S4mNuXU39LVyzvHx8aiqmidd9bXC4OaCgg0FO3G7jxIyfhxCOJAIzi5Yg4qJmHRvdIoeffSVfP29y3thLmPOJqSQlXAMHpqgyYz9KvoS2rEmAIpOe2kohcRWlVJy4cB5yvh48MHal2nYNb9MOgv3j+3Gfc8XbDFxt6NGjRokJyeTmpp6u6dSBCRCVUt03Mm4q4ipJOvt5UARBhRhIDUtnXRrPF99niN73L1nB5n2aCz2BPr2HZhnjJSUFH75Ja8cs0G9jrzx+gfM+OZTkuUVws+fxZpu4ez2k5zcGIaLDsw6sDSozeJYlZ3rjpNi1dIO2xxFX8IXH/+Id8fNpkPdgrX5pY3rCWASEBCAXq/nm28KjF1TYugUFYTAfvwQAT27Y3TTkWk1EeQZg7drMlYVLiV7YwjJ75k3ccc7fHR8ap6yH6Jn8kPMTDy83fO1b9a7PvMSZvLt6Q8LnMvJbaf4dths/njjzxta092OLI3+unXrbvdUCoeUYLeW7LiDcVcR09TUK7i46nnzzXGo0o7EjkPNQOLAQY4t3TsTX0avuGHQuXDi2AV0woiWfiSrRQ6xqVOnJm3aNgdtAwrAzE9+xsXTlZd3TabWk125mKESaYVla45gsdmZPu43kuzuXEz2xlEllBNLdrFx6j9kJOZwx1ko4+mmmTfZb42c9Vq3+QAmkwm73c6ePXtuiINxd03B1WjBYNBsQYW7F1IquBpV3EwW6pW9RMtqJxCX89qAhv+7mcXNh/NviyeQpcR9BDcIptWQlnQY0QGAc/vOceVkfo74fwF169Zl/fpr93a7lRBSLdFxJ+Oukpm6uLjw7LNPYDYbEUJxlrlhtWYybHj/7HYx0fFIJEiVk6dzx7G2IaUesAPalnb79g14eHjw3fef8cIz7zL/t8U88+wQADwCyuBXwZvDKRKhcyCRCATRkfEMi59NysVYoo6cY8VLP2JRdbgFeNLsSW27WDWoE5kWC+ejNtOxaxNadig4ylNp43qUY0IIDhw4wIABA6hTpw4XLpQs6PbV8HSPx9snConEYbVR7/ffsCYkcXjAI4BA0akoCri5qKSev4h7iLalPzTlexQhkbZMFvd9i75LCpaBlhSqxYrJRc+QTwYDYE238mnvz/Dw92DyoZJ7WP1/QZMmTdi6devtnkbhyDLav8txV3GmoJnz/PTTT4AW6dLL2xWHamHP3n3Zbdq1a41R54GrIa+Pt5QCKdPo1KkNBw/uYO/ebXh4aGYwu3YcYvFv2/EV5Xj00X6kJKVjs9pp2LYGG1O/IahmQK6gfQK92Yh39SAUnQ6jkJh1KnX7a+k9bDYbSclJZGZmIqVEZ1LYv/fm53+C6+NMQcsZdODAARwOBwEBAXTp0gWrtfBtld1mY9cjz3Fi2rfZZcbOvTl3LojLlwJZ3HI4qReiMHp7YkWPzQHe3bpgtSqkphvJOHw4u5+LmkGQVwIuRhsucWeua/5ZuDRvLqcGdOVE3xwZqMHFQPex3bnvlYKVUP/fUb9+fS5fvny7p1E0VLVkxx2Mu4qYrl27nvffn86ZM5GoMgOHTONyxFn69u3J7/O/z27Xrn0LmtRvQoY1LldvgRCCChUqsHTpUurWrUvDhjmZMSeO/RYv4UUNKvPZM7/SqeKzjLwvRx732673WR/5BVXrlmfB3knZ5VV7NiFDMWIO8sPFKduLuByFQ7VTp25VdDodjz08niH9X7l5F6aU4ObmxsmTJ5k2bRqHDx8uMrPlpbl/Y4u4TPSiHC+7quMmUXboUBzBTTD5+KAzaVr7Jn/+SqM/51LxlQmkWd0RQo8lPkchZ1S0aF1GnZWARjfmE285fw7QzNsu//ADCVu3IoTg/vG9aftYmxsa+27FHe+jL+U9Ynqr8cQTzxRY/s+iRezZfSBPmfm8L5VlvezfAiOL//2HixcvcujQMdxdK/Httz9n10+c9gxWYcPgb6DrYy2pWS+YWg0q5RnTw9ONwbXcCf8uJ/Sdzqjnhd0f8+SKd7LLQipVYOnqH5m3cBaKotCkeSit2zW8/oXfQri5uTF8+HB++OEH9m7fyUd9nybtcky+dhWG9Efx9sO3W4c85ZVGPkaLOR/Ta+0XuAT6AGD08cbkr6VxCRw0GOFWBu/WOa6znf5bQrlXX6D1kl9o8PkkbgRV33gbXbu+pGXCmR8Xcei1qcV3+n+OGjVqkJKScgdr9CXCbivRcSejRMRUCHHOmQ/lgBAiXzgeIcRQIcQh57FdCHFTBITbtmkayRy5YM6WduyYt/O0rVDHH19jEIG6moSF7SU9I4L7+xSc4fKx1m/z9n1fU94eSFJUBhMe/oanAlJ47ZNhedpd2naEmD2nubAy7yUwebhgcMlrVtSmbVMqVtR8wpeu+4a/ln9+zeu9nejTpw/LZ/xI5XNWFr35Wb56vclIq8U/UOfdcQX0Lhzmzr1QH3sNlyqV8pSXv683Rl9vRAniChSHKi+NweEw4OmWiZd7yYM82zMyOfX1L1gSCg6sfbfCZDIRGBjIqlWrbvdUCobkf44z7SSlbCilLChnxVmgg5SyPjAJmF1AmxtGcHAwFy+eANIBgQ53dMINo86b5KS8kXEyAiI5yFYSiKZe3Q7s3Lkn22SoYcO6pKSd5ZlnNE+c8AMRWtQ9ocXs0ysSfcJhVnZ/htQrOdtRrzrlAYmU16foycK+3cf48Zu/rzsE3q1C2xEDSWtTiVf++poDBw6Uyph/vfEn80bP5fze88U3vk7E/rEAFyMoQiJyxfQ99dUctrTtS8SaLQX2O9q3F5mLfuXkoH43bW63C/Xr12fTpk23exqF4N42PxtSyu1Syiyq8x95A6uWKkwmU9ZZcZCCQ6YhhJKt3c9CxJULWGxJ2BypuOq96dL5QXy8q3Hq1Fn8vOpSq3wvgjw6UMWvBwKFFJlBksxkXJ04xtSJJtEUyeVIO791fJ2E01pcWHdvb3ZWqMpXF6wc23/uutcw4dXPmfDqF5w8fvMISmlA72ri0ZlvE1A1mLZt2xIWlj9VybWi52u96P5STyo2qFh84+uEV9duCJMZIUDR59wXUfP+waBTOfPutAL7ZeUGE0LyZqO3eb7sGJ4vO+amzfNWolGjRhw8WDq5yex2Oxs3buTVV18tlfE0zvSmhuC7JSgpMZXAaiHE3gJyrlyNERQS+08IMTIrd0tMTH45XEng6+tLrVp5pQhWewpdujfPU9amdXuMeg/MBl8szmRd6enpuJjNBJb1x+qMHG2xWDErBjJFBt7+7jRsvJ+6DQ9iT/Cj5RvD8AsNxuyrJTmUUuIb5IkDlfnfri52rnN++JO5P/+Tr/yjWS8x7YtXqFnCiPA3C+fORNCi6qP88PmiQtsYDIZsrvSrr0oW5KQohDQKoecr96E33jyrPGNAADKwOhkWI1W+zLE2sOnM2B2CDFmw11rlXxcg9ZDUeigpkSk3bX63A/Xq1bsujX5sbCxz5szh0UcfpXHjxgQFBeHu7s6AAQPYt29f8QOUAOL/iQdUSe/oNlLKCCFEALBGCHFcSrn56kZCiE5oxLRtQYM487XMBmjatOl17ZNtNhvHjx9EUXK8YipVqkj5oLwxK7t2a8+3X89l9NinCAkOYuQzLyFQeLrzZDyiK/LShMdwq2Sic7cmDK30FhZhw6eKJwf318TDlElsSgj9h3ai7tBOANgtNr5r/zY1yvvg9XwP+j/Wsch5Sil5efQHmExGHs1lAwsQWr8aofWrXc/yi8W1iB82rdlLTHQCf/6yihEv9iu0nRCCgQMH8tVXX6GqKl9//XUpzLRoLH33b4xuRrq/WnD4weIQ+sVHqFYbeo+c+6TTpj+wpaZjcC849bGrrx+6l2aybNzvWpQxWYLEP3cJateuXaSPvt1uZ+vWraxatYpdu3Zx4cIFYmNjSUtLIyQkhKZNmzJs2DAaNGhAgwYN8PXVFIrXa4qXD6VAKIUQZmAzYEKjbQullBOFEO8CTwNZHNybUsrlzj5voNEsBzBaSrnKWd4E+AktHcdyYIws5uEqETGVUkY4P6OFEP8AzZ2Tzr2Q+miRqe9zBmO9KbDbcwzuAfTCm9NnDuRr1/s+LdOowWDm0eEP8dxzbwCwN2IPKDBn2mI2xH3LP1+ux65CDZfy/LT0PeLCLrJm9Jd0mv5InvGE0KRvapqF1z4edvXp8kEIwZJVP+QJPH2rUNIbvPdD7di8di8jXuxfbNsff/yRrl278uijj/Ljjz/y5Zdf8tRTTyGlJPbLySjuZfB9fPSNTh0A1aGy46fNmNxNhRJTNSOD2L/m49OnP3pPr3z1ismEki0SykFhhBRgYvP3SIxIJKRxMO6+bgz+ZBCWDAcOuwOd/u4OhJLlo5+WlsbRo0dZvXo1GzZsICIigri4OBITE/Hw8KBu3bo0a9aMESNGUK9ePWrVqoXBcHOz7WrupKWSA8oCdJZSpgohDMBWIUTWLvkzKeX03I2FEHXQ0puEAkHAWiFEDWe0/a+BkWhiy+VAT4qJtl/sky6EcAMUKWWK83t34P2r2gQDfwPDpJQnixvzRuDuHoAQuf9cOwf3H6dBo1rZJefOncPHUBmHtPLx+9/w2PD+PPHkIBRFsPzPnaSmpfPLrvcAWPGjlpBPrzfg6mbmgz//JbKakSd65Q2YrDPqSY1JITMuhSuHz1K2XuVi59qmbcH55W82Ssqd+vl78cPCd0vUVgjB/fffz+DBg1m/fj3PPPMM77//PlcuX+Zov+YYPL1LjZgqOoVxG94skoBFfPkZyRvWkhZ2mMpTPi2V82ZlNAiuV5GHpz7M8i/WM3/ivzw+fSCdnyhws3XXwMXFhYCAALy9vXF1daVWrVpUq1aNgQMHUrduXUJDQ/Hy8ro9k5PgTKNxY8NoN36W/ZfBeRQ1cF9gvpTSApwVQpwGmgshzgFlpJQ7AIQQvwD9uFFiCgQC/zi5HT0wT0q5UggxyrmAb4AJgC/wlbOdvRCtf6kgN+elCFciI6LzENNPPpiLWbihYiZDSeHKlRi++Goyr46ZQnxqHDqhp0KVQAD+ObEEHTqW/q0Z/S/+Zx3RUXFYrTZMpquiKAmwq+BRoejAxLcbpbb1ugqenp7MmzePsLAwvv/+e0wmE5GRkYw+dZzF3xce5Pp64Fc5oMh67159SA87jG/fh0rtnJMPTCItIQ03by2PV91ONWmwtQ612+Z1JFAdKkdXHaJS86q43wHpqUuKBg0aUKFCBWbPvinGNjeGkm/z/a4yz5x9VbpnHbAXqAZ8KaXcKYS4D3hBCPEYsAd42akwL4/GeWbhkrPM5vx+dXmRKJaYSinDgXx2o04imvX9KeDWhEXSzpdNMKxqDAYznDl9lqrVNG7RnFoGH7s3Jx37yJSJmIxmKpZvSGaiGZNwQzHkTjoncQg769Zvw9XDTEqUg77335efkAKvnbl+BcywoS/w76LVLFv5K+3atbjuce4EhIaG8tlnn5Genk7dunVp3bo1em/fUj/PHw+8Q0iXxrQYk18M4VanHjXm/F7q58wipADBoeV5eX5+R5FTm47x+6gfadC/KQ/PfKzU53D6wAWCa5XFaL7+kIgFoXnz5ndo9Ch5LcQ0tihGzblFbyiE8EJjAuuibdknaSdiEvAJ8CS5DdXzTKbQ8iJxV3lAZSGHECqApHv3+wmt0y47R/iOxYcwChM19E0IMNXG3d1MTEwcUtpBwPi3tAdkfJWxPO7Zgh5eVRj/9kgCyvpQt2E1Ol5lGZCF2LPRbPpmHbYMK/FxSdcUo/TkybM4HA4iLv3/iVyUnJzM2bNnCwwoXRQcmWlceao5UeP7Fdrmj34TiD8Zxf6v8++sdv61hwltPiTmXOy1TvmGsPC9f/n15QUEN6lMi8fa0vrJDsV3ukZsWLCbl9pP48WWNxbspSBcr0b/piNrm1+So6RDSpmIllCvp5QySkrpkFKqwHdoOh/QOM7cNnoVgAhneYUCyovEXUlMNWTllnQmuReZDBkylPj4BK6oF3BgJ0Em8PLLI6hUpQIKOlLt0fiU1zH6FY2bsGWqqOgQ6f6kJqbh5+/Nsi1fMfSJ3gWecf3MVayY/C8nNx0ntHJv6lbpjcNRMtu37f8t5vipLTwyuG/pLL8IFBWgpDRx+fJldDodyf8l8e2Qr7FbSqZEsJ7YBzYL6pXC00wHd25UaN25Axe5ciqKxCslT/B3I9iz5ACndoaz7fedbPv9P0zuZh744GEqNAgp9XNVrBmICiTGpZa6U0doaOid66Mv1ZIdRUAI4e/kSBFCuABdgeNCiNymPv2BrFByi4FBQgiTEKIyUB3YJaWMBFKEEC2Fxrk9Bvxb3BLuqhB8AFOmvMsbb7yLqso8UdaTUyLw8vKiRfN2nLdHcoGDKFJPkk7zAX/wvkFsWr+H9Igc5VW6HYyKlkvIYCr+UnQZdx9B9SpSo2NtfP28sNlsJZZP6nQ6KlYMusbVXjtWrVqFxWLJIwq5Wbj06yp+DO3PqXXHuRwWQUZyOh7+ZbLrj3z1D2HfLabZxCeo0q99drlLg3akN+yArkJ1/h79E14Vfen8ap88Y7cc3Z+Wowu2Mhj4bl96PN8Zr7KeN2dhuZAUk8LXT85B0St8vG8iDpsDRafxIJ+N+oUug1tQv4MW/T8pOplfXv+Lvi93Jzi0aBHbK63fJ+p4HBL4/Oj7RJ2Po1aLKlRrGIwiIC0xgy9HzuXF70tPjFCtWjXS0tKIjY3Fz+8OkvtLqSkjbhzlgJ+dclMF+ENKuVQI8asQoiEa53UOeEY7rQwTQvwBHEWLy/m8U0wA8Cw5plErKEb5BHchMX3ttZcJCPBl/fr1bFp3gtjYOHAIKvl25ddfFvDJp9M4d+4KDpmJA5X33vuQY8eOYxTBAKi53m4pVhU7CvVc0jG5mLh0PJKASn4YzQWbgviG+NF2REcAjoQvLbDN7caHH37I/Pnz+fHHHxkxYkSeuohTUfzy+l88MqEPlUvBA+nojp3UUVzp+UYr9NVD8xBSgKTwy6BKUi9E5+vrO24W53efIey1z9C5GvIR06Kg6JTrIqSOjEwUk7FE/v8TW71PdHgcNdpq9sCqXeXkjjO0eLAJAJMe/obdK8PYMG83i5O1uAvz31vCrn8PEHMhjvfX5o8SpjpUpvb/gsxUC5HH41CctqwfPPQ1549EMGvf2wRVDcBdEaAIwjYdzzfGjUCv1xMcHMzKlSt59NFHi+9wK1E62vxDQL4tjZSyUFtGKeVkYHIB5XuAuvl7FI67bpt/9uw53nprEpcuRZKUlIKi6PAwlEVKiUw1c+6YHQ9TRe7vPDi7z7Zt2/h50SQWrZ3Jqbgl2eX3VYhhZK1w0hzJHNt2mjfaTOWX1xfejmWVGsqWLUuPHj1YuDD/Ok7sCOfwhhMc3nDjD2laWhpN9A583FNJ/WI8YvfyfG1aT3ue3sumUX/0gOwyVVVJ/2sy1qOb+e2Rz9AJIOPmRwOyXIliX6+HCJ88vfjGQHR4HAI4sfU0tdpXx8XThfq58kg1v79+vj79XulB7bbVePSDgjnqc4cucXzbGc4dvIS7WcGhakkDo8Nj0CuCs/svAjB0Sn9UCR2GlL6iskGDBmzenM/f5rZCylLZ5d923HXE9NChI1y5Ek1AQDkOhq1m556lfPfDh4wYMpQHH+uSzXnu2XuE6KiLfPrph1gsKaiqSpMWoXmSxj16ZAFd/lvKlOi/KVvFnxotq9CwW+GJ1+4W9O7dm3Xr1uWTuXUY2oIJy8fQqxSSxx3Zuw9vkwOT3oYQYCiXf1srhMC9ghagW7VbiZ/8IElT+mPf9h0ZPz2Hf40cUda6j4sVSd0QFJMJY9lATFd5yhUG7yAvVMDV28ywKQMo46rno/5fsOBdbZ49HmvN4uTPs7lSAO9ynvR9pSdVmxVsg1ylUTDVmlWi2QMNmPzf27y2YCQNOtek45Dm+JTzpI6TC+49qhM+3i6s+XI9kWfzc/U3giZNmnA4V2DuOwalrIC6HRC3Kwd806ZN5Z49+aL5lQj+XpWZv2AuXXpowX7PnLzE5nV7ad6uDu1aPIyvrzfJSWnsP7oYP39vp33kfFq2bEG5cmWv65wH9oeRmWmlZavCFSN3Clq1akVUVBTh4eE37Rzxy5cQ/dUnIBy4+ZsI+noJOlPhmVpjX++JGn0Jk1cSSkhbDPW7Y+70BDNavE56bCpj907F1St/4rz17/zK0T+3M/Cf1wmsXfoKn5Lg7N5zfNL7M1Lt4F/Jl2l7JhTY7ruX/mD1j1sZMW0APZ9uX2CbkmKwz2iEhMCagXz231s3NFZu/Pvvv4wdO5azZwtX/l0LhBB7b9SmvEmIIne+VTIvK8Mz1hs+383CXSczvXghAldHdd4c/SU7T2jEdNp7P7Fy8TZm/fQq1WuGEFQuiLcmPMfUyV/xz9+r8PUty8MDn6RixQqEn9Ui52z4Zw+nDl3kqXf6opRAhta53RCkKrkcuxNX16LTOxcHu91OamoqZrOZQYMGsW7dOhRFQafToShKnkOn0yGEQFGUPJ9ZbaXdRGZUICbvRIxl0lEUhdTUVC5dukRKSkp2WpbShs7TCyEcWOw6LFcceB3YhUeLwk2FDMG1sMReQBq98BiTYx86dmfRwZuPLtiGImB+nymMOX1j2VOvF5WbVGLaqanMfPoXbJn2Qt1Ls6wLCks/fS0oWzWAiFPRJFwoXe37HRt1/84OCFUi3HXEdP+BfSRazxF7Nkfu98qE4TRtFUpEVCTHj5/m9IlL+Hr7sHLdSiJjTgHQqFF9+j6Q4+f9zcS/uXg6mgdHdsKvnFeR50xPz8DT24xBZ8Rszu/vXRySk5MJDQ0lMzMTRVFISkrC4XBgMBioV68eK1eupFy5cthsNqxWK1arFZvNln3Y7XYcDkf2Ybfbs+vOnrrCj5+tp23b9rTsWANVVXE4HEyaNInZs2fz8ssvX/N8S4IyrdsS1bIzytYtSFWgKxtcZHvP52Zc13mkTofD7sBW5uZr7gvDmX3nWfvTdvau1EIQpiam41mA59PDb/QisJIfnYa1yld3rRj/xzN82PcLej/f6YbHyo0qVaqQkZFBdHQ0AQFFe5ndMkiQ6s21PLkVuOuI6YYNm0m1R+Ypq1azItVqVmTQgOdRdJKXX32S4U8+hDohjp9/1kIF7N9/iCVLcnKof/THC0RfTiiQkMbExNCtW18WLPiJmjVr8N+OPVyJiqRvv54l4mJjY2N59tlnOXToELGxsWRkZNCpUydGjx6Nm5sbVatWxdPTk6SkJMqVK5kMryi8OeEl9FdxSkIIxo8fT9euXWnQoPQTHzgcDn5Zt4ZHjC5ICaYKRRPT68WLx768KeNeC/6cupJDa8LwMwE6BXfPgoOlLJyynH0rj9Ds/nrUbn1jUcHKVvZn1qH3bmiMgqCZ6FVk9erVd5ZG/w5XLpUEd50CauzY5wsst9lsHF0RT5AayqAh91O+QiDffDOTMmXcyTLsd3PLeQgq1QqieZdQAFatWkvXrr2oVr4KI0KGEVKuNocPh1GnTjPuv/9+HKqFn375nOmf5tzcly5dokuXLlSrVo0fvpvL0sXrWLx4cXbMx9TUVN566y3WrVvH6dOnWbp0KT169KBt27aUK1cOV1fXUiGkQD5CCvDss8/SqFEjGjZsyLPPPsvFixdL5VxZWLBgAXP2HcHYtA7VPp2OTnd3R1UqCk9OG0Cvke1QhMBs1CEK2cb3eqETXZ9se81mZ4lRyZzZd+sChderV+/OS/2sipIddzDuOs70yJEjlCsbxLixY/OU//TJUvQYMGAgKuYKVaoFYzQa+fbbzxk8+HFAEhwcTJs2bTh58iLh4Wfp2bM7K1fmBHkeW+dxXJMEPX3b8G/sRipUKIuPjw99+txPly5d+PyLaaiqyuXLl4mOjqZnz54MHjyY8WM/QwgFxS2CVq2asX79+tsXgScXNmzYwO+//84777zDH3/8QXR0dKkRvVq1apFgtRPVfSA1Q3OUch07duTKlSvs2rWLMmXKFDECpK7/G0NwdUzVchIfnvx7C4dnL6frt2PxDAkslbkC2K2ZOMKWoy/fEEf4LgzNByIUHac3hKHoFaq0q11o34AQXx79aCDth7QgoEpAttH+1Vj5xTrCNp6k1/MdMVf2L7ANwKXDF0i8EE/d3g2xWexMG/wdZ/ZfYNaBCQSElH6Mg6SkJI4fP87x48c5evQoy5Yto3btwtd7y3Fvm397sHPnTh4a0JOXX302T/n8X1ZhFVaQkg7t+2K1aaKAAQP688QToxACVqxYzJQpUwgP1zSZuQlp/fp1GfnF8/z53C+8/sbr/D0ox1Sna9euDB8+nMGDB+Pl5UX79u157bXX8PHRsm8ePRjHxXOR7Nj/3x3FoSmKwtChQxk6dCiurq5s3ryZTp0KlsGdfmEUmadPYa5Vh2ozik/+l5mZSUZGBmlpadllWz+YwOOZiYy9fJnAwECWLVtG584Fm2Flhu0m5ed3kUJP0E85EduPfL+SlIsxnF60nSYFBDi5XmS+GwxSh03YUDPdUQKqoKvUlAVPfo3ebGD8sfxJA69GcIOiRRkHVx8FYMknq3nqi6GFtvu6t2br2uyJjqz5dhNtn+5I+ZqB+JS7frmwxWLhzJkznDx5klOnTnHkyBHCwsI4ffo06enpeHl54ePjQ/ny5WnUqNEdln/szuc6S4K7jphaLJbsKN+58fS4/rw/7ntSHTnpUOx2O889+woLF/5Ojx6dURSFxYsXo9PlKA+ios5is9koV64cL/X5jJOxGXhtP0vzQZoS4ciB07z9wq90bfYU8+Z9V+Cc/lp84+k8SoqwzSdZ9uUGRs4ajFdg0ZxfbvTt25c333yTHTt2FFhvuXABISD91KkSjZdlq7hx40a6devG448/zkuxF2ju68POX9+h2+hxjBkzplCbRtumqbj6JiGUvGrcbt+O5fSibTR4NkdZaDu1k7RZQ1GC61Hm1fxpYEoEKVF0EolAVGmDZf9i3Ko05/73esPpbajpySiuJb+eBeHJL4aw6ecdPP7ZI0W205mN2DKsGN1MJFpg3dwdvL3oBTb9vI0Ow9sUmtLFarUSHh7OntV7OPT7YRIrJ3Dk3BFOnz5NQkIC7u7ueHl54efnR9WqVXnkkUfo2LEjTZo0ySPrnz9/Pm+//XaB57gtkCAdd53EMR/uKmLqcDj4+OOP+eijj/LV/TV3PZXrBLHkvwXZN85PP/3OnDm/sWjRMqJjcojE5MnvMWHCZMaOeT7bRzk1IY2w7WewZlpxrNhIXNR9+AZ6s33tIaQqSUnKuDWLLAY7/t7HgdVHOX/4comJqd1uZ/Xq1Xz44YeFtvHq/QAxf/6Je92ahbZxpCQT/uzjuDdrwYODn+D48ePMnDmTFStWcPjwYTq9Mpb7a9ckoO+DdF28jDlz5qCqaoFKO9VcjeSIc+hd7bg7HChOjt6joj+N8qVQcdpC34gLjKKCUBBCIs9uxnFuM5l1mlDt3DMYfFLImP4lbhNKHgWsILQf1IL2g4r3Wur66v38++4/7Jy3AwSkJ2byVsfpuBkEJjcj6ZYM3GuaOXv2LGfOnOH4qnOEnzrDnvhtuLu708y9ObUctckwZNCrVy9at25N69atMZvNJZpnnTp1ikxhclug3iOmtxQ6nY6ePXtSq1atPOVhe8M5tecyEonDkfPw9ut3H6++8jZNmuR1/XvkkYcZPXoUrq45Cql9645htIK7zoCvOYNNIz/lwX8n8f37SwiU5REx+uwI9jc7gEgW1n61nstHIxg2c0i2nO7Ryf1pP7gF1ZtXKvE4M2fOxOFw8PTTTxfapuyQoWBJx6dnwRGzAKSqoqanoaanUy4ggBkzZjBkyBAGDBjAr7/+mkc7PHHiRObMmcOlS5cIDs6/PXbr9zJpm9ejWnRkbFiIW9fCuTlD9ZZ4zjpV5HV3RJ5E8SyLKIS7VN68gDqliua/KTSiLHRmpCrJuOQLIhPL567I6uMw98znql0kDq48xLENxxn44UNFinmiTl/h15E/0PjpFrgGuOHZ3Bt5PhkQqFLluBLGlOc+pawhiC3KaoSXSoBPIMEnGlGVhiw+v5CA8v7YrXYuHLxIpSYhJbIuuRpZKUxSU1Nxd8/vKHHLIe9t828LTp06RfXqOZHPIyOisclMEGA2GzEYcpYkhEJqagpp6Tlyve1b99G35zPo9ToiE/9DSklCZBJtH2xMzMUEzn4xH6tDUKmbFvIwoIoX505F8sxr/Qhw11KZhF9Ze9OM4XNj69wdRJ+JZsCk/tlBi81uJmq00NwVk3fvIv3ECco+WnROqpkzZzJ+/PgiHzydhwflR79U5Dh6Ty9q/Lkcco3TvHlzLly4kK9tSEgIjRo1Yvr06cyaNSv/WD4BeA1/jfTN/+LS6r4izwtFv8AcMWdJ/agHwqc8hhb9cemR37bW1c2NJDwxusRgT9eDqsNU4z5sdYcgNy3DpVEipOgQETMoIO5FPqTGJDFv+Fe0frYb34+ai8MuyQg/D6qD6uPacvnyZS5evMiZM2c4deoUZ8+epXdGN8yKiX9f+oeVjo00+qcldglG4UZgS1cGPzeGQEMQkQej+fblT9EbdEgp+XrUr+j0OgLKa0otvVFPlUJcVksCs9lMQEAA69ev54EHHrjucUoTUv6PEFNnTpQUND+FfClJnDH/ZgK9gHTgcSll6eSBzYXY2FguXLhAlSpVssvatxlIZOQVrsTux/2qZGm+vj5Ex4Tn8VjyD9DkrWU8tTfyjj/38MPzc3nsk0d4aFw3Pt5ygp1bjtO8Xk0cDpXwU1ow3fa9GyImacGo7fYcOV9iXArnTkbSsFWN0l4u4/55gfTEjDzR33Mj/K13QIK5chW82rQpsM2cOXOwWCy89FIOoXTY7Zx6+XU827am3MAHr2lOogjOa+fDz2FLSqbtqrmAJqf9+uuvmTFjRoGE3LXTQFw7Dbym8xcEpUwg+tAu2MPWYFs1C3P3lwokvoqaimJQtS2/i2YpYOo7HX34D4h0G0gFNbHgc6Snp3P58mUiIiK4fPkyZ2fvh/MZ/P3iT9hsCm56SdrB0wjgqQHfopYx4OnpSYUKFWjSpAkjRozg0m8XiNoXQWCtigySw7l45DKuvmYa925Aj+c7U76m09U517tFCMFz3xYchm//8sP8OGYeL/7yFDVaVb2ma1anTh22bNlyxxDT/7VtficpZWGhze9DC6xaHWiBliag1EPefP311zRt2pQj+0/x+ENvMGnai0RHJmAQZvT6gv8MNzdXMjMtmEwm4uMT6NXqOdq3bsNfq2cAEFjFn8Aq/pStqnmDPPfDE5w9dInQ9tU58N9JjBjRm3V89ekfWsoToSMj2cbGRRv5a/Z61h5ahw0LY555igmfjirV9XoGeuIZWLiG11AhGOuVSFxr1yFm438kHT5OYNt6eDRqkt1m/vz5DO3UGUOuGAyXvvqWtCNhpB4Ou2ZiWhQyLl0BBDFbd+Pfthkvv/wyP/zwA3369GHZsmWlco7f6j0OUjL0yM/ZZcLkitvT35P8dh2g8Diuxhc2kDGrG6a2gzH3n0pSUhLR0dGEmOyAQNp0CJ2DIUOGcOHCBS5fvkxsbCwOhwOr1Yqbmxvu7u64ublR2Vye1mooNjOo6QJvox2d0PJd7D64F49An3znf3vaBCwSGvVpiF+VAL5+6mcq1C7Lk7OGXNe1iI9IIC0hnU0/bL5mYtqwYcNSy3t/o5D3TKPyoC/wizM74H9CCC8hRDlnxOpSw8mTJ+nTpw8TB3+NX2J5po+Yj07RI4Tg8OETNGuW39OnU6cH2LvnAFHRJ3l55KdYrTb2bc9xRa3atBIf7szRbLp7u1GvQ002/bWXac/9gqurmQdHdGTdpm1OUYKJ95/7kb0bjqFDYBdWBBCfdGsF+pfmzCU1XMukYPTxJvLDt1AUyYXlAp9BQyg3XItlKs+cZWiIwoVZX1LpNW37W6ZlS2IWLSl07Ixda8jY8Adez32M4uFd8kkZ9GBz4NtaI+bu7u6sW7eOWrVqMXfu3FLxuNEJQAiO/LqCusPyigc8JoURHh7O4W3biImJQUqJoijExMRw5coV9u/fT1xcFS7+uZDzD3+CTqfDxcWFTpUMzB5gpYyLg1l7y2EwGOjevTu1atWiRo0a2V5riqIQvuM0SVcSaNivaTbR/m7kHM5sP40uLR67BEchGQcGTxvE1l+20mFEB1w9XajesiruPgXvOkqC+l1qs9QAx1cdJCU2FQ+/kss/69Wrx5Ilhd8Dtxbif0qbL4HVQggJfJs7G6AT5YHcLjZZ2fzyEFMhxEi0XNQFKiWKw9GjRxk1ahQXV2/maNQ5dIoeN3wRQvLBG7P5d21+18PQ0FqkpqRhMhkxu2hKJBdZfKKyaaN+IT3NgoswULt6MMPG3MdLT03nzQ+fIj3JQsz5eC6FR6EIHUjBjB/euOb13AgM/llG4YIra1eh0zmQUiClIHnzRsoNH8Hu3bs5HBWJufcDeLXLEQN4NWuMV9OG6AqQ+9qtVhI+fwVFAXvURYzXQEw7bvojX1n16tUZMWIEw4YNQ1VVHnus4C2rlJLEubPQl62AR7eCM45K6VQeSUHFPjn+72rceazbfyDMrztNW7ejbNmyuLi4ZBM7V1dXypQpQ40aNQitWYu60ZJ2rz9NuWr55Y6vFrI2a4aVOX0/5uzRKFQEv46Zx/1v9qHzqM54mBRCW1bizJpkJJASk4ZXAbd3aJc6hHbJCfF4o5kCzu0/j12AtEkmtniPSXveLVQkdDVq165NXFzcDZ2/1CAplW2+EMIMbAZMaLRtoZRyohDCB1gAVEKLtP+wMzspQog3gBFoIszRUspVzvIm5ETaXw6MkcWE2CvpCtpIKRujbeefF0JcHV+sRNn8pJSzpZRNpZRN/f0L9xApCMeOHSM8PJxmzZoRZY/BgpUUmYEUDlShsvu/IwX2S0uSXDidxMnjZ1m+bDN2YUXvlXfZDodKekpmnrLKjSuQgY1MaWPVLzsILOfLb8umENqgKlt+2UVqeCIewkw1WZ06brfemyTw/h40W/svLTYuJXXDOlIz3LCrCsLNhZDJmqfW4MGDefCxxwidOR2vVi2z+wohqPbxVCq/kz+0myMuGtWhYLcp6AKuL+SdPSGOpPWrkHaNQ5s9ezYPP/wwH3/8caF9ZEYaKUt/I/mfOYW2Sf3qCXq03U6PrrvxzOVhljH3Gexbf6Rc2C/4+PgQGRlJeHg4Z86c4cyZMxw+fJht27YxZ84cesS5Yt5/nsOjP72mNe36YT2xp67gotOSV9psDlbOWI2qqhxYtJfDKw4TYxHEWQQxl3KIlHTYsV86iZSSK9Pf5uzDbbny/eeoJcwdBhB5LIK/3/yTtPjUPOW/vzxPk5l7uZCZauWzfsU7W2ShVq1aJCYm3rJ8YcVBqqJERzGwAJ2llA2AhkBPIURL4HVgnZSyOrDO+RshRB1gEBAK9ERLVZ+lFPgajfHLEl/2LO7kJSKmUsoI52c08A852f2yUFiWv1LDkiVLGDhwIEajEaPOSJqw4BAqGY5kLGoqyfaCxbn9+nenY+eWBIeU58ffJ1OnfjU2h+XN8f5S+495JOgVIsNzDP479G8MaG+JF2cOytPe3dsNk85AcAU/AnSefPBVwfECbhSOjAyu/DCbjDOnC6xX9NrGokyn3tjsBjKsroT+tRRz2bIsWLCAK1eu8MEHH1zTOY1lyyPK10UJqoPicX1G7NE/f8eVzz4kdXeOg8DZs2fJyNBsdaXdiu3gYmR6Ys5aXN0JnPwTARO+LnRc4eZVYLmpyxhEYHVoNqxY4hDyYCeEXkfF+9vlKbesmoR1x/eF9ms2vB3CoMMmBVJKTALsSem8U3ksgqy4xQIJ2DNyCGX6stkkvNsfy+6VWPZtQsFGypIFnB5Q8mhQO+ftYMfPW/lu2Ld80nM6qkPl7KGzSIsDHZKe47ti1kNmXHKJx/Tw8MDT05Pt27eXuM/Ng8jeVRV3FAWpIeuNY3AeEk0MmSVk/xno5/zeF5gvpbRIKc8Cp4HmzgR8ZaSUO5zc6C+5+hSKYompEMJNCOGR9R3oTk52vywsBh4TGloCSaUtL9XpdNlR8kPbBSEk2GQmFplMppoE5H2I2rbphdkURM06lfhn6Ww8yrixd+dRfl4wBS+vvNvb+IhEdEJgyyXreuiZzkxfNIa/Tn2M0dPAyEcncixMC7Y8ctpA/oz+lC/3vM0HS0bT+sGbEzA6/fBB4hYuIG5h/u1zbvh3akuNd8bSaP6P2WWKomAwGPD2vgaZJxrXWn7arwRN/+267Wl3rEsgPN4XJSgnW261atUQQhAREUHy0o+xzHuOzMV5oyKZqtXBULbwICHuj8+gzGdH8P70aHZZREQEF91q4fbSBrxrNCUjI6NIV8kKPVrTZ+cv1H7u4ewye9w5LDs+InP5ayS/7VVgv6/bvI2LasVFsaOJbQVC0fwIFAGZDolZkbgosPiDRdn9DLWao6/SAH1wLfzf+BS7QwASs4v2zO/9YQ0zaz7Hntk5rs2RxyJYM2MVtgztnu7+Uk+GfjWczHQrUaejUO0qwaHBgMRFBxsmLkYvJZmJOSaAJUGdOnVYt27dNfW5Kcja5pfkAD8hxJ5cx8jcQwkhdEKIA0A0sEZKuRMIzKJHzs+s2IOFiSfLO79fXV4kSiIzDQT+cT5YemCelHKlEGKUc3LfoMkUeqFR9nTgiRKMe004ePAggYGaOcurbz/Dl7O/o1xABZRTLqgyg9PntuRpv3PnXgB++P432jXpwvyfV7Bz9wF+/m4xYRcX8fxjU1jxz1Zmfvsy97UvT8WO9QiurUVxSo5NZf/W47wx9CtqNg+hy7AmLP93C3XrV6d2qGaWZXLRCHvdDqVvEpUF9ybNKP/K67g1aFhkO6HTEdCjY56yefPmUbfuNeUDu2FIKdnw6veEKNsJqppM8vt9cPtBe+9OmzaN/v37U758eVY/GESzigZkUso1n0NnzPHyWbp0Kf369cPhcDB9+nRefvlldDodERERVKhQoYhR8iLho3qYdR6aW6MNMiMOYA5qmHdtGZnoFXAxCOxuRtRUC3YVHFIgpBZBLlPVuNYKwb5YM6wYXYwYazTF+OY8APRlKxPy5bfYNvRF56liOb+K5EsJICXJl2JJiU7Clm5lzYxVHFx6gIoNg6nVsTau3m407NuYer0aoDpU9M5MuqrUCDOAUKDxA3nnXBwaN27M9Wa7KE1IQC25Aiq2qEj7zuyiDZ0pn/8RQhT1EBQmniyR2PJqFLsCKWW4lLKB8wh1ZvNDSvmNk5BmsdfPSymrSinrOTP7lSrWrFlD2bKaHZ7JZCIy6jAN6zbGRe+Ghz6QLZtyThkVFY12e6sMGzKUj577mcs749ArOnr307Z3yYkaZxB97DK714QRu/tkdv83O09n5vCfccGEya5n0GP38duijxg5OoebuRUQOh1eXbph8Ls2+fLnn3/OypUr+fnnn4tvXJqQknNrD1DeJx6kAg5JytY1ABoRXb2azz//nPJjf+T3MAvTTt5YxoKJEyfi7e3N1KlTeeWVV9i3bx+enp6cPl2wWKTQaVuNSJseadejeNmQv+f/n2v1b4VNhQaPdaJqo0rohPZ02aTELgVZj5IQEHPkAv+8vqDAc+kC62HwdqAoEk6NpdPEQYzYMoXO7w/h+76f8EXH9+g+ricDP36E6m3yvqh1Bh2GXJlzn/19JIoAhwoGASdXH7qmdYeGhpZ6aMbrghTXwpmWbEgpE4GNaLLOKOfWHednVmKtwsSTl5zfry4vEneNPYLRaMxjYBwbk8AH08fg6mEizRHPxx/lyNp8fX1wdXUlMDAAk9mIGROumKliq8S7H70AwK+LJ3M05h8wenI0WbL+70PsWLCdPz9dTXhCPAl2KwrgUcYVvV5Hhy7NMJs1blRKyS/vLmbVT9tu6TUoCV577TXGjx/P559/nse5IQuxq9ayr/eDpIYdK/VzC0Vh0NopSGFAVTVu48q091BVFdvFMLy8vHjhhReo064Hg+rBS3IRiRdOFj+wE9aoC2TsX09SUhL79u3j2LFjTJo0iddee40WLVrw4IMP4uPjw8mTJ3FYLKi2grOeZhzfTvyLVYgf3xCAgBlxpCWYwCUFHTb0T27I1+e+jx/j+QOfsnvOJuJPXGLA1yMwCImHpxnhfIr0Qnugku2CsK0aQf/tqdlMrDyGC/u0SGVCKDjMZbC7lYGmKwFwD/QCwNWs4KKTGPTQcmhrkqOSOLRsf6HXI6RJMA6pEXUHkJnpuKZoULVr1yY2tjDT8VuL0lBACSH8nRwpQggXoCtwHE0MOdzZbDiQFRJuMTBICGESQlRGUzTtcooCUoQQLZ0OSY/l6lMo7gpiqqoqFy5cyLN169T0Cdo1fIw69TWNs9GQk05Er9eTlHyeS5fDOLb/HPEkowMMip5Fn69m/msLSI5Jxmw20mNwC2p76PEyKnz/3G/MmfAvOqtAL0Ci8vTUAVdPh4xUCws/XcPvU1bc9LVfK+bNm8fnn3/OyJEjC6xXLRbUjMxCCc2NwtWvDIHf7cWlZWtsVhMmNwsJo+uQ+N7DxL+aYwesYACbCWVWxwLHWb9+PQEBAfj7+9OwYUN8fHxY/VR70r56gS51QmjSpAkZGRl88803CCH4559/MJlMnDhxgkP797Oj+2B29nm8wLEtf7wNDj2kaWKGjPhovKtdQWe2gVCwf1NwsBeTuws9PxzMfVOHsmTcT5j0EomKQwWdkOiFRC9AVSHhciLRZ6KIPxujBcpx5ocCMHUMw9wuDJNXXmuJ5k91BncXVk7X0mZ/0nky80bNYc2Mgu8zFw+P7AD1itCOU1tK/nLK0ujfCeH4SkMBBZQDNgghDgG70WSmS4GpQDchxCmgm/M3Usow4A/gKLASeN4pJgB4FvgeTXR5Bij2Yb8rfPOPHTuGECJPmuaWHeoyd/6vxG0PR5WSyMiCufC46ET06Egmk0yZhmumg/W/bqdK08o0G9iMP95dTM0ymWQ6DASZM9imBhEU4kPYrvMgoEa9/AoRVw8zH699CXfvgtNX3C5scxqrDxiQ/wWQhYAHeuPfu2eRbqGFQUpJ0tzpGKs3xLVlt0Lb6XQ6fF/8kvR6B/lv8jw6e/0JwgQZyaiZ6QijCRQ7OhcHdqs2j8XPd6GdOE+iXWH05ZocPHiQunXrah5vR45Qv359KvRpx5ZV83lr5rv0e2ggUspsQlCuXDmWLFlCj65d0IWfBIc7qqVgzb5hzELs7zcAVOzRJ1C/boEijCiKA51XBjhlnwUp4BoOasPSp2fh5anHmmBByUgnRRowCNApoJPQ67VeXDlxBf8qATy7YjxJVxLwDfYnPT6FpAuxlGtYsF992abViI+3Er/sIIlRCVjTbSgC1s1cTbexBccvcEjNkcEhNU+inT+sp2aHWgW2vRp+fn4YDIbs63vbkLXNv9FhpDwE5NMGSynjgC6F9JlMAcEYnKLKa1I63BXEdM2aNQwfPjxPRJ6mrWsyd77EYslEp5hITUsvsO+z4wdycNspNq/bRypJtHmqPSGNQ6jXox7zP1jKjiWHqO+tUMnNSkKmgblnptDH44Vi51Sr+fUHmrhR/DVxETv/3M2b61/LY/j99NNP06lTJzw9izYGvx5CCpB55D8y1vxG+ro/sOOBtNnwbJfXxMh2+QzJv35MmUHjSD4fRVpEHKJeBorOgWKwkPRqXUCiVukMp3agSpXTr9Tk7Mk02tU0o9cJzp49S0REBHPmzKFLl7zPQMOBOZGvsrK1ZqFGjRp80KsTraLP4PnkMMp0Lzi4tJunD8l6O6gC+8o3cWQqKGYFaRMgLaCT2FIyMJbJ/7I89Ot6Lmw+ikQipYJQtO29FFnBOiTdxvTIbq836vEN1mTenzYajwQ6vdSTtmPy+8T7Vw3I1nzs/WMnSI1IVggtXJk2/dJM3gweg5ZJRZJ44dq27dWqVWPt2rW3l5jy/8Od9K7Y5h87dizfn92pbQdaNejIrJlTAR0VC9He2qw2zqy7SHnpz7ffTsC/vA+N+jRCb9Sz/Jcd2CQkWU2cSnUnxubCI75j0CExChBFOzzcNmQkZ5CRlI6aK+DKtm3bOHbsGLNnX+2cVnqQUUdBsaN3gwsffsCFD95HXrVFzNy3AevRnaSunUudx7oxaMtn0HIcaoYRW0oZJ9VRUM+uBKMrZnc7AaRx0FQDpf0zlJ++lyNHjmC32/MR0pIgtXwVdqU78GjTCYN34S8VEdQIgYIlLAydqw0MNlBUVi5/noXfDOLoDwXHEqh6X2NUQCJIt0ssDh2KUgJVL5AhdWRKHTt/31JgvV6vp8ngVnhX8qPdyM68vmMCLy59mRcXjyt8HUIw8s8X0SPRCRj8fcHincLQoEEDdu3adU19ShtSavL1khx3Mu7s2Tlx/vx5qlXLm+3xu1kLuRSWgr9nEA8N6MVjjxfsgqg36PH0dMGkE5QNyonQL6Xk/OVYrKqKl8GBQMUsVFSHzM5NbzbfmYz70E8HMeP8dHwq5ATT2LNnD97e3tflpltSmFs9hHvDeng+8Q7Bb71DpnRlT/d+2O059rm23YtQdHasu5dq19DHA2PjTqQlepGWWAYUB6CiV8xIvyCkhDRRhtfbVsW2Zg62ozdmRG6qWIn3LyRjrFC095YIqI9QQNjSUNxs6D0y0fmk0+S1gXQfsolaDQvWjLv5eeFkA/GvF4JZqHg5bU9zk9TYczGsmbGKxe/8ydcPfIIt05ZdP/C75wqd10MfD+bVLRMwmoyc2nKCrx74hA2fry5SrnlmwxGkkCDgyy6TsWeWXB7eoEEDTpUwu8LNg0BKpUTHnYw7k1pchaNHj1KnTo5Pc3JyKt/8+i06nY7eA9vSb0jHQvsKITBZHbgYDXz36b981bkOdrsDnU5h4Lgu2OwOrH9uRI8WXq9Ou2pEhF2mfI2yvLuycI7gdkIIge6qjKQtW7YkISGBPXv20LRpoWZ4NwTFzQuPsb9rP65Egc0GCNLDjlOmgSZechv6Dkkzn0PX7kHiRmkvQN9vTmN4/21w9SVjxiCkNCCkHkPscVymHqWM2YPAxBisYVsxNuh4Q3P08/PL9rQqCrpmD2PZMR9Vgma2KRBCEuiyCruIR/43CzpNKrDvC8c0y5FPqz2HUQ8OB7i7m8lMziSonrZDmt5pKg6rHZOHETKt2DNtvL7vQ9JiUylbK6jAcR1WO0kRCfhU0sQClnQrUsLKj5dz+chlHvtuRP4+djubv1kHzvsX4MPQV3h51we4+RYfc7d27drExMQU2+6m4942/+YjKSmJ+Ph4QkJyOA0XFxO+fj5UqRqSJxh0YajSowYRVgv3DW5L9JU4Qr0HUsd7AC9OfoSXPhpCNUM0rooVL10GDTpWIz0xk5M7zxU63u7FB3i/2yfEX75zUj+UL18evV5Ps2bNaNWqFf/9998NjZdy8hxR6wseI+PcURLf7IxneYFLjarZhBTAVLMFAV/tRd30LaBDSh1R7z2ErkZvTJXa4vnZRaTOiqbbUUl9W/tfFS9/zG36I/QFB6GJOnKBbxqOZtMHBdtvZqGkxNSlWmOkYsUcFIvdJlEBSyY4ao/AkeyCmuqC5deiFTlVu9VDSijXvArtnuqIXkjK19EcZRSdRhw8Ajx56+AUXLxc8fArk4+QJl6O5dtaTzO7wTP8O+4nvun8Hr8N/5KJIS9yctUBVKnZroatOMiaz/IrlNOTsnQFajZjrNpVdCV4LsCZZfYOSGFSStr824o7npgePnyYOnXqoNfn3BwGg4HpH73LpVNx/Pz9P6xYtoGRI14nrQAl1PgXP+O3ZUt4Y8Hj9BnajpSkDKSUOHIFmgjwiaWB32XqB57H9McvuHm5UKtV4QqmY5tPcm7/BWLO3yFRd4AKFSpw/Phx3n77bfbt20evXr0IDw+/7vEOvT2DQ298SmZUfoVGyqR+6Aw2XNTLuMXu5tKb+eV0xlF/gXAgdHaMjnXEPV2ftG8fQgiB2zv7UMwZKC4WhCg+ghfA4d82YM+wcmxh0ba9Pj4+ZGZqQWus//2EZenE7HQzV8O1YiIGVwd6AwgpMBoFJs8KGCokYyiXjDBHFXqexPArVKgXTJ1B7Ti36ywbP12BCpxwGs6HdtfSVwfXr4iLZ+FWHws6v4FOAWFV0TsN8s/vPIUALu4KzzZ5EgJ8CkgD7ebtjl6AWQGZLWaQ7JlfMhvo4OBgrFZrgdkSbhlkqQU6ua2444npvn37aNy4cb7yY8dPkqbG8c+ipXz7zW/Mn7eYA/uO5ntwVi7eisOh8s8CzQe5as0KLNz8EWsO5hj5x2Qq6HR2hOLA0K8Ls8OnMmH5WNbO3sTY2m9z5XR0njGHTHmIKbvepmbrvHLcWw2rxcbFkzkPfNWqVZk0aRLr168nLS2NyMiSh0dQVZVPHvyCX8Zp2/haLz9J9ReHYQrI/wArBlB0oDq0F5z9yuV8bTwbNsPgm4zOnIleWEBIiNWM1E2+gQhFgN2E3t2E7dzBYud3/shF0mwKSckFxwrNQmBgYDZnaln0BtbN35GxZmqBbYVXZS1Hn0WPzNQjLc7HoawbwlePTNVeuJYLe8ic7EXGJG8c6Zq96P7vVrJ71mLijp5HILChcVcpidoL/cGpD3P/O33p9Xa/IueruGoEVEroPWUoQ34bjVuQN1ITgaLFMNLM8ps8eHV8IS0GQ/t3+5LmEE6bU4kQsG7G6nxtCzy/ohASEsKaNWtK1P5mQP4/kZne2bMDdu7cSYsW+YP2v/LG00z56E0+mzWRD6e+xoinH+HBnmNoUe/hbIKanp7OhZhTJDuuMOP717L71m9cg5Aq5bJ/P7R/MwdiyrPnShU6v6KFFVBVlZjzcSTHpGBJs+Q5t96gI7DKtbl43gwMDh7PqCaTWPrtpjzlb775JmXLlqV169YlHis5OoUTW0+x7fedALj6GdHtXYAtSrPfzTy9j8SxwcSNq4EqBKoD3CoZCRg/lYrfLS5wTJ0pBYNHCugUhGsClngDF4Y0JuLJ2hiGz0UXUoPMy0YSPxhM+pnCPX0AYsMikCW4XcuUKYPD4SAxMRFhFujLKzh2Ty+wrX7wJqRdIDxUdH52hFkjno5zqahRVkSqpshx7FkAikQoKmqM5snU9MUHaDdxCA/OeRGjlzt6IRFCYnLRXjAuZVzoMKoznsXELH1q35d0nP40g9dPRWfU8/Pgz0kKj0E4FUquwk6gyUGgSfJzzwn5+jvsDtZMWIyT9GJVtSMzNTNf28JQv379QlOA3xLc0+bffEgp2bhxI+1y2TJGRcXRLHQAn38yl9FjRlC5SjDjX/qY+T+uwSGtnD93mfNnNQIw7sUcBcKENz7JM/b895ew6JOct/cLJ+fw4sk56J2ypomVniNmwWpqeloIaVB4JKPbiSwNr82WNzZmhw4dsFgs1xT1yausJ4M+fIhnfngSgPPjRnJ5XyLHHtdeLqkzH9X87S0ODAYrZp8UZHI0cnk/0j/tiiPyGLaYS4Td342Tj/YDwOX1ZBLOVib9cjkUo0R1eCLtBqzJZTDV7IrrC+sQeomit2NZW3gcU4D24x9AoOJfv+j/QgiBm5sb4eHhGGtYMVZzoPMr+DYXLr4Io4pilgg9CFftelmrjMOa6E5mpLY9N7R4mrSIMqRd8kFfTpOjegT5EDq4A6Yyrpj0EqMiMengyXkvluyC55pvtV7N8XBamghn2hUFUITGZUq0SBMJzh2SVFUu7z6FPdOKw+ZwPsRZmXO1Uer1bljiOTRu3JiwsLBrmndp4/+DzPSO1uYfOXIEo9FI1ao5+W36dH2GC+cj+GTqjzz65P24uJgJKhuEToQz+PHe+Pp7U6mKpgT4/Ov3+eN3zTVv8KMPkJyQRuSFWKrXrciSmeswu5no93L37LEzUzJZ+PZCer3aCy8j2BDoxZ1pawrw2abXOL77HN2HtcxTvnv3btq3vzp+d/Ho/FROH4dbOWRiBlapRW4XWFF0AA7sNh1qkiuKPhNHsgckniPtk27Y9OWQuJAZaydzdhMydc2wprrjsBoJ/uo41jQLhwY/Tv0KB4h9tgZ+X59E3+whbEe34zGi6GDNrZ7pSatnio3PC4CXlxfnz5+n0mFXjOUE6SddKUhqKYRAOsCRDMJFIltryi3Pfh8SdyUKYdIC6xjK18BrymEQCiJX1CrQlD2W+BRc9TD68CcYXEomA85C5LpdHHj3G/y6tKHZuyOQaFt+hObZpDcZMfq74rgSjyIg+tgFEs/GsGLs9zR5qhttX3uQ51e/znf3TUWVErtTrtjh+cI91K5GrVq1+O67765p3mfPnmXlypXX1Kco3Ony0JLgjiamq1evpnv37nk4rPg4TfOo4qBKpaYYjAZeffVFEq0XqFK7LKNG5aQ9NhoNJKRr8rgafg9gtdjwUn35Z+/HfLR1PDpDXvOib4Z+Q/jus5zadgotLLLm0XJx3T4qdG6kxeM8dAEXL1e8g/1u8uqLR6U6QVSqk1c7nJmZycaNG/n668KDLGfBmpqKsZC86aG/LyBu8w486mlZBESHN7Csm4yu4UOwdzFaoCQrwmBDWlV0Hpno5FGqNDcjVTtE6ZF1O+EdcgFF58CWmsy5jac4ftqL+hV0oEJGbCSeT3yU79w7Zq/F5Gqk8aPX/kIA8PX1JfLsUVz9FeyxSQj3eoW2NY7LIO7LCdjOnKfsE71yxhj1Q552OncvHDYbiUfP4FVHe7lnJqSwb9p82r3QHZ2H+zUTUoDLq7ajZmRycdFGGr0+jDePT2d6rZc0xZMi0dkdpEVY0DtZ1D8encFjS96mUoe6VO3WEAB3Xw+MJj21ejVkz0It9OSmmSsZ8t3TRZw5B7Vr1yYxMbHAuiyiuW3bNk6cOEFUVBTx8fHY7fY8TM6NIEtmerfjjiamixcv5pVXXkFKSUx0Av4B3mzaPY9H+r7A25NGMezR5/Dx9eaZUcNwd3dj4bs72DP3Aj/tnJhvLKtFk38ZvAVlK/ri4mbKU39w2QGiT19BZ9TRbkR7XC0x/PfFRtywsWnsF3SbM54y1SvyQ99peFbwYfSW9/Kd407A5cuaMmj48OEF1ksp2bPiMObtq4jfsAOPhqE0/rJge8rkbyeSmJFGyE/LydiyDEe8L14hzbDu1WSksuUAODIffZ9J6PZOQjpsqMlGFHcHwpCJW4uhpKxbhMMq8PT0oUr3RthSh8LmzQC4+JXLd87UuATWT1kEkIeYnlwfxsV94XQa1xtFV/SDFxAQQGD8ZnBJQu8q8H9fO1/qjI7IqOOIkUtxr6zZ4goh8Huh4PVb4pOwJqeDqrLrlRnI6MtIm41yvTtSd8LzxB44zbkl27GqChfTXVj+wSKMfm48u+wNygR4ATCn1wQyTkdhkRJPDz1lW9ai11ejs8/hMLmTZjOQbFM4tmIn9fq3I8uEWO/U4uuzWFXAmpSBJTmdjOgEdCY9UlVZOPJbghqF0PfT4Zzdf5G4M9E0fLAZ6YlpuHoVnxOqWrVqpKam8s4773Ds2DHOnDlDTEwMCQkJOBwOqlSpQsOGDXnkkUcIDQ2lTp06VKxYMdu55YZxLzvpzcXJkyc5duwY3bt3Z+G8Nbw06mM+nDGGFSvW0fP+9nTv0QksZYiPcODv78u6fw9y2nqaEPey+caKi8mJ2NPr4VZcnD0Xa0wMoZPH89er8/Aq74NiMmJJyuCZ30ZRq2NtvmoyDp0isKGn5pD2+NaphM7FSPPHO+BXLecc1jQLxqsI8+1GUTf5O71mcnT7GRpUNtDBFS3oCHBo00mEIqjXrnp2W2E0IyyZoNOh9/HHceUSxuBquH19FBwOdEYj8JnWuPMTpM3wQSdScUiJ+ZVUhBD4fpETW9TgYqT2oHbohp4odO4G94LNiNZNW0LU0cs0GtgSn5CilX8BAQEsOuegU5OGXL4QRG2rHb1Rj4gJQzFKHLP7wJTiLR2W3/8a1jTNMkAvJHqdgqsezP6a51n5Dg2wKCYsNoczbQlkxqTxZadJvBH2CadX7yf1VBQGHRgd4Miwc3nD4TzniD10moRMHTqdjh1v/EK9/u0wKDkmTqBgUCQOJ0HV6eHfxz7BlpTG34On0XbCEOIOa0qxb9qOZ+zWj0iLS2Fqo7cIrB3EC6teL3adBoOBsmXLMnv2bPr06cMTTzxB7dq1qVWrFhUqVCgdglkM1FIIdHK7cccS06lTp/Lss89iMpkIrlSO4EplmTN9MbEX0ti7/DyPPt4/W2uvqipnzlxAxUG7B/MHbHD3cKFps7oEVw7kvU+f478O9wMQvasHexbsxLOcF6/vfI+WQ1rh6qU9zJ6VAog5dAGHUGj2xtDssXpMzInItPfXzayZ+AcDvh9Ftc63Nqr99aJm88oc3X4Gv5aN2LjChrIsnoQm/7H41V8xKvDusem4ltGCNleak6OlD5z4bd6BCgiW4jY2vtDz7vphFdun/kOW1nnsqa8KbGcymTAqmmJtcuXnyNKR2nQGHIhiCSlo5lEHDx5kzbwaODKteO84QoUODVHcLCgGFenwRNot2A+uQFerA4pbwaldhMEAWFCkilAENoegy875KE7WUSgKj6z7mAubj7DgpXna2qSkWiftXrAkp2OTmuWDqkoMknxKlNCXhnBx5Ewtdzxwev8Jmj7dlf3fr0GghfgD8CzvjTUiDr/aFYg9fhG9Aqolk3INKmWPlXZFCyloLuNKre71qNi4EiVFnTp1CA0N5dNPry3RYKlA3vk2pCXBHUlMZ82axcqVKzl6VMv106JNPbYdnksV156kEo8/wbiaXdgXthgVyezP/8SWDCZceOzpvvnGM5mNLFw/LVeJRoQ9alfllc1vY3QxIYTIJqQAQ//Kn7r5vwXbWfSKZoc59eLnuAeUwdXXA5dc6XUPL9tPmbJehDS5fVGlisKw9/oy7L2+ZKZm8Nl/YfjXCMK7bBmCXCRGHdjSLVDmxiLgX41VL33NyaV70fKbAUhmVH+Wsac0ue7kylqUrrfOfpGrV87DpapkO1ls+X4d7Z4qOgCKv78/SUlJtJk2iqidRwlqp71gHelmHA4dov1gbAeWkTnvJQwdRuDS9x0s/zwE5dpgavlS9jj3r/yElAtX2Pvx78TuPorUm7IJaRZc/cpQ68HW1Fh5gJOrjzLk15FUb6+dL3RAGzZ9toS0K8nohCS3WX0Wjs/bgF6nYFMFDlVwetkuOox+iMM/rEZKcDh7PPz7q/ze+XUST0WA1NKUSAm+1crhVtYjm5CCFpF/6Pclk5dmoWHDhrcthYmmdPsfIqbOFKh7gMtSyvuvqvME5gLBzjGnSymLtnUpAl988QVffvklXrnS+QLoDAY8HeVIU5NYvXw7jz7ZB4A/565EIBBSIfz4ZWrVr1Tk+C035UQEci1TcAZOu8WG3mTIU7bolflkKaVWfbKMHi/3pmaPhtn16QlpzBs1R+N0d71f0uXeFpjdXXjjQI4x+xyjFxlJ6RjdzEX0uj5cXrkXNz1k2K3YpEELXSeyuM8XNPMfCR9WeYE3w79ABRQkqipQrtr9NXu0TbHn8/PzIy0tjQodG1GhY67wlg6NEBprP4DOrxqGto9jbDmYzD86IcOOwJGNkIuY6l1MeNcMocv34zm/ag/eNQoPhffIV8+QmZyBq09ehd5z26aSGpWIJSGFfwZMpt5jXbPr7BYbUXtOONcqcaCn59uaAtXg701aVJKWkEjAn0M/pdvnz+Ia6MVfj3yMXXUgnRdn1Nb8SrxrRWhoKIsWLbrhca4XpaGAEkJURMskWhbNmmy2lHKmEOJd4GkgKwjBm1LK5c4+bwAj0JIVjJZSrnKWNwF+AlzQctyNkYW50jlxLZzpGOAYUBD1eR44KqXsI4TwB04IIX6TUl5zUm673U5kZGQ+0x4pJTbVhh4Tvq4BPPhIzk3p4q8SH3YRK+kMaP06q8JmUT4kIE9/W4aVHV+touZ9DQmsU7StYtjcdez4cD49vx9HhdZ18jeQsP6zVaz/bBU2VSCAdiPb0XfiQ/Sd8jDe5X3y97nDMev4hzfUX7Xb+fvFOVRuU5MmuRRHU6s8T4CTPiuATQWnxgGAJpPvY+9bTp9zCRNDXuC981/xzeBPSd4ajsEZ+PilrRNx8XLFbC6e2Pv6+pKent+12G3SOUAi9NoYLg++C4DN6IpwtSH0Krbo8xgCcuJAONLTsMfGUKlnswLPtXnKX8SdiqTv7GfzEdIsuPh4kBaVyIhDXyFyvR22vzcXNcOKIsDdRcfwg99k16mqpuXO3kWV9aZSV+3FMPLQF5xbd4DKXRsWey1Kitvto6+WDmdqB16WUu5zZlTeK4TIcu36TEqZx3tDCFEHGASEAkHAWiFEDWe0/a+BkcB/aMS0J8VE2y/R60AIUQHojRbGvyBIwMOZL8UdiHcu7JqxfPlyQkND8fXN68ZotdrwDXDFIdPwUMrg6ubCexOnERRYn5dfeYYAfRUq6uvT48GW+Jf1xmF3OMOeabi46xQ7vlrJf99ohvpXFv3L5bm/5TnHj13e4bd+H2L2dsfk6ZbNpdkybSRExFOlQx1GzH8BVTOtxqZqfKpOgW3fbUEIQctH21KzUwEE+C7Fri+W8e+Tn+OwFh3W7ezWE5xYeZC1H/wDwKet3uHdkBexSYnVLnGoEiEUtFtOi2kK0HNIb2oMa5a9qc/6PLf1HDaEtv2VAu9gX8wlFD/4+vpm++fnhtCbsglpbpj7LQODHZmux/b30Dx1EVMncu754VgunivwXOc2hXF+67Eiw97t+Wo5Sx+exK/1nuLn0Cezy+sM64LEAVKlSp+8kb5Gbp9Kq5f68FzYTMac/JoB817OrtPpdVTt0QTlOoN8F4SaNWuSmJiYJ5ziLYMsmV9+cXJVKWWklHKf83sKGvNXVIrmvsB8KaVFSnkWLUVJc2fSvTJSyh1ObvQXoF9xyygpZzoDeA0oLKbXF2jJqSKcbR6RUuYLwOjMcT0SKDTu5vLly3noobyxSQ8fOE339o9jVl0pLyujR7uJFixYTEpCJi/3/cb5oMJHP76AXq9ndr9PuHIsgtf3f4jR1USlNrXo9fEwQlppGR+vfPklAJ4tW+FerQrp8akkX4gDJFV7t6Bq7xwX1undPiL2bAxIOL7+GCDQCUn1PrU4teREtvLg/yPC1x0kJuwi1tRMXHwM/PzQdK4cPM8zGyfiVSHH1rZy+9o0fKQVlVpp+ZOSIxIBsDoU0nQ6TIBNFVhVAIEict7jA98fzsSfdiPE1RyKwOb0Uc9MycDsUTJimjvYSUmhWrxQSEfxyCvr9mjeDBl7Gh2pBfZ75M9XsWdaMbprRFpKSeTe0/jWKI/JGanfzdddM/gX2ms4C361gzE7fe8j1+2DD/KO3eLZglOV3Ax4enri6urK3r17C3TfvpmQXJM2308IkVu4O1tKmS8iuhCi0v+xd97xUVRvF//eme276R1CCL13lCaKIEW6oogCgiJ2QUUFrNixgyJ2RUVFbCh2RXqRIr33FkjvybaZ+/4xaUsKAUHQ93f8jGzu3Lk7M7v7zL1POQdDwuRPoAtwpxDiegxX5QQpZSaGoS1LjXakqM1X9PrE9ipx0isQQvQHUqSU66ro1hvYgDFVbg3MEEKUcwdIKd+WUraXUraPiioflfX7/fzwww9cfnngl+jbTxeCLjCbDB/m6In9AHjpmanUcxnkD6o0oWLix88NcuGwWhGE145EURV+mPAh09pPIrFzQ4JrBC7B9/5s1LU7wl3Ed2xAnR6tOLbxYABhSo2mNYlIiKC4qWmvprxw9FVue8sg+dUBkz3Qv/pfwZUf38PoxU9jDzeeo8fWH0Dqku8nfBzQT1EU+k0dTrNBxgzLEm4YFx1BhtdKstuKR1Px6wr+EqNaiscPzaDjbZdy6YOGnEejAS0ITgyhYZGeUV5axcasIkRERODxeMq1a8f3oBdkV3AE2CcdJqP2K+RFlubnSq0Ql/1XIpv9hn/RgAqPswbZcUaV1t9v+2oF31z3Il9f9Qz+QuMcmg67GFXVENKP4ZorRXRHoyii3eTrqn19ZwsNGjRg4cLyyqz/BE6hnDSt2IYUbRUZUhfwFXC3lDIHY8leD8M2HQOKa8srmurKKtqrRHVmpl2AgUKIvoANCBZCzJZSjijT5wZgatGUeI8QYj/QGDglPYQ5c+ZQu3ZtmjcPTDO66e4rWP7mX+heiV8VjJhgGNuPp//A0cIdJITXw58lEFKQk50PwNWvjS45fvvC7eRkekjZmURQnGFMD6SHYjP7OTb/IK2KJJ+u+vgefn/yKz684gWufOtmGvY0orKj3roBv8fHI/XG45OCa14I/OJLCfcuvA+AgqwCrC5rOfLmfyssLjsWV+mMsNmVHdj920au/uDWKo+b/NfzrPt8Bd888DkU1Zu7daUo0UegVBBw6DOpdEVyw0wjGu0t9JJ1NB1fWgbUqR65THh4OIWFhei6XqIRpaUfIffZXqiJbQm658tyx+huD0mzPscUFkpk7yJ/fNIvyOOfYQ4B1FS0He+gNq48Si6l5PeHPkVKBe/RJJbd9BRd33sE1WbBoXixqOA54SFy2TsPVDzYOUCrVq1Yt66qOdNZghToZ6gCSghhxjCkn0gpvwaQUiaX2f8O8H3Rn0eAsgGUeIzV9ZGi1ye2V4mTXoGUcrKUMl5KmYjhrP3jBEMKcIgi9T8hRAzQCDglMs38/HwmTpzIc8+Vj0x+M2MBVkzYTWZsZRKIr7v7MgpkJlGNTXhEIZrQyMrJKnf82B8mMvKDm6nXrdRIH/bGsD0jhqs/GR/Qt8FlLajduRExTQMjtx/2eYIYu6SGXeeRVg9zd03juJeTpvNy0nSia8WScSSDh5tO5o2hr5/Kpf+rMODFkdy78UWsjqqX3EII2g/rQp9HBhJaOwK/Bn69eIYBoxffV633s9gt/DjsKX4Y9SK/3fZapf38+YUlqwmz2YzVauXIkdKVms/sxBTmRU2oW+Hxqt1Go1eeo+HzZYQq43pBzeEIt0Rk+9AWVi60uPqVr3m36S1E1grBZfISbPaSt2MfuXsPG9ehGlF5ywlcD4d+WMofVz/Azne/RWrnVnK5RYsW7N279x9/X8mZ4TMtitm8B2yXUr5cpr1sqd0VwJai198Bw4QQViFEHaABsFpKeQzIFUJ0LBrzeuDbk13HaT8OhBC3CiGKpydPAp2FEJuBBcBEKeUpySR6vV4yMjIqlNy4aGC7MidcekP7X9Gd3xZ8zqdfvE7LDom4TdkMGHpJueND4sJocEJS/V1bXuOe3W/gigxM2I5vX4+r37uVkBMi8lEnGNeKJv2p+4zMiwNrTp+U+b+GrmMv4/6lU/ADPgnFK6jExMRqj+GKNT6LkLrlq9sA8nbtY0Wv69j36vslbUFBQRw4cKDkb316a1ThRm6oPGMvqFULHPVKfabC5MDc7Z2ARZ/vp/LfL4B9P/8FgCcjB5MiyPObaffSPYQ0NYy3KToMXZeoJ0iJLJ/0Dkk7Ulg//XNyD5x08nNW0ahRo3MmYXKGWKO6ACOB7kKIDUVbX+B5IcRmIcQm4FLgHuM95VZgLrAN+Bm4oyiSD3AbRsB9D7CXk0Ty4RST9qWUi4BFRa/fLNOeBPSq+KjqISwsDIvFwgsvvMDDDz8csC/jWA7Zmo8Ql5VPdgYS/XbuYhjf5tFNyfJ5Sd2XRe26FWvsVAczLn+O7KQsHtr4bAARysDXb8Gb7+H5XlNhfwZDXiyvTV/ngjpE1Y2izoUVz37+v0Mi0HVQlFNLg7nq+4pr54uhOh1YoyOw1TSMbfKaHdwR1YlDW3dDUYqdDA6GjPxys5v978whfcVaWs98CpO94rQrXZNgVgAzMu9AhX2GfPsIK5+ZS/Phl7Ljsz9w2MARG1lSitn7q+dZ+eDbNL99cMBxmjSmrG7dRlDdk8Y4zirq1atXwu3wj0KCdgbKSaWUy6jY3/ljFcc8DTxdQfta4JTKGs+rCqjZs2czevRo7rnnHpzO0qqiS65oy+uLJ5LYOA6Hq+Iv/C3PXMkFPZvS+pJGf+scwhMiMdvMBhP8CbA4rTy8vDyJSsl+u4XJyx6udP//Zzx/5NWzNra9ZiwdvinN2jv821oaquEkby1dIShxLZGZh1GdgUuKg+/PRVEkx39cSPyQiqPnytWbkeseQW6cD16twj5mm5WLnzAS7ptc2YnlN0zBffAIHd94EIDl983k2IotJK/dyQUPX0/tyzsghJH6pQqKtJ7ObRVQ3bp1MZlMJCUlUaPG6U9IThUGa9S/vwLqvGIX6N+/P9HR0ezatavcvqbt61RqSAFq1Imi/41dMZkrD/x48wvZ/9G8SjWBAEa+fzO3f3//SZmJ/ofzF63vuZrfYrPZJ3JK2uSu+aBbOPGjtyTUwiesqCHB5b4Xe6a9x19jJ6I4amO+bA7mGzZgHrnmpO8f2qweLR4aQ7P7ry9pa3bLAEwuO4rZxIqJb5F/xFhOS1T8UqX9o+c+mq+qKrVq1eKPP/74x9/7v0AOfV5ZDE3TyM7OxuGoXICsKiz9eR2tncNp7Rxe4f7FvW5k/xuzWXnt+Snh/D+cGZjsVrS4IDLKVvQoYGQVBBpMb4Efnxc2PTidPW98hu7zkbpwBf78AnK27iJ3+x40j1HIJ8IbIFzlaQNPhFAVXHVi+OvWhzn2s0H/px/eSetu4XR+/lba3DcMZ00jR/fGbe9w47Z3aDnssqqGPCuQUpaoNRSjadOm50TCRJeiWtv5jPNqmb948WJiY2Np1Oj0lurTHpuDgoJeSUpYRoGZSKuPoKYVC+H53D78Hl+VapLnO3RdP+fLxb8DXdP54sbXCa8bQ8/HhlbaL3X7Yb685nk63j2QNjeWZ5UPDw9n585Sqj/bxHR8mz7A0jowtcmZWAN3slGsceTjL3AlxLDr2depdf2VtJ7xJJrHiznYRc6Ovay/5UEiL76QZk9O4GTYNPEl/Nl5bJ3yGpl/bSP1h58BQUj6e7R+q1RCR0oJUgaUmf5TeCBxAppP4+E/HyO8Vjg7luyk3qH6bEnbfPKDzzDO91lndXBezUz3799Ps2bNyrUX5BRy9HAyhw9XzUEZ3dRFJmlEJVZMiJs4YjD7ssIQ8YYxPbTxEIc3l6bPvHXlKzzT5kHcuaW661JKcpKzq3QN/A9nDn6Pj4Mrd3Fg+Y4q+6VsPYTm8ZFztGK57cjISLKzSxP03V88jHvOq2iH1+H/822k34Mvr4CcNesxCT82kx9FQHjHNsQO7ElMr0tQrBbMwS6SF68le9MOpM9P7s5SP6zu95O5ai3LBt3Ios5XsGJIqeS17vECBm/Dsfmly2ZTVCBnxKpBY1jadQju4/9sFH3puwvRfH5AllSLzXt8HnqKjvNoxRwDZwtS/jeW+efVzLSgoACzObCSqCCnkNvrP8gC70oK/G6Opv2JzVYxGfNvX6xDFSZimlSsCFm/b3sO//wnwYkxaJrGO/2m4kelVv1wbl/0OLVa16YgPY/N81dzwXVGCszKD5cx7+EvGfzUVXQe3bXCcf+HMweLw8qdK59BtVZdUeYr9OHXBVHNEyvcHx4eTn5+frl2bflr6Lt+QIQlkn40GCkFQoBfN/JArZHhNJp4W0n/1FUb+eu+l1Cddjp/9BJqUGlqU+pPC9j/4gy8bhM6KvqRUoMY0rIJySs3IZAkXN2LRuNG4E3PwhkfmN7lzveia8VCeNVD2p+bCGvVGNVWKpOSv/8w9pqxKJbqVeL9/Ox3WIpIqN+9ZgaP/vUMI18bwdynvuDL376o/smcEYgzEs0/1zivjGlERAQpKYEa9Warmdot47mwsDURDcOwWivW2Tl2KA2rtIOAJ6YaCpG6ZpD66rpOfmoeEU0SuOKHp1FMCkJR0IVCvl8haW86ml+jYffGbJ+zhAUPz2X5+yvodMPFbPx+PVJCyp6UCt/3fzjzcERURgFRilYjLiHx4maEVKLFFRYWFsAc5Rj2HAx7Dj1tN1rtC1DqXoxZO4rfoBmlzfMPVMjyn7l1H1KCKdjFlqfeJmfbXlo8PZ64np1RQkLxOyLwF+YDxdVdBoTdAahIIOqi9pjtNswnGNKjSzaQlQHgBEvlwdWy2DvrG/bOnANWK5d8NwNrWDCZ6zaz8a4pxA3qSaOJlVem+T0+jm/YT4329ek1uR8LnjTy0NsNbw1AzaY1uemtMUyMeAC/34/J9M+Zh/N91lkdnFePgzZt2rBw4cIAp/jvHyxn51+HeHbaRN7+4NkK/YGF+W6GNXuI2koYkbqDuvVrMffmmbza+HZeqH8Hr3V/mhc7PMLWH9fzdvt7+PZGI03nzgWTiQ5RufKFa7in1j28MfI9fH7QpCB55zEOrdtP1pFMhIBO15+cR/N/+OcghCC0dlSl/uHKyE6UyAaYO9+JMNnY/PwHgAoohHdoQ/KyzWRuCswkSfr1T3Sp4CvwoprAbvaQvsAIKhUeTcGblYcuFaQEXRqZJMlL15F/2Khg1HVYceeL+D2lbJSa14fm9WGvVfogcLvLUwZWhLAWjUBR8Bd68aRlAWCpEYMlKpzgdlWnRa5962e+GfkKO+atotPI0lXWtg+Xl7wOCgrC5XLx559/Vut8zgQk/wtAnXE0atSIgoICsrKyCA83ql4Us4JqVln4+Rru7zudaQvvp07z8snNwVLFrKqYhUpGcjbpW48Y0g5SJywhkszDGQRFBeGKCcUZEwpAXMOa3LvqKRyhDmbdYyxtMn0KJl3Q9bZL6TtxIOs/X4lqNRPTsOLqm/MR//PvGsa0IrKTssjZtBuliE4xZfE6DnzyA0d/WMJlv5VyZ7R6eAzrJr2GnpNO9uY0FAVSFhtEQ7WG9iWsXXOWX/8QUtcJamRUT2147E38Ofn4JSU15993vBEhJGHd25P5h1H/HtfzgpL1fUhcDAApq7eSvn4nTW65suLrateUHks+wpOehSPO4CrYePsjeFMz2P3MTOIuu6jC4xbc9y675q/BGRVC3pFU3Gm5uFTdYOrKC4zoN2jQgCVLltClyz80gahAzuXfiPPKmKqqSpcuXZg5c2ZJFVTvMV3pPaYrnz73E26Pt5yhSDmawcyHv8KngJA6bs1PcISTqBsuY9HDn7LbLfnl49tL+o/8rbSa5rH2U8g4kknX6zsRpEJInIvUpFykhNaD25G8/SgLHv2MiPqxtLnqn6UlO10o5yAqfD6iujR8etHiLKpTKyyRYVhiDQPlyy0gff0O7HGRqE4n/tSjgIJSRP+4oOMV1Lh6IGnL1xtJ5zoENzcCm26fDnopsXMpBJkrN5W0H/vtT+KCcgN6rRr/sqFb1bwesV1aVXjOqsVcYkgBQls1JuXXpTjqlic9zz2UzPdXP44S5EIRkuAoF+vf+BFPVr4hfaKXF1Np2bLlPyxhcv7POquD88qYArz//vs0adyWxx6dyl133YRZDaJlm4b8teMoR/UM1q7fhDVcEB4ejt1u57aez3PsQBpN2iUyemI/ataOxGQyYXfYWJ2jYXNU7GNdN28dWUczDckynx9UqN2mNpnHDQ6Eab1eRHVYGTS+HzEtKuZe/R/OX1Q1M/VmZLFzyktlWiSWEBc5KflwPJf9Xy8id/cBDsz9jboj+5Gz5zAuix+zAn5Z+pM5+u1CNLcHv2ZCoJK2YbexI99DSVWjxQJeX1F+q06/X9/gh65jALBFh2GKCEUtk1fdYHQ/ji/dQFS7JtW+1qZT7qHplPK50wuvfZD8Y+n48/0oXj83rJ2OEIKtny4isXdbtn77J7nZPlRgw+zFtB5hBF2bN2/OrFmzqv3+fxeG2/p/xvTsoEgUaO4ni8jP8xIcqmKWKhaRwB3jbqbQn4Xb7cZsNhOjNiGGFqzY+z37XlpAdHQ0YWFhREZGcsUjjdj1bTp9Q+7gqqcupH6rOoSFhREdHc13D3+BRQFUBV+eG02Hzb9vLzoBSUiki/rdW9BlXN9zeSdOGScmYf9X4fV6yczMJCsri8zMTDIzM0lNTSUjI4P09HSSk5PxeDwUFhZitwcyXO2d9g7Zf20GbCgYnKsAEe0bk7FxN9GdmhPaMJ6c3YepdXln6lx1GeuvvQmBwOcrvr8Cc0QY/qPJJfM6zWeUmrZ/9g7WTjYYrgaveg8hBAsH3In7eDr5R47T/qXx7Hn3Wy54+V6WDbgdKE3vanLLlZUu8QEKd+0gf+N6wvoNRHVUnAJYjJydBwGo1bMjja65rIRKsfXYPhxcvh1/vgdR5ObQ9dIy2caNG5OeXnHK2dnC/6L5ZwElX3whyM1zY1IstG7Tlvk/zQrop+s6Bw8eJDc3F6/Xy7Zt29i5cyfJycmkpqaya9cuCgoKsG5qAcDHD/7GzqA/8Hq9FBQUMDp4FFZhwa3nM23xTDrTgcIQD66aVsIOmymM0lnz7RrStFQa92+C0+nE6XTicrkICgrC4XBgt9t5ttVkbKEO7l/+OAB5x7NwxYb+g3fs3wWPx0NOTg7Z2dlkZWWRnZ1NTk5OQFuxcSzesrOzyc3NRUpJdnY2+fn5+P1+rFYrNpsNi8WC1WrF4XDgdDoJCgoiIiICi8VCbm5uOWMa3KY56X8YnBiGITT+X2dYb46v2sEPfSbQ9bW7Sf9rJyvvfJ4+v81EjY0n71AKtYf1AswIhwN7zRiyt+7FGhlK7u6DtJlqiPFFXtgMECXBMU92LlpePgIdR3wMIY0SqXmpQWoefkFzRBVRcykl7m0bsNZtiGJ3cmDSfWgFbtI/eoM6b32KpUblIn8hTeuRt/8onR8bjSU0MEOidpcmhNWPw+Iwk7n5AJtf/46213cHjNjFP6sHdf7nkFYH550xtdls6HoeqhJCge8YViWcy/tfXK6foijUqVNKl9a+fXsObT/Gj28vYdT0wdidRi5qB4ehuXP3lOu4dsJs7q4xHiygWhX8bp1L7u9O+5COHDlyhGPHjnE4NYXNkVk03tEQs2Zm3xd7ePGbl/D5fUi/jtfnxePz4vP5GGrvS52QBLy5bj5ofwl6fgP8UrAi7wg/etZiNpsxm82YTCZUVcVisWCxWErazGYzNputZFNVtWRmqaoqqqqiKErJv8Vb8XjFfRVFQQiBpmlkZGRQUFDAxIkTS/aBEf0u/nG73W78fj+6rrN//36ioqJKjvd6vWiaht/vx+fzlfxbvBUUFFBYWFhyjgA+nw9N09B1HU3TyMvLw+12U7t2baSU5Obmkp+fT0FBAbquY7VaS+5F8Wur1YrdbsfhcBAUFERYWBgJCQm0adOG6OhoIiIiEEJQp04datWqRXR09En9w+Hh4WRkZBAdHZgoH9m5PQdeNhbiokidHiB716GSPod+WoZAx5+RSea2vaTtz0LBRObRfA7/vhYQdP18Cs36d2NBR4NBrDBlFPboCHx5xv1R7BZjVtr7NoTmI/ayTpidgYa9/euPVHkNhetXcfyp+3D16E/0HZMJGzCIjK8/N9RdZcWkK8XoNrtqhdzhPzxGfkoWXw2cQkzb0qrAWrVq4Xa7SUlJKXfvzgaMTIj/GdMzDl3XMalO9KK108efvcrgK6peanuy8kjbuIfnJnzP0V3JmG0mxjxrsLabLAqaX2fYvZcH+NA0jxHJvOaeYRxatRtfU8HWBdsZ9KYhm/FA/DhQDSLj18e+St/JA3i1/URcMaGM/dUIjj2ScFfJT7GR08X2fIECDBh+BeOveZr8/HwKCwtLtmKD4na78Xq9JbPkwsJC3G43mqaVGLxiw+Tz+dB1PWDTNK2krxBGHq2UEkVR0HWdyy67jA0bNpQE64qNbvExVqsVk8mEEIK0tDSCg4PRdR2z2YzdbkdRFCwWS4nBLzZ2VquV0NDQEglun8+HlBKHw4HVai15OHi9Xvr06cPkyZMBiI6OpmbNmsTHxxMaGvqPBcmsVqux7F+6kr1PvUStW24g7sp+WGOiyPE5AR1ZxlvX/JbBZGzZR96BJA78uA67IkFIVlz/ECoaDouOzM/DSKcSLL3mca7a8DFuzYSQEkuEcV9ctWLo8c1L+DIzOfLlj/h9GqByZMFaWp/qNdRtjKPDxQRd0huA2BvGEjNiNLq7ADWo4uKUU4EzOpTrV00LaFNVlfj4eBYtWsTQoZWX9J5J/G9mehYQExPDjWNG8e67HzF48GCGXFWx9k5Z/PXCHA7MX07f4YP4fq6k1+jSlI7lWaXUbFZraeWUsAtq1K/JgWU7+HzU6xwtNGZZ6YfSufHtGwCJSRgSqznJWSiqILxODM6osssl46eoCJi3tzZOBXTdz01Tx/6r6+P/LoqN+MiRI89pdoHNZiMjI4Ptr36IP8/P3nc+Ju5KQz9M8+n49GK11DJ+Zp+PvEMpIBS8uopD9aMooAkLmqLT4pFbONK3uDZf4ZeLR6Lpxnen7Gfuqh3L8lsewJ+bhzXIiSdXNzSrTxFqaBixE58NaBNmM6o50JD68vIxuyr3oep+jZxdBwlpnMiy+2ZS85I21B1UeepTo0aNWLVq1T9mTPUzEIASQtTCUBKNxfhQ35ZSThdChAOfA4nAAWBokaAeQojJwBgMca5xUspfitrbAbMAOwYf6nh5kpzD89LrqxcR+C5btrTcvs2btvPjD4GiXw2GdqPu4K4cOl7IkV3J3NHhabau3FPh2NOSphNXM4ggn59et11CTLNaNOrbpmivJGXzfgAUYXwaitAZMnUYQlEYNe9+rnrHqDBZ//WfFN8+YxZtxmWGEJuJnKSMv3sL/tUoNipZWVnn9DyKjak/z5gZ+rONxHl/oRufLihO2NfL/ETSNu1HlwJNk0gUfLqCXxNI1UR+gYLQdXoteg1UgVXxgNuNih8VDXdOoOhf3OBe2GpEc9Hnr2CLj6b+bYGqu2cKyy+5kj/7XMfiLoPZ+dzMCvvs++RHlo18hCW3Ps+h39ax/KF3md16LCsefb/C/i1atGDTpk0lf+u6zpYtW5g+fTrDhw+nffv21K5d+4ycvywqJ63OdhL4MZRHmwAdgTuEEE2BScACKWUDDCWQSQBF+4YBzYA+wEwhRDGH5xsYSsoNirY+J3vz89KY7t69G6QkrQIJhW4XXc01V93KoYMGI/jC4Q/x19hJoHuIjI9ASonm13msb+VkxO7UTJxmyXeTPsUR7uKKGWPo0DmOeIdGi0ZGWZ/JZgIkITEhvNxuEr8/N49dC7ew+KX5ePLctBxULK8iePzAdABy/Qr5PgipGXFG78e/EQ6H4x+PCJ+IGGcIQbMWoQQ5AUl0v0sB+KHLmCKpab1oK/0ZJPTvbBA1I/DpBhO+T1fRbS68uglpMpG7dic2/IBK8yl3YVLApEj8WaVBG92vYakZT8tXn2TdlLcoOJLMrplfsOujH874deqaVnLOyT8tqrBPRLumhLdpTOLgriXZB9Kvs/frZQH9CgsL2bJlC3v37mXVqlU0a9aMuLg4HA4HHTt25P3330cIwbXXXsvMmRUb7tPBmSA6kVIek1L+VfQ6F9iOIdE8CPiwqNuHwOCi14OAOVJKj5RyP4ZEyYVFmlHBUsqVRbPRj8ocUymqvcwvsthrgaNSyv4V7O8GTAPMGHKsFYvlVANDhgxm6ZJlFe5r3a45hw8eJa6G4RjP37kbsyI4/uMiaj97seFHBOLiQ0k7mklIVBBmS+ll+nw+omwa+V4YOHU0X7Ucji4UnIqf1hEa6vbjAEz+80neGvgStdrWZsf8dax8cwEr31yAKiT7V+1h5GfjCIkLIbJ+aSCkQFM44k4ud87/H2G1Ws/5zDTCGYQlx01Qn860eSpQDE+I4i+/xF+mvc2EYez9YiG6JjFZLNiVPATQ7oU7kBo4YyNRQ10G05GAmn0vZu87cwBBcGLpTO3oz8vYMOUthNmM9PmwqBJNh+3TP6Xh9f3O6HW2mfMm60eNBxRiKqmACmtej87vGsGusGb12Pb7Sna/8j3ueBdjx45l69at7Nmzh4yMDEJCQggODqZbt24MHjyYRo0a0bhxYyqSZz8TMDJwzyyEEIlAG+BPIKZIJA8p5TEhRHFUrSawqsxhR4rafEWvT2yvEqfiMx2PYemDKzjxUGAm0EdKeajMyZ4W7rjjFr777lsGDCj/pVuwcE7A32ZFx2nxk+u1IctEN6PDbdzc9FE6X9GG+2bdWNK+5L63QILTLGk5qD1/PWjDo5sIUgrZlxtEiMmokd63fBeZh9IpzC7gpp8m8k6f54zSOwlp+5J5rs0kvDluco9lARDVLJL0banUsv17yk7PJiwWCzk5OSfveBYhokL4qb6L1x6/PaC93+oPSf1zC2vuegEEqEGlEXbVasEZG05+UjrB9WpQsHMvPl2w9M4XiW0US9QFT2Oz2ei7+kN2PD6dtJXraP3sBJy1A1OUUtdsQ6KA1wj66dIIdKnAsT/WENf9gpOe/7EZL6EXFlLjvoeq9MG74uPoumAuW267l8xffia1TWPCLuvGoUOH2Lt3L4eXrCX8hy3sN7t5LXU9R48eZXqdkehSsufwYTIdCn369OGiiy6ic+fO2GzVI105Yzi1ctJIIUTZ8qy3pZRvl+0ghHBhyD3fLaXMqeLeVbRDVtFeJaplTIUQ8UA/DOGpeyvoch3wtZTyEICU8m9RLN16ywRWLNnNsaRPGDfuroB9BQUFJUz8Utc5mheKRfEzcP7TOGvFYhKgCEG7xAI6+g5QWD+QNs+89ldMIhqnxYMQAj8SBZ197hCQkOc3glQtBrTl+KaDNOrdkrjG8cR3aMCR9QcY+Ny11L2oIVPbPoxZKaVOS92aiiEb9f838FQWVqv1nBvTqKgokpKTESdI0JhMJrZNesHIw5DQ/tFApiVziBOS0sk9koJfN6NJBV+ejic1q6TPgTc/Ie2P5aQuXInmF9hqRNHl69Jlb61+F3Pk55XomsTn01CEGSl1rCaJI65ipqsTkbdyKdKdi767HkpiP4SldB4jpSQlJYVDhw6xf/9+9u/fT83DB6knJSNuv40Fh/bjcDgICQlhWHhTOivR1Ch08USn66jTvQPbXpyPKhSa6FE89ebzOKJDT/0Gn0GcQmpUmpSyvIRxEYQQZgxD+omU8uui5mQhRFzRrDQOKLZPR4CyNbjxQFJRe3wF7VWiuj7TacADVD4bbwiECSEWCSHWCSGur6iTEOJmIcRaIcTak0nKCqHQsGHDgLYXX5hBWEh9liwxZBWEohB8QQscnS4guE5Nti3fQ4JTIcEhULZvI8/tJOznjwPGsLVsTfPo49Rubkyex257n5t3vEOHWy9D1ymxhWk7jrD0rQV8MOINAJK2JeF1+5l958d8/+R3APglAUvEYiQfP17ltf1/gMPhOOfGNCYmpnK/rRDYrRJhVln/2OuBx3VoCoA3x42mSwQSFej23YySGWKNq/qiBjmJ7NYJxWImpEWgOsTBbxaCX8OZGItENYr6UBDCj3pCrumJKDaUubfeS2H/OsgFo/nxub4MGDCAFi1aEBMTg8ViITExkX79+vHggw/y9ddf851D5dfuF3L366+SkZFBTk4Ohw8f5q5XnyXPZyLfr1K3YX26jBmAyWHFFhXM4C8fOueGFIpE9aqxVYUijfv3gO1SypfL7PoOGFX0ehTwbZn2YUIIqxCiDkagaXWRSyBXCNGxaMzryxxTKU46MxVC9AdSpJTrivyilY3TDuiBkUqwUgixSkoZwGdWNB1/G6B9+/aVTpsdShDxSgsOrg40VYpbJTIygpBgIz3Jm+9h6+I9OCIMZvCgqCDsqoYuBRvTYijUTHQODazNv/CNJ3jvnjm06R3I6N/rgUH0emBQyd+uGmHk+hVkjo/j2w5jjwklOyMXu0lh13d/glCQSBJaFtftG0s5gJfaP8vzR6ZXdnn/L2Cz2cjNzT2n5xAbG1upMe2xZDbZew6z+JpJ6H4PSb//SY3LDDKb+G4tyVj5F8eP5aNn5gM69a+6JGCGa4+N4qITHtRlodoMkuaghFiy9iXj0yQKEl2YyPd7ObBlC4cPH+bw4cMcOHCgZHZ56NAhUlNTMZlMuFwu6sc5GH9JGL8dM1G3bl369u1Lo0aNaNmyJUGz6oAsQNy8DktIeZKTYsR1ao5bMwGCv2Yvp/Njo7nwoeH88sBHJG04SFSzMxOVP11IBH79jKzougAjgc1CiA1FbQ8CU4G5QogxwCHgagAp5VYhxFxgG8a86A5Z6iu8jdLUqJ+KtipRnWV+F2CgEKIvYAOChRCzpZQjyvQ5gjH9zgfyhRBLgFZAeZnRk6CwsJB5H/2JSw0jP6s0yX73mv2sn7aDSQPvpVVrg7fR4rQy6MUROIuMaWLTGnSOzkSXCul+lQyvi4vnvxMw/lt3f8qyj/9k8exVfJQ6LWDfJ499TdKOZO7//DZAEGHRkMC6939nwu+TmN7hQdKP5yKAMXPvYsfPG+nzqFFHPe6X+3m19/MA1B/Y+FQv+z8Hm80WQM58LpCQkFBlECy4XjzFGY5hbUs/sz/HPgVINLcJRahIKcj9/XeS2tSmxsAeAWNkb9jCtvsfJ37kVURfM5iUlBSSkpJIahFFsrUtK7NSyY710umImZ9z9/LF0XWIJl/hcrlwuVwEBwcTGRlJYmIigwYNonXr1lxwwQVERhqugIJnwlHMHga1sWC/MfAB7ZHS8ON/NRj3BQ9ja3FFhddptljw+IWRO1v0wI+oH0tEgzgiG/1zks5V4UwQnUgpjRrhitGjokYp5dMY7ssT29cCVRPEnoCTGlMp5WRgMpRE7O87wZCCMQWeIYQwARagA/DKqZxIMY4lJZOqHUFXNAr0Ug2fuPrRtO7VlE5Xtwvo37oMNV72rkP4dbCavNj9Dm5f+gw2Z2mi/m+frGTuO0sRwMChF7Dhi1Vs+2E9Q98cg8lm4ecZiwG4rekk3tg2FVUFISUthxoR0jE/TeKNCyYh0Pn6uhfQnC76TjFKCeObxWN8JQSturQ8nUv/T8Fms5GXl3fyjmcRCQkJVboahBAMXPdZRTtAGr53syLRJEi/j82bNvFT6gGSk5NJSkriyJEjDEwppJFqY9ebH5F4w3U4HA4cDkcJh0N0eCTD0hMwIRnU6TJeevkbYmOrH6QUwo+W5ULxG0Fn3e9n24DegKDhUy8il0xCpm1BWTAM9y9gu69ipqwmIy9j40eLSpLjY1smMuqnqktZ/ykUk0P/23HaFVBCiFsBpJRvSim3CyF+BjZh+FXflVJuOZ1xQ8OCkfhI9e1CoJa012/UnszMbHY/V54BPG3lWnZNeoxCj5VCfzDphVaOug3Vx7LYs9nITZXAuA9u5PmW9+PJdbP1h/W0GlLGKB8zaqsn730dKSVCCJa8NI/VM38lyKSVyAUXFgQuY301NUiTtLvm38F9ejZht9vP+TI/MTGR/Pz8ks8QDLap9PR0srOzyczMJCUlhdTUVFJTUzl06BBJSUlki1SGu2NxYEdKE0LqXLN7Ic53VuNyuQgJCWHfvn1ERUVR0Kc/cvV2grt3xbPk23JSH56sPOZcdA+m6BAGvTkZS3DFyreepe/g+/ExlOaDcAx/o6Rdt9eCvDSk01jG+7IyUYSOlGBpdyu+5GWIvV+AX0WoEv+xVchl1yMbP4GlxbCScbo9eCVrZi1EB9L3HiOi3sklq/8xlP+p/itxSsZUSrkIWFT0+s0T9r0AvPB3TygqyvDfuCy1EbLUR5WZacxSn3v2VV5/4wWklCy+4Qki2zQmd8GP+Lx+wlxeliab+TXZ8KlmjnmP6d+XyvLeNvUqHME2fl20nO6txnJ9g0YgocUgY7arFYXXbn13BJpf47unvqPOBXVo3a81SRsMEgyPBKSCXfjLqaClN8pDNpT/qHbO+Qqn01lCiHKu4HK5UFWVxMREcnNzycvLQ9M0bDZbCcGK3W4vYZqKjY0lPj6eTp06EVwjnuCl+7CYrLS6bQhpLQP9o3fddRcHDx7kzheereTdDVhDXVy7YjqqzYxahdiddugvAPSjGwLaRX4qODyQa+Qvq2YTilJK52zuOxvvzC+ML6+QaF9dQsG+GOTCR7G2/xjnjUaRwE8TPsBuMoJboYlnn7zkVHEmyknPNc7bX71HywIgNTWVqKgooqIjSEvN4PkXpwCw671vSVm/j9T1e+k+50l23nwH+YUmdmWX1idbbOUvb9SD/Xny+TdpKRP59dBB2kZoKEXGr2m3BmxbtJvclHyyjmWx8K1F7Fyyk1Z9WzHo1TG82u5+rEh0FDzSRIteTQPGLigoKPF1/X+H3W4/5z5TgHnz5lFYWEhCQgK1a9cmMjKy+nwBFeakGKhXrx7Lly+vvEMZVDYbLQvH8Dfwbb8KpUFgrYssAIkNURTQUuwOsNowh5TW5kuzUeYqBOheMAe78ekqal7p+SlFhStClLJ9nS+Q/DeITs6rctIlS5YSGelg2rRn0aWGrvspKPCSnZTJzOGTOLJ9HU6nYSwTrrwURRU4a4QT0aQ20uFCCDhYpFQhkTw7584K3+eN9x9CNamYTYI6PUv9m0GhToQAoeksmDKXYMVP5q4kHqp1F7ZQB11v7UHTwR2o0SyO+j1bcOmrdwSMa832EKFXzOz/X8PMRrcys9GtHF1XngPB4/EQ/nsIYb+Xq+/4x9G3b1+GDBnCBRdcUC3avuqifv36nCy971RhbtID9YRVjVQsKKpERBn8EXp+PngK8GeUvrflpgKkT6B7FITfhKmJwFE/DaVOKSnP5c+NIrFXWy5+5Jozes5nBgJNVm87n3HezEzj4xtwLCkJENx11518/NRqvF4fCQk1+Ouz5Wz8YhUhNcO5ZPzlANjDQ7jqr1klx3f5ZQ7Sr1Gn3cMc2pOKLsFkqvgJvOKT9eh+SQEQUUYeosfozhzfm0LLHk2Y8/YP+Ipy2/zS4AvduXw7mVuTuG3zS+UIh6WuMzAlDD393OZW/tP4dtRL3L6l1Mf31rDX2blkFwpKOW2h/xKaNGlCWlpatfqmbz1AzsFkEi+/8JTZxOx3L8f/5yxMvQ3aR4Gb2HqHwVr6oNLWv4W0gygQEKQhXRZEpAvd1KCkT0FGHnt/Xk/6jqO0GdntlM7hbOP/fQDqTKPYkIIkIyOD1ckfleyLbVePgS9fT5NeFUfJ/X6NgU3uxe/RCM2WxJgd+KqQ71AtYFPAYVdo0791SXvzSxrx7BKDVPmOxY+z8JXvWPTeSszCGCtzq1EE8UaLCdy7J5DkQSgKf5ozqNckMHn7v4TCjFy2fLqY1mN6lTb6Ag3mkU2HS17/+38elaNOnTr4fD6+6383BQdTufzXaYTEVVy7vmzSO+TsP05U63q4apyaG0iNqI3a97GSv4XZCoqCUPxIXUMoKiK4FjLfjAjWoUBg73eY/B1Xg8xF0zRUVcUZGczVn9yNq0iZd8W7f6CYFDqO7na6t+CM4r8gtnNeGNNly4yKpuKUlG++mc+YMUbBQvL+NB7oNJVmFzeg2YA2DBs4gUZN6/D41NIlfGG+h+NJGQgpiAoKoaBQolURHrzvnRuZOepdOg29gJDYigl27WEu+j5xHX2fuK7616GkEN+me7X7/9vw87i3ObZmNzlHys7IAu/zg6sf44MRb3Lsr31kaOc2AHU2oSgKdrudHdvdQAjvdX2EcJuX0VvKU9p1eGQkmbsO44wz2MTWPf8puz9bQExNM1pGJh0+fYHsJSuJ7NkNW5Hkc6Xv64rA2d4BWbvBkwn2SPS1EzBHa0ifinl8vtFRy4StyRTu74yrr5EBU6uDUVH41oCpHNtkZLacL8b0fz7TM4S7xz8Ewk5oaAg9enRj2LCrSvaFRAXR7OIGtOvbAnehl2WL17Fh3gbGx43n7dFGQv7OhdvpVqMG1w7twk339aRusELT2Mqd/jaXjXu/upNOJ6Qw7fxlA3NvmElhVn6Fx9228QVa3XgJXsXEqx0fKrff7/djNlcesf23o+XIS3HFhdF0aFcq432wu+wk70xCASym8+LrddZgs9kMMhOMUlG/VrFBiL2wMU1G9Czled12AFX3oqWlYRY+Nk5+hf1vfcra4ePw5Zw8N9c06GfUISvBGo6u+ZD5hxCqAOEr6SNzPZgO7se8ZVvAsZrPx/HNR1CExGQ9PwJRxbIl1dnOZ5wX3/YjRw4DPvr378evv32P0+nkpiGPUz9oAHNn/8qD8+6k982X4Apy8Ma7j1PfHYwQkqR1ewHIPJqFJ9dN2u9bWDHzV/J9kJ3jxevxVvsc8g8cYuvXf+JZs5qvLqo4cGV3Oul4S190v463oHxydLHI238V9Xq35fpFzxLXth7FLpmK4C/w4EeQbD63fKZnG3a7HVXogCREdRNdCUOd5vPhySrNuW00vAdWVcPjU8n3mIm7tC3OhvWKVmYnX/DqBHH4nvEkP3Mv+q+D8O534suSiItLuVKt/lpgEghnoMFUzWaa9W+LVZE4LKU//70Lt3Bk3b5TuwFnEP8LQJ0hpKYZxCAbNmwuadu4fgsp7u18OO071v6xk+mfT0AIwZS73yHBbaFD83qMef8mAC67vTs160ezb9kOmvRsxls3zUKxmLFYjch6Tk4uN46+i5vGjqTP5eWrynbdcT0Fu46ToOtsJwEJZCenERJT3r/ljAji/m2voJrLP4f+68a0LG7f+Wal+5wRQeSn5ZKsVi9A82+F0+mkRXAGCqBaBF63JC85DVeZ742Ukm8uuBEQXPzeZI4/Mg7dJ6gdqZGVF4REIaRJQ+rdPDKguKAqCFVFDYtEDYtAqdkDa8IKaP0cpnql323zRZ/i3+4A6UVP24QSWRpvUHU/ijAeegA+t5cvb3oDe5iTcWufP2P3p7o4G3ym5wLnhTEtZhDcsnkTo0bdxocfvsHmo4vx6z7W7V1EdqoHv1/DbDbxyqx7yc9zc/kVnUsOF0LQtHcLmvY2ZJ2f3xX4hWjcsBPp6Rn8+OMCCtyHORFK6jYgDJu5lA/VFRlW6emabRUv5f8/GdOq8OBfTzNr1izmvbDgXJ/KWUVwcDBK0Zf3aKYDTaosvON1Bnz5GHvm/IardiwxHcuUd5sU8GuAGaTA47fQ6K5hRHbtgH/jp2jr3sUydA7a9/WNGWrzyZhalHcnKXYn8TO/Lv275YRyfQBocTekroPwE0h9nhrG7l82IoSkMDMPe5iLXk8MwxEZVPE4Zx3/k3o+Yxhy1QC++uo7FMXKp5/MpX+/PtjtNnJzfeTpadz/2hWYzcaptuvUhKsTHuCTh35k9ranqjV+erqhyaRpFUvj1v5wKUljLsDvMzOyggBCdeH3+8ulTP2X8WbjWwAwuSzctPa1gH02mw2fz1fRYf8ZxAZHknTEiapIMJnAp5Gx6zBpW/ay6blZSCkYsmE2JsWo7yk8mEyz739h04DLyXertHjiDuL6GEn6+oHF6El/4VtwH4rbi1AFcu+7UIExPRFSSnxeL+KjUBDgzWuGcKdhn7i/wpmuMzyYPk9fS9quJGwhRmyhzfCurHjpGzalZdFyeLczeJeqh//CzPS88JnOmTObK6+8nHC1NmFKLTwZCjeNuaFor2D0jaXkvUl7UvF5/CQfDPTH6brOM6Pf48On5pcbv1atGkgkvy34osL3N9vt1P50C/W+WE/StqO8cNETbPttc4V9q8L/N2NaDH9eed+01Wqt9OH1X0FjXxy5fgtZXgteTeDRzeS7VQoOJWEzaVhVDX+hG79mLL5iLm7Db93GkJvnAt2GrUgaGsDc71XQTOj75xveaFVFmMPLvad0ZyLdWaV/Z27i6PB2pNzQEV+GBbwSU9gWTI503HMalju+GC2HXUT3R4ciiooYMvcf56+3f2HJE5/x3ciX+GFs5RpqZxrFFVB/VwPqXOO8MKaKovDpp59SL6QZtcytCHG56HFpT+xKDEIo3HHnzSV9G7ROYPIHN/DqwgcCxvAUeFn4xVp+/+xP1q3dzM03TiI1JZ1du/Zy6PARQFKvXuJJzyXraAbpB9NI2VUxwfOBj75hXOyd3B4znrvr3AfAB7d/xANNH0TxKf+85MM5RJ3L2wLQ7+N7yu2z2Wz/eWMac0whT7OQr1m48PHr0XTQEIQ3r48iwBYZDBJUxdAlUwDFZiVfBtHqoxmEXdAK7dA6/Ft/Qj+2CSXCizDpSJMZ3Draoa0U7N5BwXYjIi+lxDOjHr434vB+0B73lrl45l1CsZ9MuswQZkEoCmpNM6qj4qyUihBUKxLVYsIS4iR991Ey9pyUWP6MQpfV285nnBfLfACz2czCw+9y0w03880fH/P+++/jJQdFWOjR49KAvt2HXljueLvLxkdbnsDmtPLk09P5fM739BvYg8Q6pew4Ho+Pzz79mmuvu7LS82jaswUPrXsKV1TF/iNfVi7+oiekt8BYxq75ah0AcdT8fzUz7f3KLQFEi/kpWaRs3E/iZa2x2Wz4/RXpEPx3oHSIwLw8C4AWQy6ixZBSMbtL5s/AHOzCZLfRfJKxyrKEBtHrj0B+XfcnY5E5x7Hf+wcyT0HUrAeeLSAhJyWG5HE3o6qChl//imKxgsWBkIXIrB0oG25BUf1EDTqCr+7nWA5cCT4dxeVACoHMcld43j/f8y57flxLTItErv5yEmBIudy2eQYAfo/vRA6fswopOe8j9dXBeTEzLYbVamXMzTfw+eefs3btWixFLDvx8Qb/46ZN27nlpok0rtWHD97+qtzxcXWiCIsO5rEn7mbuV6/Tf0B3Dh40Ak4tWzalXdsejBp1B19/9X2l5/BE/bt5qcPDyEqS/huMu55pB56n07UdeOWgEegyWY1n0l7/7hLugP+PWPb4J/w+7g2Or9n1/2JmetG4IQjhx+YsH5C0x0RishurlAbX9KDBNRVyE2O94gUsg6aiRjXGen8KlhFrEL2+Ijs5isy/auP22RBWG8JkvIf1jv3ImoMR1yyFYDsiwoXiMGPZMhCf2YqwWJC6RE8vRHGq+POOlnvPQ0sNdsyUbQcD2r25Bczr9yB/vTSXgpQssg/8c/I7ejW3k0EI8b4QIkUIsaVM2xQhxFEhxIairW+ZfZOFEHuEEDuFEL3LtLcTQmwu2veqqEaaxXllTAG6devGzJkzGTt2LBlZe/D4kmjRoilut4dOF/bn09nzyMzM4dWXP6p0jJCQIHpffgmqqnL1kDEIFGrWrIFAIKVk2LCxZGRklDsuLz0Hm+7FKjW2/rqp0vEtdjsjp12H1WZE7l/Z9zyvHXkZj9/z/2pmeiJa3diLpsMvJbJ5YrVnprnp55bz9O+gefPm3L//fW5df1o86ADkHihk57sr8aVnIFQLQiiotfqzfUUPsnOdZGS72J9es8S36Tm4j+OLwHs0H93rQXf7ITsHxaKjZGTjCwnFbzaBDYTTivSXLwIYvfw54js15voFgQTzmtdP3pFUcg+n8v3VT/LtgEfQtX8mNHQGfaazgD4VtL8ipWxdtP0IIIRoCgwDmhUdM7NI0h7gDeBmDF2oBpWMGYDzzpgCjBgxgpycfOLiGpaUmnq9RpBDR6NQy+GRpytOrK8MP/74O7l5mYAPKTU+nV1+Zrvzp/UU6iqagCY9mpUfpBKoJhXVrOL3+3E4HGQtWcCem67Fm2w82R+7/FnGRI1nTNT4Ssf45tn5PHXZCyVf3pujx3Nz9PizHhFPOXiUd5rezPG9h/72WLHtGtDl4WsxO6zY7faAmem9NcaXbMXtE2rdzZSWDzOhZuX35XxGMS9qpaJ9J0F+SgY7Zv3I7nX5LL/zxYB9Ed27cTw7DJ+0IPML8LuNJXvuj1/hTzpE5gcPoVy2Gf2AD6HphjKAPQJzagqWwkKEyYR7vcS3uHw+sMVqZfCsuwmKCyf1rx2se+I9NJ8fe0Qww1bN4NIZ42gyvAeNh/dAKdK9ytyTRMauI+XGOhMozjM9EzNTKeUSoPxMqWIMAuZIKT1Syv3AHuDCIgXTYCnlSmksUT8CBp9ssPPSmKqqSnaWj+ysPK65xvA3BQcHoWBBwUxoeBBXDul50nGSkkqXKVOfe7gM/ZrGnePGluvfoEdLwmqGcsk9/TCdRllocTQ/+ZVn0VOOcuRpQxbiyNrA5dLKDxbz54dLAZh88RRujh7PT6/8zqFNR7g17h62rNpe0veOmved8nmcCr7t8zhImN/fSDPTfT62DBrEtpFVkHlWA1XNTEuMbFFE4d/Msm6320lOTj7l49Y89RErB96EPHoEm8lLWMv6AfubTLiBC18YT0irRkR264CpKLAZHPcSNW87RlSPLci1QxG1VXSTHd2jQKeP0Z1OdCGQLhfWzk7M1m+qPI9Vd73IkXkLWTvlPQBMdiuKqtD6zkFcOKmUqX/eNc/y9RVPVur++ruQsnobEFmscFy03XySoYtxpxBiU5EboDiJvCZQNvH8SFFbzaLXJ7ZXiWobUyGEKoRYL4So1OEohLhACKEJIa6qrE91MeXxB9Gln06dLihpiw2NRgiBGTNr/zy5KsotY0ujzFJCrYR44uNr0ufyig1xcFwY45Y/SddxfSvcXxV0Xcfn8+F0OgkZdC2aaif65rvK9ZNS8tMT3/DTk0bSdfqOTKO9eD/gjDl3GQHuY0nohQX4k48Zf2fmIqtg4CqLzH3Hef/Ce9jw7i8lqVHasdVoHiOqrAgAicViVKaF1Q0t+oH8e62pw+E4ZWPqc3vZ9u1qCnwWPJpBVhjRrG65ftHdO9JuTBNa39uvpE06HKiaF+l0gvcgMjgY6tWC8Ej4cQB+0Q4tJAw93W186ZWql8YJV3ZHUy3UurxTlf3a3NqXNrf1O2UKwepCR1RrwxDubF9me7saw78B1ANaA8eAl4raK7oYWUV7lTiVaP54YDtQIeNvka/hOeCXUxizUvTseQngJzm5NEXjImsHUk1ZrMvZzuDed3AkyxDAO7j9GHmZBTTrXK+kr8OaiKaXzowmTzJozKTUqV+/zimfT86B4zhrRqKaK75laWlpqKqKqqrEjh5D7OgxJfsUUfr5CCHI0wV+t8b+TQeMcyrqV/zvsx2mnfL5nSnYayXgd4Sj2J2kbdrLr8OfouHwnrSfdHL2LN3nx5tTgCe3ELvdzrwxGr5PuoFFR3AzqjDuwmtDX+KuuRO4+f1befHSZ/k3k/U5HA5SUlJO6ZjCtBws7ixUqyDb7eSSWY8R2rx+uX55H96KvvlHdL8gdJoRLFKFMUVT0SlMbIb1z6XgVyE9Dw9+ggb+iN+Ti2J2ou14HJyG6mr2JxMw7fwIf4GZkBdLf1OtJlxHqwkn/2xbj738lK7xVCAplQw6K+NLWfK0E0K8AxRPCI8AZTWy44Gkovb4CtqrRLVmpkKIeKAf8G4V3e4CvgJO7ZtVCRo1asj48TfTo0fXkrbnlk7kwY9uoUHjRHr0KS0nfXTQDCb1foWCXMOvNO2V9xBCRVUsCKHy6WdvBYx98GBgFPNkOPDDCn4eNJFfr3m00j6pqaknyTGVhMUbktQej44mBdMGvlZF/1K8cecnp3K6p4agooyJ7kbtthCCtvM+p/Vn72MLD8ZVK5rQBidd4QAQ0Siem7fMpMM9g7FarbQMtaJlhKBlOA1DKoyJUnSCQUUX3SCO54+8yvNHpp9k5PMXQUFBp2xMg+MjialhQRFgEjphLRuWBJjKQs/cga6JAJJtb44PXZd4s/JxrFoCQZeipB5FsbpR27XAu/QdRMo+FEXB3PRxzLWvRebtw7TtQ1SzjtnpxbtvB4WbygtTVgTN66v2yuT0Ub1Z6enqRBX5QItxBVC8rP0OGCaEsAoh6mAEmlZLKY8BuUKIjkVR/OsxFJirRHVnptOAB4AKky+FEDWLTrI7cEFFfU4HTqeD/PzSxOPohAiiEyJYckWguNnIRweQfDAdi0Ul62AKd40bzYOTDB+g23uYgwcPoqoG/+TQoYN5ZdpUAMwm40d9/z2TeHLqvZVq47hqRiFMKrZQOyl/bSO6bdNyfb4d8AaTIq/nmbp38uC+GQH7rrnjIg6v2sWIrwMLDQoLSmfOlXEw5ftgySerGf3cldidZz5TYOzq1yvd54qPYuCPz53SeEqRuoHNZmPst27e6m9HaToYw1ZIhJBEhp57OZMzhbCwMI4dO3bKx7Vuu5j8fLA5K84FBXCN+wPPvEmYLikNtprtJoTZhNnuR8ZGIPcuwtumLWp+JlpILPoHj4PFievJnaUDSR1foR8UM7pfIeO5e9Gz0oj/4A8Uh4s/ug5F+DWkotB9eWmV4OGflrP+kTdQQkIpSMslrEltes554pSv9aQ4g+qkQojPgG4YvtUjwGNANyFEa+OdOADcAiCl3CqEmAtsA/zAHVLK4qjpbRiZAXbgp6KtSpx0ZiqE6A+kSCnXVdFtGjCxzIlUNtbNxY7jk+nn+P1+Zs2axTXXVK1Zo2ka0Q0iGf5QP5Y8MYfZvR4lZcN+CjzGBtClc2/8fj8FBQW89farOBxGPbKUOlLqvPLKTI4fq/x8Ils3oPf3z5C/cTtrbq7cCX+iP2nxk3P4sOkN5M77joQ4FbPd8BV2uq5DSZS03BhlXhf6ShvOhiE9U9j30xrea3U7n3SbSEGqoSIrhODzbTq++3dgH/oej2x6irrtatNhcBu6jD97S8Z/GjVr1uTIkVOPctvb9CM6PpngOuXJoPWCPHJ/moPMy0Zt3gX5Y0d8642Hmi8yCj0kAn90TURhIST2wG8LwhtbDylARNVH7TgqYDwRVB9TQgwmuw/V5iNs1D2EjrgLxWGslPBpRpJ+mbX2usffZf0jb4CUFKTlIIDM7ae2oqsuznA0/1opZZyU0iyljJdSvielHCmlbCGlbCmlHFg08yzu/7SUsp6UspGU8qcy7WullM2L9t0pqxF5q84yvwswUAhxAJgDdBdCzD6hT3tgTlGfqzDytQZXcKFvFzuOo6IqIX8swtatWwkKCqJ9+/ZV9hvS9gGu6TGJR256k/jOTYhumUhQfERAn9jYaEDSu09g4rQs+ni8MoPgkKqT7YXFjEnxY1YqyZ3sCvoJH/f+RVs4mG9nTVo4axcfKGkfOKk/ie0SS8cu8+8bx17m6fUPYw+1EVYzGFVABWx/5xV+u/cddK+fvGOZbJmzqKTdbDaTnW0YV2dYMDfPu492Y3qQduDMCtGdSyQkJJyeMR36KtYH8rDe/Fe5fflLfyTrw5fImtYW+dsIyMpArDZcTOaCXJSCXBS/G398PWR0FuigZidjyk3HNOpF7P0eLDem6+6dSHsYSrP+ODv3JHjAyJJ9Td96Cq9UafD0/SVtB+cvQ9PA1bQBVPLgP5P4L5STnvQuSSknF1n4RIwE1z+klCNO6FNHSplY1OdL4HYp5by/c2IpKSmElJGzrQz1mtRCQaF+03ga9mvP0C8m4YoJpM87mnQUieS6664ud3yxP6o4wgywe+th+rW+h0U/lk7GgyIi6Pr1dBJHDUZ3e8hd8yfugwdK9od2aMqXwStKlvgFGXkcO5gNQkEIyPSY+fDSB1n85BzSD2Ww9899hNZxlRxfbFBVVSWqZhTTdz1HYmvDN36GBDXPGjQdNAkakLqt1LBcFX4p84bNxFdo5Agvees3ZvZ/mRmXv8jxpH+29vtsoU6dOqfsM4Wi7I/9v1W4yrFFJ2NrGIQp1ozwamCzoJtUChYPRbfakV4/umI2lsaahnlfBnpeLiLtKHLnjZW+p+2e/diuKl/sEtuqCb1WzqVWj44lba6mDcj3m0nbn06nF8ahSbBGlSdeOROQ/D8nhxZC3AogpaycJfhvoFGjRmzZsgWfz1elFMhLc+7mJe6ucqyUFIOkuKwcSimML7PVamXntgOM6P8gg4Z05+CeY+zcfJBufduV9Fx/97MUHjlO7pZdmPctRyjQ4qffAcjIyMDlKjWOJpuZyAZxuGqEkbQnlTGf3c6Mi6awbuZKxve8gEeXPUhErXDuqn1fpf6ie2ffzMov19L4ovKR3vMJOoZ2lwT2/2Gwbflzc4my2PBmFZYUIqyZvcw4QMDLF07l+SP/HDPR2UKDBg2qrVJaFp7XnMhsJ/6QfOzjT9DK2vEYvv218R+x4bgiFNCQgCnjD4RHR+TkoybWQh4+iBYUit6wKarbilJoQXOVN3i65oP0DSjRlYcz8lOz+WrQFOIvakb352+i83O38nWv+3HneYnp1JT43p2o3bvqVeLfwb8517gYpzTnkVIuklL2L3r9ZkWGVEo5Wkr55d89sYSEBCIiIti2bdvJO1cAvUwEMjw8jPDwysmei5GXU0B6ajYhkU4W7JrJ2PsHB+yP6NIWiSC8Q2tURRYRAxvIzMwkKKg0PmdxWBn704Nc+95tTFj8KKE1Irl0yjAsDguqRSW2QQxmm5kXtj1tUJAVHef3+5nUZCKbftsIQKer2hMWG3pa96C6kFKief8OKYkhiS3LeHw3XXE1I+rm0XhCa6wuI8vhxk/vMnxf/4EfTjEaN25MVlZWpX50v9tDTnJW+R25dvCajH9PgKjRl+BWyYQ0O4qeqyODQhC6xBPfEF0R4LIgXT3AEoRWsx7W9IOY8jPQFDtCXBIwlpQS+UMv5I9d0da/UOl17PluFZ7MfPZ+vxoAV1wEXnsQOQXwxeUPs33+Ogpyykv1nCmcKZ/pucR5vYAcOHAgX3zxBb/9sozO7a9ix/a91TruyKHj1I3szaTxRs10auoBUlMPlOwvKCjglVdep1u34rQriaqGcGGXTmxN/oq7Jl5LTI3wMhVTBprcO5pef35OndFXEHnTLZisGntGDgIgJycnYGZaEWq1qo2v0Mfu5btL2iY0CST/HVdzAjkZbt4ccfok1aeKVU/OZnbb28g5aKTj+Y4fIuvdh8tVMP1+4338duHV/HphIOtWj6mjymUiCEVBSigo8xMIq1Uq53Fef/FOAp/bVzLbjoyMRAgRkHVSjEPLt/NUowm8fOEjTKkdWMChjl4EDhV1hJGWXZCUSvqGXQCYLpmNJS4IU6wHNcaBnpONFh6NKSkLVTXcRmaHiuaMQeQcK3qESRwdV2FvMaXkPTzL3iN/Ujx+rRZSWhARFUulA7S4oSdRreuiScGhJVsB0DQjny0/PQ+fVNj1w5rTvmdVweAzrXYF1HmL8/o7PXToUH7++WfW/7WNHdv3cmB/9Rz9iqricjlwOG306jkYl7MG+/YdKNn/80+/c/99D1O7dgLG8670U7I7qld9lPXFR2he8GVkk776T/Lz809qTFWTgqIK0g+dX0JztvAgbGEu1CKWrqzHBuNb9Q3ZLwT63+SWPUVqnIHeoYYDL6Rs6YFWWIg1xMp2LZ/sE3IUlaJc0/M9T3/Dd+vZ9vNfzGg5jrnDSmVw0g+nMrnuBB6odQ/31xzHAzXv4vXGl7HxwWkBx6ftPMI3N5R1YwQmuiRt97Mq9VHUuFYArBr/IstufIK8ZTPxfhCFf38S/p12vEtzMUmJKSMZZedRRNfvoPlYRMsZKI4OUFCAL0nHn1PeY6cnbQZFonuCMd2Qg5LQu1yfYiiKgjCbQULKJkNYr9XI7kigxsWtAEHGvjOSQl4h/jczPcswmUzk5+dz38Sb2LDtB/r0veTkBwE1akax5dC3tL+wBVu2bMfj8XDF4OtYutQgTelz+WU8/8KT9O/XC+NXLTjVj0pEJJRwPqbN+RiPx3NS/addS7YjNJ3Vn6yspIdkZvJ0nvjrUWYm/3OJ7G3uHMw1S1/BGWf420xNOyER2C+6IqCf/aK2GEYh0DCUzc9VgLwN66Egm5Z2CwUFBQF9hQBVBH7xCvILmFRrHJNqjTuDV3X6eHv463xy2wd8MOYDvAV+Dq3eX+I2mtbnRSQCDYmOQENQyxJE3qpAZQary4ZV8WNT/FgVjdCgQL//V7e+zYb5G3i7qxF5bzB6AAk9GiEXP4zuywFdBQQoRVMyIVCvnYca3Qm1xcuG8bMUohYUYik4gDl1V7nrsPV7FPMld2LtdX+5fRXhwvEDCakXB3bje9zx7oHctfNNWg6/FI8m8HjPkjmrZiT/fHcPndfG9Mknn6Rp06YoikJC7RqndOznH/3MuJHPkRDcjn79+7Bt204efuhJAObP/4muXTsRckLy+E03japoqHKQUpK8MwdN09F1HVHgwe/3VxkoA0i8sLT++oep33N3jWK2pMBvSWTNwNSufxph418n+t0tOLoGGtOLXn6UXqu/pNfq8oxbKqAgaXxdV0I6dSZ08DDezPeRl5fHM83v4pm6RuL5+D8moRcFq4oNlNddKnvy6IWBhQ3Hth2lMDvQIJ9t7F60syhnWJDuUcn0KSUun/rdGkKJd9j43LIKTRT6FFK27ykZI6hmJDVdBYRadcKsfsz+E69BAQS5aUZ7rX4X0Xx4W+w1CzCZBeg65vp+TI019KP5qP2PYqoVSJIu7OEoVgt6/XrIGnGcCOEMx9rnQZTw2uheD1nzPsZ7eH+l163YbSTtTGbxs9+w5OVSgpQa7evR4tqLueyp4dW8g6cGI5pfve18xnltTMePH8+yZctOq8KkfadmuEJt9L3iYt5+exrDR1zDu++9RlLSMa67bjQjRtxIt26XQJnwz2OPTS45XtM09uyp5Iun6/gLPRzNCCcpI5pUfxw+n6+cj7UYeem5fHb7B0TUiuDlpOm8nDSd9fPXIyW4VIldCazfL4uN7//K1jlLTnq9Ho+H6Q1vY3rD207a92zg5q2vc+OaV+j+mJE1V2Pszeyy2gxfYoFxf5+peyex9WtgVgVmkyi5X6ElWkg6IRm5fDXyZQCSdx5jRp/nmHP7B+XeL3nlFuZ1vIm9X/xxxq+l98N9SwNKQiBR+OFVQ1sssV4M4VYdVeiGDAlgt0psZsmiax8PGEdBo6Yzh5rOHJr0aRS4T5EoQqKI0tmeqJWI7jUmompNOzgVhMliJOMr5R/UioiDkGDUzDQE4PdVHiDybFtP1uzXyfrcYPpf/8Gv/DI+MH68+4e1IAVIwdpZi0vaTVYzlz15LXUvbXGyW3fa+J/P9CyjV69eXH/99fTt27ck+bu6qNegFhsOf8GjU28lOjqKWbNm0qBBPeLiYpk+/UVmzpwesDydM+dDapR5uj/79Gu0an4Z38//rdzYQlW5+PfZuKx+FCGw7P+TGa5k3n33XX7++edy/Z9q+xAb56/n+c5TStoe+GMiLfo0x4/AD6hCBCTn3514L3fFjWPV81/x5wvlZ4In4s0Wd1frvlSF5VO/YGajW3m/s7Es1HZ+hXZkWbWOVU0mbMGOgDaHw1FhYGZA46P0TdiHLyvwMxUYashH1xgzvND4cKwOMwdW7sbjCTQUO2f/iu7xsuWtk5ZMnzIuGd0dk5CYFNB0Yzm/9AUjUFTnkiZoEqKVgqJzlmR6zLj9Khla4PXb48NRhEARCnUvbROwTxGyhKugBCGNEH4FvBbU+EsgJQ95LB/RfVaF56k0vAnp19BVE1II2PJkpddka9aO8DH3ETbceNiumvoV+39Zz/p3SqskWw6/BGEz4ZPQcGCH6t6uv40zWQF1LnFeG1OAqVOn0rx5c0aNGoXbXXkdc3UhhODOO2+hR49ugMGTCpSUmBajY6d2tGzVhAYNy1OjAah2K8FBubjs+ThtBfgKbbz88ssMGTKEL744QQW16FtQlszCYrUw6s0bypBYBD52NY8GCFJVJ7syJJNqjTtrXJLFOLjUSENzp+ei5yah/TQC7euTEoxXCqfTSU5ODg/um1GyAShBLpLdwaTvL62Emnr4VZ49PIMr3r+LoXONpb7VacVX4EP366ybvQIwXCxLb5iCzM/BWrc2bR+snmvmVGC2W/AVzYT8EkBiK/ITf3bddMLMfiKDNDpGZdImPIcMr5k92SH43IGfT/tpk7CZvFhVL7V6XxSwTwVMSGLbJpa0mUwmzLcXYL41B9PlczHf5sZyRx6WxkMrPE/VFoql62Y0jx+Zloq2bl6l1yTMZoIvvwpznFEIIoRxfQk9SiP8wTXC6TV1FB5dLbnf/xT+5zP9B6CqKm+88QZ+v5/HH3/85AecBBs2bGL37r107345H374CXl5xsxp40YjgDBv3k/YLPFMmfIcK//8nkaN6lU6ll+HIEc+BYV2PD4rt9xyCx988AE33HAD77xTKpw2cdUUWl3Rnke3Tg043mw1MfrN0Vz/6nBeP/4qrx8PDDoJQNhsyCKy/ckJ46kM43e9wW2bpnHXjsqJS06GYfMfodGVHbn21ycQzmhEWENE7dII8KoZP7Dx08VVjBAIi8VSopBQFrEPPMShzGD+nBHIHZGfns1XE+fgdvvY/s0qVrw0j1ZD2hNZL5rOYwx/YUFqNvtWH+bgmkP0++pJanVve5pXWzVUNDQpMSFxKBKzYvyS7WZJgaagSYHf5KXBJZL0iDzqBOWQEJTHXzNKH6RWk7GcN5v85O7cFzC+IozM3CaXn/75+7N2o/1cGw5LOCShsLxESWW4dcdb3LbzLSLqBjKC1b+kCUGxIbQaUipaqfk1Nn6zhtyUnNM+15NBVnM7n3HeqJNWBZfLxZtvvknz5s258cYbadCgwWmNs2fPXtq160rjxg3ZsWMHhYXuktle06aNkVKyeJGxrN1bmb+0DNr8vJjNY2/Acugg9r4GofTQoUMJCwvjyiuvJCsri/vvv5+wmuFc+2rFzPXtBlX8Y4quF4W30Mu4nyfwdNuHAIEtqOqPy2KrOpvgZFAUhR7Pji752zxqY8nr/cu3smKaQQPZ7MpOmGyWEw8vB4fDQVZWVrn2uDZ16fb4tdS8MFDXffpFT+Ar9PLh0FepXSeE3KPpjF39IrbQUt4Eb05+0Y/q7OZWdbymHZu+XoeCJMSkoyrG8iLPDZqukCWtjBo1B5B8IkegrnSjCtjz5XLa3mmULVvjE2h0bUf8moWQlo0DxneFmPDleajXs82Jb10ppOYG3Y0whxoNK7ojj2qIPC/U6o5lxN93ediCHdy76qmAtq0/beDL8R8R0SCWNkM6cMntl/3t9ykLKc8un+k/hfN+ZlqM+Ph47r77bkaNGkVu7umJsNWsWYOrrhpMfLzhG83NLWKRl5Lk5GTatL6IV197nQs7tODAofIEFBXBvfcYHq+FOjfeWtLWs2dPfv/9d55++mkefPDB01qeP7LsYZ5c9wSKENhVcKiSDv2r/8M701j09JcUGzDVWj1JF7vdXs7XCQZNX4trLya8XmxAu89rTMHt4Q4GvXcnV35yb4AhBQirX5NB30xhyMJAzaQzjSteHkOoWSfELHFrApMCK9/4CbP041Q1VGE2piIqPNp/JbleyHKbEZnp/PrQJ6TvPobm8ZGUWwNLx17lGMXqx3ppWMNNUI3qZ25oq65E+70F0lfka64/CRFk1OEpjSpnwffufA3f4kZ4fz11UnSANbOWoApI332cBa+clInutPA/n+k/jEceeYSWLVvSunVrNmzYcMrHP/XUC8TF1eDrrz/jttvGct111wBGDt+vvy5g+/adCAQHDx46ac4owPoxBnu8qsCRLwKDRB06dGD58uVMmzaN7t27B5S3VoR5T8zjlYGvkHYosM7bGRnMTd9OoMuYi+n24JBTvuZTgZSSRxLG8UjCOB6tPY6Fr5UG0xK7FgsMimpLV1RmTCtFUe5LYWYBYXVjqXlBxSuQsIa1cEWfvDz478KjGT9gRUgK/SqrvtuApgs0FCQCf4vG+Nu1QtU1nCYdp0XHrGgc+eYPNs9ZQtaeI+yes4Bt7/9QbuyQlo0JadWYUxGoF6HtILQ1KEWFJa7LOf5TXY6ubUryN5VXJ2nHjTQn4fXiXlIqySM1L9q6iehHqxbHaHtdZxSTSodRXbl9/oRqn291Ifmfz/Qfh6qqvPnmmzz++OMMHDjwlAJSuq7z3NRXmPHam/h8PmbMeJmszEwATKrCa6+9zNy5H9K4cUOOHTuOSQ1jzeq1VY6ppWeUfMiuJqWE0VJKtk58BMefG1m/fj1r1qxh+PDhVSqNLnhjIfvWHODxDuX5UoMigtjzyQJ+v7s6cjenj0drjy/5bUsJC1/8sWRfl/H9DXEcS6CrwZufz/vNb+bTi40fmdR1MlesxpeVfcrGVLEpgKTF4HZV9kv57kcOvDQdqVVJn/u3YVV0Qi1+Qq0a+/MtuL0KAg2kjjMyCH+dr1Edl3Oo9ld8eHwvHr8gz2dG8XuIjTLhSogmtEMrmtw0sNzYzZ6aQMuXHq7wweSdZsP7qg3PlxH4fqyJb57ht1ebPYmp03z0bW+irXsc6XGju31IqeDbs7ncOMVQW76NGxVv/VZ4Y8v85HP3wM4ZyK1VE4C3GdKBR/dOo/+TQ4ltfGr53tXFmfKZFgnmpQghtpRpCxdC/CaE2F30b1iZfZOFEHuEEDuFEL3LtLcTQmwu2veqqMYM4l9lTIsxYsQIGjVqxLffVt9HJIRAVU0oikpoaCgAjzw6mT6X9+LTz4y0qEGD+7Fl659Fs0jBgAHXBsgVn4i2X89FBDmwtmlNZMdSRp7U12+nRuEnhGx4iFohUWyd0oNZreeT91xwpQ8As81YOqsVfGS2UBdxFzQg4ZLm1b7eU8XxXYZIY1k7Xvb1rw9/ii7B7/EHzLLXTf8OdIk7zQhOZK/dwM7JT3Lg1bex2WynJFUdGhmMSUDnm3pU2S/l63mk/fAL/pzTc/dUB94CD5leHbcffDpgktRvX4som48omwdrehLzej/Jp9ccoH79+uzOOUKez4xfqniEhTpXX8bKF+exd8kOFj/9xUnfLwAxYdC6HiIsFIKCQTECSz53Ht7pdrQ/JiI3PIOpdkOiJr6A1e7G0alzpcNZwuqj2l1YknZjPbYX7wqDnFuENkXp9g1K5/J5vP80zuDMdBblNe4nAQuklA2ABUV/I4RoikEr2qzomJlFWnZgiPDdjCFl0qCCMcvhXxGAqgihoaEMGzaMiy++mLi48tUfJ0IIgcebyi23jMNiCWPOnA+58sqB/PDDN5UdQXp6BpmZWURGVuzXUhSFdt9+Xa7dvGc+JoeG5lX5Y+gkLuu3ADQTDlXQvUcPfv755wCGKYCX97/I2q/XEhQdFDBb2fLzRhSTwsCPz67k88ye5RmFgmJLK8QyStKYBLMGPM2NPxgy1vFdm7N99h8oRXX9riYNierXk+i+PbEvWVhhNL8iSCnJTcpEMSnENqtVZd+GLzyDPysbc1hotcY+HbzY4j4UoZDlNeFDIVRobP98BSEoWKwCh6qh6QoChdz1u8gMkfikwO03o+LHFOSg9Y09Sd58kA7jB1TrPf05f6EffB5pNyMsZmReDsLvxxcSgX9rH+TxGqjCZCTjet34vumDc8jvOD+tegUF4D2Wy64Z8TR4TiAUD77Vr+G88C5EjV5/91adEZyprD8p5RIhROIJzYMwpEwAPgQWAROL2udIKT3AfiHEHuDCIpL7YCnlSgAhxEfAYE4iXfKvnJkCfPTRRwQFBfHmm6dGp/rxx5+haX6efvr5SvsEBwcjBFzet1elhrQqSL8Zb1YwUlNwRaokHw0H1Q8WL3l5eVx00UWkp6ez8/VZ5B0rlQluf2V7Gl1UWinjc/v4aMx7fDDqHfLSK5+FzWwwmveb3MAH15dnWP87GPd7KaPVsU2Himj2wFpGlaBW1xYM+vIRrltmqOeaglzUe2AcQc2bYLfbyzFPVQZPbiFCEYTUrJqAOG/3fjL+3IC9fsX5v2cKPr+OLi34in4iFkUv0gDWCLV40TCho6Ih+PPO5+gYWRsBKOjYTTpJy7YQWjuaa75+kMRLqlc5pG27CZGzGV0A6ako7kJEUgrEJCCtZrTYY+gdmyDqBCNtFkheXu3r2ftqHJpeSOoz+SQ/mY/0ZQbs3/raXLZMn1Pt8c4kJOCXslobhrbT2jLbzdV4i5hiqZKif6OL2msCh8v0O1LUVrPo9YntVeJfa0ztdjujR4+uMPUGID09vcIo+osvPkurVi15553X6NDhYn7/vXw54qXdL0JKybJl1f+yloXPbULTdTx5Cm0bzCNYkZjvy8Y6wcP69eux2+2sHzCCnC/nsvXaGyodJy8nDw0jCLJvS+WpWqE2CLP5UdaeetltMW7/dSIneqdswQbXpt/nLyF/jmwaz/BP7w04NqJpAhZXeV5Ou91e7WW+yWomuklN6nZtUmW/Pc/PZM/UGfx57Xj2v3+Ky+dTQLe7e2NT/TiEH6vQcZgg3KKhm0yoCqjomISGyaxQ4/LOZDlVdFUSZPah6YLYjlVfR4XwutEVM6ruQzdZIDQUIoMReVng8yALc/Ed8BnFH5pAOK3lvuO6x4MvI6Pc0FKaUBRJXp6LggInri6BSrt7P/2FvZ+cEZX208Ip+EzTiqWPira/E0ioyA8qq2ivEv9aYwpQWFhYbonv9/sZOXIkkZGRXHnllQEBEF3XGT9uInt2H+DgwcOsXbOOpUvKG8xly1Yh0U65hBUgNy0Zd56LwqwgFFVHdRRgjU6j4E1DEkJRFFasWIG3uI7whI9o0zdrmNpsApu+WY0nz00xq1XqtmQqg0dT8GoKbv/pB2TykrNLGJ2EgCcPldLHqSa1hHPyqjdvqfaYVqu12jNTk9XMmPmT6PNk1QKKdcffRPzoayg4eJTszeWZks4ULrlnIPGOAiyqB6uqYxK+IvImgSo0IprGYw+yMHzNG7R96g4cEaHs62zBafaSGJLNsd8rl1L2Z27FP68R/szdAe2y/kNohQWo2ZkoDjuYzWhBoYicXNTsFJSD2eR/L0mZHYaIcyFCy+f67p70MJuuHo4v/USDqqDrxgPPqHMP/OJ1n/sMPb6cyrmArKa/9G9E85OL5Z6L/i3mEjwClPUpxQNJRe3xFbRXiX+tMT169CjvvvsuX3/9Nb/++mtJe0pKCrNnz2b9+vWkp6cHuAEUReGtt6fz5pvTGDx4AJu3rOWRRyejKk5UxclHHxkS0nfeeSug4HKGnPJ57RnWm4z0CLIyQynMcuPOduAvsCOPHyD1lkZomoaiKPRd9iPT4kLpt3U1W7duLT1+4RZ8BV72LNxKxrp9WPEiFMlvz8zn5cHPVvieN2x7n2s2fcgtu8rr+1QXiZ0bolgN2z7w+esC9gkhuOKNsfR+ahjBJ1mGl4Xdbq8ygLd39S6m1r2T55tWXtl1IoKa1Kf2mGFc9OP7tHz+gZMf8DfgtGiEmb0Em70EmzVU4cGhagi7nb5zH+fqVW+WcMAmJCSwJ+0YtXu2M9wV9aqIev9yESLnEPwYKANiqzEcERqJp9UFaM5QNGcoSIly3IyyfTfm/KPgCMbSvD0yH0i4tVw2QFDrVjibNUU5oTy6/R8/Y7usL4RmUv/KFbj/CEw7c9WKwZVQXin1n4Gs9n+nie+AUUWvRwHflmkfJoSwCiHqYASaVhe5AnKFEB2LovjXlzmmUlQ7AFUU5VoLHC2WLimzbziGQxcgD7hNSrmRs4jjx48DcNNNNzFy5Ei++eYbOnfuTF6eEfls08ZIcJ80aVLAcTfeWKoF2LRp4FLshtG3cv31I/nmm3nEx8eyZ8+mcu/71dyfyc7K4cabK66Xdrsj8OouFKEREhpH5gEr8Z22o9oKwKSRNzWMJYtuwJOaxRWYCR08mM6dO/Pbb79x4YUXMvjlkTTu05rGvVqw45s/qRUiOJirAwop64xl/CvdnyBzbxqKU2XKtldO7waeAJPJxJRdr1W6v1Hv1qc8ptVqrdSYHli1ky+uM95Pd1dvRq3lZLF/zFU42neixsTKST3OBLyFhSgCgmxgUXJRMFhcTQp0nvVkOYawhIQE1q9fT7t591Y4XgBCmiNT1kJIw3K7pNWBrpgQmh9z1jFQFZSQZHxbHBDiJPKqw+A7gPnyJDxvN0Hb+CPW0aUBqBqjRlBj1Ihy4wI0m/wA3t/eRLgj0M4jCqbiPNMzASHEZxjBpkghxBHgMWAqMFcIMQY4BFwNIKXcKoSYC2wD/MAdZeTqb8PIDLBjBJ5OWq1wKtH88cB2ILiCffuBS6SUmUKIy4G3gbNKO9OuXbuSpUpwcDBdunTh1ltvpV270hzFt99+m759+1Z4fGFhITabDSEEJrMJv8/Pnr1b8Pv9bNxopKhVJOZ3393PkpOdx8gbrqiQvzS1IBKvbsOk+IjzOUCA9Av8BWZURyGKasaXXVpDPSy4JTE3RfHTiEfInnYPPfv2oWlf40HQ9OouNL26SxnSZON6M/caif16/tnNs/y7sFqtlfpMv7t7Vpm/qvlLUlQUhxPV7jh5378Ji92OogqkpuGyeWn7+dtsvPYGBLDqhge5bEVgFkfdunWrrVIqPPvBYoLC3eX2OZr9jufAU8iMH0DqCCHQhQlzEx0pPIi0PKTdjj8/HZF/EJkH3iWPYbm4erwV/qBGCOtBpL28IT+XOFPVTVLKayvZVWG+nZTyaeDpCtrXAqeUi1itZb4QIh7oB7xbyQmtkFIWhwdXEehvOOsYNmwY8+fPJzs7mwceMJZ+0dHRPPhgxdHt335bSHBQPHGxxhfK48lG0/OpU6cOJpOJ5ct/49VXX+D22+8lJyeQ3GHuN6/x1fyZlRJBu/0qIPFrCo7gPKzOfDDp4FVRLQK8GgmJPmqEHMMi/HR+4Q5aLk+hhTOGIxPf57vvvisZS/f78bu9nJiyHNPE8BOH1S6fafD29c/xQr07qnvrziqqWuZf+WZxENa4rl8mf8xbHSeSV5H4XBFUVxB1P/yWmHGTK+1zJtFvxQfERBRiVnzsGjUKgeBwdhRpeeXlaRo0aEDGCYEfT3oWqUvXlQ+Exg8xyuYs5d1I0p+DTJqL6eg+I+inqOh5CtLtQ+QXIHQd4fGg2EPRUcBqRm59Ed/O6uVcOzr+hP3ibTgumFft+3C2IQFNympt5zOq6zOdBjxA9R4gY6hkSiyEuLk4pSE1NbWiLqeN/v3788knn2C3G072lJQU8vLySE8vr7ckpXEZJ0pqFKNjxwv5Y8ESZn/8Oe+9O5u5c0tzUS/o0JJu3SufdF/4zJ2YwkK48P4+eArs+N1WsGiowW6kIjGFazjzDxIe5MFhzUVVVWIvbg2ArXVdrr32WmbPng3Au+3v5e1W45iydSr1IgSJQX5yj2dyx8+TeeLgq9yz5DGm1L6rZAPIWn4IgOfOkUH1lWHNr8qYxreuw9Xv34YQElVI3Jl5uDPz0Hznz2xbMZsx4UVKia4bgcBikuLCjFy8+aUFGA0bNiQvLy+goGHb1HdZP+F5MtdvDxy41XPQ5HnoH8gkBSBMwSi6RAsNR+qg7cpFZuYhzSrS6UB3OJGFVpASta4D/BrkKOirq+93Ph8hpazWdj7jpMt8IUR/IEVKuU4I0e0kfS/FMKYXVbS/KI3hbYD27duf8TsjhOCKK65AVVVeffVVfD4fd911F59++mlAv169epB0bGcJl2lBQQFWqzWALPqtt6dz+x1jGXbNDWRlZTNw4OXYbCcX20vs35nE/p3JXTCPbIsfXZgh1wR2HSEpCkAZP8jIcMPwtBragqZdnAQNvAHHVZ0YMWIE2dnZOJxWdL+GYjJTp/+FbJ27nPzkLIJiz35d+ulg7h3vse37DbQY3I4h00fjcDiqTI2q160ZFrOC9Ps5sGADilBwxYT+cydcDTSd9R7ZO3exfuLreDUThV5J7Rv68unFEwipE8tV858ADGYzk8lERkYGkZGGCmvta/tiCQ8muHFgTqz+RSfI3A57v0Id/Gu59zRduBTworuzUC+wwaFNaGtvwntUglti7zkQRTXhVU0ITUeEqehpaeXG+TfhfCcxqQ6qMzPtAgwsqgqYA3QXQsw+sZMQoiWGG2CQlPKcyW+Gh4ezcaMR+9q+fTurVq1i7ty55fpFRUVitVrZt28/IcHxXND+koD9kZER9OhxCarJMLBdOp9apUhyfjQLNrbF138iIsYPQiLsGt5jIcQ22E9Mvf2oRbO27E9eJnfuDPScDAYNGsT8+fOZPHkyR/oEc8vmGVgcFrpPuZYbFz9NbKuqmX+KHQL/RJrG5FrjmFxrXEmJ7Lbv1wOweZ4REDGZTCedTVg1D8EWDZvJ+DllHqw8BexcwF4zjtjul5DntaFJEzoKm95dSFyHxtTsVBrAlFLSIqQuSXsP4c13893l97Pj65U0m3wzphMUb/3Ju4x0oCMVVy4pllAUSzSm4IaYnAmojfshQ2/D0mM6jutnorQzaukVLRzZtRl6h1bQpPJIfN5PH5F8Wxc8uzb8/RtyFmAEoGS1tvMZJ52ZSiknA5MBimam90kpA8KFQogE4GtgpJTy7CX/VQOLFi2ie/fuLF68mOeee45hw4axYsUKhg6tOPqenJyClJJNm7ZhNoXj8xt+r4KCAq677kbS0zKK9m+tlgJpMRSTCcViwlGnCd4N4IhRQFGRuy0oJsPY1Xl/FgAR97yIlp6MGmL4QLt168aqb5/Fu+I+7rs3lRdfno5iUgmKK5+WNOVgYAR+4t7TJ4c+XXhz3NhsNsw2Mz63D1eMEaOsjjE1mwP1fVwx59+s+89H3yPVbcGmSHI0M4V+wV+L9tPEXloSfHT1bkaEXMKGab9gGZSNNymZw0eT4akx5QcsMKF5HQhXYaXv6c/JZvfYGwnu2Jma90zANuCxcn20/YcRITXAYkM3V/74LFgyD9y5FPz2KdaGrQP26XveRx7+HtF1Doqpco7atLQ0VqxYwZo1a1i/fj2HDx+u0IV2uvgbaU/nDU57AiOEuFUIUUzi+SgQgUEUsEEIcfJi4bOEQ4cOERMTw4YNG8jNzeXZZ5/lo48+KsklPVGcr1OnDtz/wD1FfwkslghuuWU8R48eY/78n3C5jMjxkKsGVduQAuR89xWN6vqJvaAh/h1W9ELQs/3oJj/56U68hZD93I1kr/gRc0JDbG26BhxfL+VJmofr3N/wA4YMGVJlvua5wpCXr6PfE1cSHB0KQO2ODQHBmK8MBimLxXLS8x677R3Gbn+HsZtncuvmV7EFla+kOtc48N0y8r0mjrttFPgVcrwK+V7Y+G1p9l9U01p4NTi++gjBTRLJ8prJ8dn4bmR5RiZ3jUn4rVaUW49W/qa6jl7oRq+CGU1Pt6EW5qIkH8Z07Hil/VwDRyOlxFyjPOeB/tf9cPw33BunsGjRIl577TVuuukmunXrRtOmTYmLi8PpdBIXF8edd97JkiVLSExMLFGVOBOQSPzV3M5niHPl1G3fvr1cu/bM29yPP/6Ye+65h7QiH9ITTzyBpmk89WQpmbCmlxd5Cw6qWcK8b7GqFBSksmXLNkYMH8uWLYY2Ur9+vfn2u+rVL//S8Vp0DXoufIecKQlInx0QHD9ak8yUGGJrHkYWuDBZPEQ1PIjHeSkRD5aO7f/EBYUautNM5C3QvXt35s6di8Vycob7c4Ulr/3C9p83MOqzcdiC7RQWFhIUFHTSKijN62P9k+8R07kVtS7v9A+dbfXx3RWPsuWvI2iKE6Qky6NgVg0xvWePGCsDKSUv1r8DAcRdUJ/8DdsAhRY396bTvafHQyt1PUA37ETkPZOA9UITKAqkpWIeWnnF3vFt6/lz1wE2bNzEzp07OXDgAOnp6Xx5TzZN4hWemFvAGz+ZqVGjBg0bNqRRo0bUq1ePOnXqUL9+fWrUqFGh+q4QYp2Usn0Fb1ltBClRsq3tymr1XVL49t9+v7OF/5wx1TSNGjVqsHjxYho3LpWKUBWDnOPpZx5l0qSJFR5rt8Xg9/uxWi3k5Rsz2M8//4rh190EgNPpIDunitlEGWRt3oW/oJDIDq1Y3bMfW49HkFIQxIV1dyPzgmnTfQm5+2phDc0iKDoDj78uYU+vY9Yts/jru/U8/+IsTCaJsESRe+k6WrduTZ06dfj+++9xOp0nP4HzAFJKVFXF6/ViMlXuUTr04wpWTn4LR3QoA36bXmm/c4X1s35n5bNfkFxoxifBqwkcJoOar9iYAjzSYDSh0kG/aWNo3L9qTtYzBf8XYaBp6IUanzCDbdu2sXv3bo4ePUpmZiY5OTnk5uaiaRqxsbEkJCRQv359GjRoQGJiIrVrxVMvxkNUve5VfkaV4UwZ0za2K6rVd2nhO+etMf3XUvBVBlVVad++PTt27AgwphXNRk/Ex7PfZvSo25g6dUpJ26efzkUiEQgmP1h9GrzQFqVJ0SH3PkHqne9hsppo3mEjVk3FEuTG3mk7hFtQnCrkGukzW37fii7hvgmjmVEksBcK7NixgzZt2tCtWzd+//13QkJOvdT1n4bBIauSkZFBdHR0hX2klKx58ydAYI44//ylAGpEOEcKLHg1gR+BRdExCYmiBE5EjoYVYkl1svKDRTTu346/PviN5FU76PPmndVWJyiLvLw8NmzYwObNm9m9ezf79+/n2LFjZGVl4fP58Hg8zBrtoX4stH1YJTr2OWrXrk29evW46KKLDGNZuzaJiYlERkae1jn8E5CAfp4v4auD/5wxBdi0aVOAIa0urrpqEFddNSig7ZFHHuCH738hMiqCsWNHceWVI5j/3U/MmPEit9xaOeNTWdijQpESGrW3oye7EDHZuAt1bFYdedSHiCtEFKVnPrr2ESY3eaTcGDabjd/nL2Bkj9F06tSJRYsWVWqgzidYLBays7MrPdddi3eweWM6JmGnoe38fEC06N+GPct3sebjZQgUTAJ0BIjAhB5LLRekKoQmRCJ1nTXPfYEi4PNBUxj2XWmF0qGde1l01dP4g01s6eDi4MGDHD9+nOzsbHJzcykoKCA/Px+v10toaGjJjDIxMZEOHToQGxuLyWQiLi6OhIQEomvWJOPOs18VdjbxP2N6niIqKorff//9tAzqiQgLC0MiycrKZPbsz/nuW0PP584776PLRR1p3vzkVGsJ7etx387XSLulJUKz40lVEcFA4lGEAK8fCg9ciO+r6QQPGc9lt3dn5dw/2bV8Nw27lBJSPNpxKvWUJjTMr0/XCzuyYNkS4uP/0WKzU4bVaq2UJhGgVqt4srwKuT6Fgt/2UnHOxbmFEIKNc1dhVsEsJAoSRQh0acz0/H4/e/fuRU2VSGmkhn198Fc6605QIHn7MWrUqEFBQQGFhYW8WucqnGYrlmwf27Zto3bt2rRt25a4uLiALSoqqkI/5X8Pf4vE5LzBf9KYzpw5k06dOtG8eXO6dev2t8aqV68uvXv34JdfFvDMM6Vs9FLqzP54DlOfq15NtGpW0c12VF8hugZKTGtUSxJoGoUHrRTucVO452NyO1zDL68bHKuLPlgSYEyLafB8CEbFdqRt27YsXbqURo0aVfKu5x4Wi6VKY2oPdZHhVQi3CAp0hZ1Ld9Ko67m7Hr/fz+HDh9m3bx+HDh3i8OHDHD9+nCi/QBYt8Q1aRImQEqfTidttpIZFilBGRwxCFQourIbciRQgYc6cOcTGxhKs2vl+wGPoOkgEP//880nO6L8PKcAvzr9slVPFf9KYduzYkQ8//JAbb7yRTZs24XKVr6WuLmbMeIsRI4aRlHScp59+hEEDDXq66JgoHptiMFL98MOv5Obm0bBhfdq2bVnhOLrby75tNVAUnYRaR4i7axZZk+uimjU0v4LZlYdi87B29vclxwTHBC57Mzw6dlWgKjobdgTRzHcF17d9hLdXPESrVq1O+xpPB8vmrOaHab8xaf5dhERVxH1j+EPr5/Xm1TE/0PNQzwr7CCFoflE9jq7eg1lASEzFY1UHuq6TkpJCUlISx48fJzU1lZSUFDIyMkhOTiYjI4PU1FTy8/MpKCjA4/HgdrvJyckpKQP1+XxYrVZCQkIICwsjIiKCyMhI4kLjsOULvCUre0lQrIM9q/YQGRmJ2Wxm//79tG7VmtTjKeQmZ/HOZU9iw0eb4V25+OKLAcg7lgGoaFYzN/w187Sv9b+G/y3zz2Ncf/31LF++nN69e/PSSy+xZ88ewsLC6NevX7XHWLJkGePHl3JmOp2lRnnixHvZsWMPbdq04JqhY/AWab5ff/0w3n1vWrmxdL8PKQWappCf56Dg+DHstTKRbjM2pw9hzgUp6N7oI34P7YxqVxn29FUBY7hMUKBLnNJEnl9HQcdJOF27duWXX36hU6d/Lq3ow7s/A11n2vB3eOzXiuV/dV1i0m3kphXidnuw2UrzdAsKCkhLS2PHyu0cWLWXMItOuFUy69aX8XYLIjs7m+zs7JJodF5eHm63G7fbjcfjwePx4PV68fl8eL3eks1sNmO323G5XAQFBREUFERISAgRERHEx8dzwQUXEB4eTlhYWMkWFBRETEwMUkqCg4MrJbE5GaKioigoLCD7SDoLnpmHpkO+MHPJ46U1LrYwFyI4hJA6Uaf1Hv9FGIv8f39B6X/WmAK88cYbPPPMMwwZMoTg4GBycnJ466236N+//8kPBuz2wDLAHj2M41q1asV9Ex5CVVXcnhTi42uwb99BQBATHVnhWCaXk1qjriRr7kd4Ci14Dh7HWaiiODXcyVasXcNBEfjWb+LlnUsqHEOxqgT5dPJ8xhev2NP0wAMP0LNnT7788kv69AkUUTy+N5mP75nDqOnXEX0Gf8A9b7uUBe8t5dqnKk9p0TUdL8byLTG8KbniOH6/H5/PhxACi8VCE2tjLrR2pVBT0HSN3Yf3s/PX47hcLkJCQggJCaFWrVqEhISUGMjg4OAKt6CgoNNK7zlTcDqdCCGYPfBZNCmJrBdDy6GBD7isQ2lkpRWQk34AXdNQyvBB/H/Gf2Fm+p/LM60K8+bN45lnnmH16tXV6i+lxGQKPaHV8JfZrU5at2nFsuU/sWPHLubP/4W77hp7UjKUhZ0GgRAk3j4K5/L7SEuPJLiei1DbX0ip4M8rwOww4/cIQp+rOAn7pTYPUJBVSPsbL6bn5CswmUy89dZbTJgwgQ8++ICrr766pO99zR8mLzWX0BphTF0/hQOr97D+yzW0HdqRT255j0FPX02zPmfPRdCl7iBcaiSv/zQZl8uF3W7H4XAEzP7ev+FtgiJd9Lr3ckLizs/0qOoiKiqK5y+7F+1wNsO+nIgrNgy/x3h4qBajvPatluMQQmfshtf+9QGmM5Fn6lAjZH1775N3BDbnf3be5pn+uz/JU8SAAQPYu3cvBw4cqFZ/Iy8vcBNFWltXXzMI0PD7/Tzz9Ms8OHkKibVbsm3bzirHtERFIhBYEuL5eFEHjh1K4PBaE6aIQkwWN/a2NqyxXuxtKv9oGoXmkOjMIfuL70lZtweAW265hffff58bbriBd955p6Rvq74t8Wo6F400ZkjvXP0a6z9fyaLXfyU3JYespKxq3YvThb1uPu2ujqF+/frExsYSEhJSbhl94wc3c/UL1/3rDSlAREQEXl8+3tQsDi/fhtR13uryIO/3MgKVQghu3fwat2x6vUpDuuHlz/ih3wS8OSfPj/63w1jkV++/k0EIcUAIsblsWbsQIlwI8ZsQYnfRv2Fl+k8WQuwRQuwUQlTPoleC/1fGND8/H4/HQ40aVejzlMHxY2nYTGGoiq3IjBqGtHWrlnz80RxWrVrDp59+icdjJImmp6dz3bU3VTlml+/eo9uKb0gvtLEjI4S4qBRiIzJIW1sTj+ZE9RQiQlVEYSAJxtLFq4l2daR906vo8NTNOMwaDrMfV3Qp2cbQoUP56quvmDBhAs8/b0hZz3ljCckeyeHDBnd3UEIkHh0uvr0nj217ji43BrJlnWnY7Xby8//7BqEYMTExZAZ5MQmdtE37QQhcsaFIv4Y3z03m7sPMaT2GBWPK1+yXxe6PfqbgSBoHf1zxD535uYREw1+trZq4VErZuswMdhKwQErZAFhQ9DdCiKbAMKAZ0AeDW+S0/S7/aZ9pWaxevZpNmzbRrFmzate3v/DoLBxqJH7VQ57XKCMdMOByvvr6Y8wmg8EpNTWVz+a8i9PxI36/j+3bq56ZFqOmSGZIkwxsl19DpP8TCo948RyIxNFCRwaHQVKgGOKwy++nJnU5fiCJfEc43x8OwYykX3xsQL/evXuzYMECevbsGcD8HhRiJHVPWlq+IOBswm43avT/vyA2NpbdMo1esaHs+3IhsW0S0QoKKUzJZPt3f5KxbB1CaqSsMSre1k39GNVqpvU9wwLGsVgV/B6NyOb1zsVl/KOQgC7OagBqEIYuFMCHwCIMzbpBwBwppQfYL4TYA1wIrDydN/l/MTNNTU2lQ4cOjB07tkTWpDrIyckrcYsLYUYIM99//ztCCAYMuByApk0bk5+fX0TmIejY8YJqjZ25cBExpmxsaz4gd00BpnpuCk0SWbMOMjQCPT6Q4eeioKZ0CY4kTg3ntu6TkJjwYkI1Bz5IFcVOhw4Xs2LFCt555x3ihvr4eM/TjJgysMLzmHnrxwwPH8e8F89OvqPD4fh/NTOtUaMGx1OT8aRmoAqNv16dR/ahdKSEhVPmUPPStng1BWGzk3sgmT2f/c7OWT/hyckNGMciC3CYPRQmnV/8rmcHp7TMjyxW6yjabi43GPwqhFhXZl9MkeIoRf8Wl+PVBA6XOfZIUdtp4f+FMS2mznv77bcZ8n/tnXl4VEW2wH/n9pKdhJiEBEKUIAwIKAFkF2URQYiKjCii4OiTEVBB5zmjqDjqY3TQGVFxeY6ACIjDiCgqRsF5LoigMCiLC4vsO0kg+9J96/1xOxtJSCd0Jx1SP7760rm3bt3T9VUOtZxltPcRfHasOoihrBPzBPslxDu7YGDt902f/gdat07kyOEjxMVeSEREOLNmPckXX35UdVs7djP39cWlv7d57BFa3zcVg3zEcKN+tBM36CgU5oPLRdHWE+Q+EU321q8B6Nm7PQrBHSlESNWBTi65pEyRO51Onn9mLtuXH2byuLurjXi/9t3/UGzC6nn+WU6Gh4c3KWUaHx9PRkYGNkMwRCg+egJ7kB2bgM0wiGqfhAoKoeOd1xBULquALbhieEenUUyQ3UVxTtPoO4XbqwKcUEr1KFdeO62pfkqpbsBwYIqIDDjDa6sKVlDnE/kmoUybNWtGq1atuPDCC2v1nLsI4kjGqYKJsDUnSs4j1ml55yxZ8g779x/gySefweVykZ2dzX33T6q2ra4XX8GUyX/i4elWIkRbcDAxI4bjTOlKULMcHKEm5p58zM8OY6btwp6uEJcd4wPLLnb/7gwKbTa+2fUWEf1bYBeTMEfFsTB69HWlnxMTE3nqD/NoTRuyv3eTmppKRkYmr/x5GQNj7mLioL8AcN+C22mRFM2fV02rVd94S1NTpjExMWRnZyMlf5PiJvWliSgFYsCaZ5aRl1vM3vU/4wwJYvh7TzNs2Uzsp209uUwbRW47Gd9vaYBvUb/48gBKKXXI8/MYsBxr2X5URBIAPD9L0sgeAMovAROBivtrtaBJKFOAYcOGUVtTrDfWPcbE+68nTi6gJZEk0pxQrAOfGY89yK3jx/LAH6cB0L79hdw89nYc9vNYsuSdSm25XMUopZg3d3GFWWJQu4G480NwXDsXw3TgLnRgug1MUUhwEcqTNyr9YBaFBW5+WbOLKb8dyoA+rXhmW8UMteOHj+W+uNv4+Nl/ERwczDNvPMAV0/rxytpZ7Nq1iysTp/H6rBXk5BWwZd0u3G43r94+j5QhvyGmVeUo/r4gKiqKnJycmiueI8TGxpKbm4vdrrDhxhERSnxKWyvClNvNse92YBM4vMbaM23WJoGV4/7CilEV97IVBiC0GNgbALOwiH2LlpO750B9f6V6QOGm2KtyJkQkTEQiSj4DQ4GtwApggqfaBKAklesK4CYRCRKRNkA7wDu7ySpoMso0OTmZ3bt31+qZtp0TuXfmTXTq3JYMMsiWXPLEUgxRUZHMn/8yI0YMpXPni5j+8B/IzbWynRZUER3dZjMARUbGScbcUHbiL/Ftyc+PovDAIfKPRFNwPJrcI1E427kxWps4zivg5ckLSut3HtiB/d/u5Oi2/eSlV9xnCwoPIrJFFNEtrfQnE8bez/RZz9C96yi2bdvmeWGZgfTEhPvBbfL1wjrtt3tFWFgYhYWFfms/0IiNjSU/P58xmxbQ59m7ueb9pwmOLIvo5IgIQSkIjY8CYNWds1B5+WTvOIBZLitBy9HDOe/y3rQcaJm0HfrwM3a/spCfngy8eK9nixWCzycz0xbAGhH5AUspfqSUSgOeBq4UkR3AlZ7fUUptA5YCPwJpwBSlVJ2DBDSZ0/zhw4czePBgbrzxRi6/vHbmQBe2bInsPEWYzcHJ/IoKLCkpkU3ffwXAoEEDcLtNEhMrml5lZp4sTd9htzu58aayy9ltfgAAFWVJREFUMH9ZK5djFro5uXQ+MR2yscVlknc8gpxfOhLa7Gfy9iawcdkPhNvAZYJhGJzYfRy3En78cjt9WsfgCLb2cRM6tmLGD0+Vvdgo+1BqwaBKfihcTkVWln/d+Ox2e0CmXPEXLVq0KLVeSLqqZ+n12778CwfW78DMyub72cu46qXJALQe0p2j31iz1IL0U4TGWSuEPUtXAeAuLMYW5CAsOQnTFCK7dq7Pr1Nv+MKdVCn1K1DJA8WT4HNwNc/MBGZWda+2eD0zFRGbiGwSkQ+ruCci8oLH+HWziHTzhXC+JCUlhTlz5jB27FieeOKJGuvv3XOQj1Z8gVKKftdfTEaxi6PF+dhU2SzDNE2cjnicjnjcbjcXtk2hR/fKivqnn7ZjKhMxrCX73ZMfKr0Xfdt9SHAw4UOuwx7swrBBSHQuwdc/T8amC8jPjCHEALsBJTnTjv9kmWm9PX0ZaS+urvY7GK5QbGYIzU3LfGpj3gK+y5mPYbgokmIOZRZSaCoKTMVnH3/nVT/WFm/yQJ1LxMTEVGkKFt4img7X9ALTxF1YjOm2lEeHGweTPLwH7VN7lipSgHZ3XEebm4ZhC7L+o2ye0onLv3ybdvdMqNR240dh4vaqBDK1mZlOBX4CqgrrMxxrv6Ed0At4xfMzoLj55psZMmQIffv2pXPnzlx/ffV5Z7peNBJQvPHms1w7fghRrZoz9Ya/0+XSMru/kkhDAIsXL6WoqIgTJ9IJD0soTXsC8PTTzwEmoaFh5OZYATpKcLa6gPMXfQ7AqRnPYbcVkG2kEn9xL2yPvIEt/nz6Pf4xaxevJ6aN5bgRf+mFHFi/nTC7wr3j1yrlP3LkCMcK12KXUI6qvNLrhmHwXc5ixo0bx/7liiJlGUI/Mfp1Bud5Z9ZVFcXFxeTm5hIWFoZhGNg8Pufbtzdostp6JyIiAtM0ycjIIDq68j70ReOH0vHWKytEve/7zJRK9TpOvqHSNaOOAVgCHSs9eeMPdOLVzFREEoERwOvVVLkWeFNZrAOiSk7PAo24uDhefPFFHnjggWpnTG63G7dZgGm6OHTUOvgTgaNFB/hyQ9n+4ooVZbaZ/fv38QRGURQUFPDmgrdK732z1trTdjjsGIaglElubl6lNMiRTxwh7LGTxD/6JgBBv+mKPbI5pzLzKTTh5r+P45m2Ezm18UdCbS6GjGhHt5v7A1CYnc/Mtvcw+xIr02pCgnVI6VJ5OKgcwHrxYstMqyQob12D8+7YsYMpU6YQFBRE8+bNcTqdJCcnl4bBmz17No8+Wr+OAg2JiBAZGckvv1TvvBGo6UMaDoWp3F6VQMbbZf5s4I9Q7X8fXhm/isjEEmPb48eP10ZOnzJs2DASExPp1q1blYdF367fRJGZTaF5krsmjyUldhx3XPMkLooopuwwZcodT9I8KJkQWzT79x8kLKxsC2Df/rLEeydPZgFw2YC+mKZJUZGL+PO6cctN93gl74Bb+9BnTA/Ov7g1TjEoMB3YRSjMyCLpCmuL6NSRTFxuyDxZ2eWua0IX7zqmDkyYMIHFixfz0ksvkZaWxsKFC7HZbIwcOZIXX3yRiIgIbrzxRr+9PxCJjo7m11+rXjFoqkJhUuxVCWRqVKYiMhI4ppTaeKZqVVyrNNVRSr1WYmwbG9tw8RxFhM8//5ywsDC++uqrSvdTunWmRYtYrriiP0opCvILAeGuqWN4+vn7S+sVFRZjiA2nLZzfT7yX48dPlN7r189j0lJuK+Dxxx8kKak1hmHHbjj5bv3WGmV1FblYdvsrHP5kIyERwRR6IrQXm0LmT2XWCX8b8yobMgo4lGt1+5gxZQlAvj20uFK7AF/mWfbOJbPSFStW1CjP6SQlJdG7d28mTZrEVVddxS233MKqVavIyclh3rx5TJ48udZtNnZiYmK8Dqaj8ZzmK9OrEsh4MzPtB1wjInuAt4FBIrLotDo+NX6tD0SEgQMH8txzz1VQeGAlr9u7fxNpn76NYRi8+80s3l3/V2bMvJvxd1xXWu9/F8wERxGffbOI4JBw+vbtg4hlH3hNqqXMcnNzOe+8KFK6daFTpw507doFQejVrwvvffQPasKwCY5gB84wy0Pm3SNFvHckj4SwAhyG4pm2kzn28wHm7/g368zv+aTgZwDmzJnNqFGj+OKLf5+x/QcXlc0ab775ZhYsWHCG2pXp1KkTW7ZUNCxv27Yt27dv5/Dhw14d9p1rJCQkcPCgdynBNVBitu9NCWiUUl4XrGABH1ZxfQRg5euF3sC3NbXVvXt31dDk5OSo3r17q2nTpp1VO88994py2OOV3Rar7LZoZbdFK5sRpZRS6v77piu7LVoFOWOVUkqZpqlWr/pSZWaerNDG9iefVWsHXKPSv1hb7XsWPLVc9QiZoHqETFBvdZmglnSZoGYl36W2vf+tigntoWLCeqiY0B51/h4ffPCBCgsLU7Nnz/b6mfT0dAWo1atX1/m95xqTJk1S1113XUOLUS8AG1QtdEhVxSYhKiqki1fFF+/zV6mznamI3OVRxq8CK4GrgZ1AHuBdDuQGJiwsjLS0NJKSknjooYfqnDo5OzsXQ2zEtojj8OF9lN/12LzZWsqXnDWJCIOHXFapjaLj6aAUxSerDggN8OIT75V+Xv6rHWXYsTe3M+6SC8peeRZnGyNHjiQtLY0RI0aQnp7O448/XuNhSYkZ0MCBA+v+4nOMhIQENm/e3NBiNBpK3EkbO7XygFJKfa6UGun5/KpHkeL5T2qKUqqtUqqLUqp+Q+ifBZGRkfTp04eHH36Yffv21amNkSOHkpDQgtnPz2Tf/m00b96cW8ePBeDDj5YyfvxYvv3uszO2cdHsmfT4YDEtrhl2xnol5BJEMQ6OnChgSKe76BTejY7BKRzLrrM3HAD9+/fn66+/Zs6cOUybNq2SxcHpxMRYaVrKm3s1dWJjY8nOzq65oqYUpUyvSiDTZNxJz8S8efMwTZOUlBT2799f8wPluDBxMEP734ndbMbo0SNp2bIlx0/sYv58K/Nkbm4ec+fN4ZJLznyiLiI4IiPOWAfAjg0DIcssJM9dTK4qwkQ4lZ1LTr6VuO5s6dy5Mxs3bmTJkiVMmDDBE16wamw2GyEhIbz+enVWc02PmJgY8vLyaq6o8aAwVbFXJZDRyhQrBuXcuXO57bbbmDFjRo2zsfJkZeZhiMGp9AK2ba1ooP76P96kRVx73nnn/UrP7dt9mI+WfVmrd42+bSAmJoOvT+EUeWSofPIpwjTdhKkQgpWjUhLAutKmTRs2b97MZ599xujRo6v1r7fb7dxyyy0sXLjQJ+89F9DKtLacGwdQWpmWY8aMGWzYsIEpU6awdWvNZktgZYVSKERsnH9BS95++12cjnjat7uUxNaWqe0bb7xd6blhl/0Xd094iqULPq3xHYd2HsM0TfZvPkQEwUyc/lteWfpHCijELW6iiATAwLeZLuPj49m2bRs//PADQ4cOrTaUXnmPJ43lGFKV/bKmahSglNurEshoZVqOyMhIVq5cSVZWFn379uWnn36q8ZnL4/sRayZwkepIeHg4GzdYBw979uwndaSViuKTtIr+8488/BTHM49imi5mTj+zedTtyX/i3u5PckPkvQwe35sREy8jqUM8/UZ2ZWve2xhikO9xJPCH73JUVBQ///wzx48fZ8CAAZw8ebJSHZfLRWhoaOWHmyixsbF6ZlorlN4zPRdp3bo1ixYt4uqrr2bjxjP5KVikH80iSeIJEstv+mRm2Wm84KD88fry5R8xberD/O3Zlyg088hUhziadZDc3OpzJGUez8FuGGAIT0yby6LXPsbtLhtU11/Wh05BcUz+Uypr8+bV4RvXTHBwMJs3b8YwDHr27MmRI0cq3J8yZQpr1qxh7969fnl/YyM6OpqioiI9O60Fepl/juJyuVizZg1du3atsa67BWSofE6oXHbvOMhDD9+Dtfi3E+lMItzRkmYhVtSmvz71Aq+8PB/TNHG5CxEM8t2nePG5N6pt/6g7lwK3Sa7LBQIuMbHbrSX15aG/54svfiSrsIDV8/2bxdJut7N+/XqSkpK49NJLKyjOlJQU+vbty+zZs/0qQ2PBZrMRGhrKzp07G1qUxoFSmMrlVQlktDKtgsLCQvLz81m3bl2Nnizvb/gb+VJIkRQREhpMcnIy4bZWBNmicFGIiZt8j9nQX2fNYN785wHBrfIxTRdKmVw+uOoAW6sWfE0ORRxx5ZKp8kmQZiTQrJLtZy4w+pGzSvntFYZhsHr1anr16sWll15aIZhH9+7dtW1lOaKjo9m1a1dDi9Eo8OWeqYgME5FfPOFAH/S/9GVoZVoFYWFhfPLJJ9x7770kJiYyderUautGNg+nW3xr2hjnsXj6cgAchhOnEUqIRGGl4baUaWrqWH7/+2kMHNQPgCLzFEXuXOJiq04Z8up9S4kQgzys5WKhaVJcxel/rMPJ/D8sp6igfkxH3nnnHVJTU+nduzebNm0CoEePHnomVo6YmJhaZ3Zoulix9r0r1ePJef8SVkjQi4CxInKR38Q+Da1Mq6FHjx6cOnWKgwcPMmfOnDOm3kg/loOI8O/l/wEghEiiJYE4EmhGDEOvHMKJExkkt2nLjWNG43Q4KdlLNTDYvL7qCENRCc2IdUYTQjAOHBThprjcgGp1QQwGhex0ZXLYlYHdWX8n6nPnzuXOO+9kwIABrFq1ikcffbRWZl7nOnFxcbW2WW7K+OgAqiewUyn1q1KqCCuWyLU1POMzmkzakrrgcDho1qwZQUFB2O3Vd5U0d5CdXkCBzZoZJhGPApzixK3c/HPZHKY/OJNfft6F6Vbs+fUoBiHERcVRkGvw6cdrGTVuUIU2T53IYd+eE7Tr2prDm3ZiYmJg4C6nTN/6cSZdQ28BIFdBt4jxdDk/CTmex2XjenPn7Jt83ynlmDVrFtHR0aSmplJYWMjvftcovIjrhfj4eA4dCuhYPwGEqs3hUoyIlPewfE2VpXuuKhRovQWp1zPTGvj888/p1avXGe0oxzx0FUflJI4WlsL9TbcLCJMQgrDTjAiCgoL47wcmM3BQP/42+3FAcNidvJ82lysG9eTBJ2+v1GZos2C6DepAz2FdmPTn60qTjj226LS6p7nO5x48BaZizVL/pCE5nQcffJAXXngBgKeeeqqG2k2HhIQEjh492tBiNCK8XuafUJ4wnp7yWrlGvAoF6i/0zLQGtmzZwpYtWyguLsZRTdqIWyYNp1NKW9pdlAjAP9Y8xuypC/nXPz6n2LNfmtAynpVpSwBY++1yXC4XXVM68s8P/15lmw6nnb9+ULZX2ywqApfLzdDr+1aod3GPNmzesBsE7pt5Awnx8axdtI5b/+e6s/3qXjNx4kSmTp1aKZRhUyYuLo6srKyGFqORoFC+Oalv2FCgDRWuKhBC8HmDy+VS4eHhau/evQ0tSkATERGhXnjhhYYWI2BYuHCh6tChQ0OL4XfwQUg8ECXi9Kqc6X1Yk8NfgTaAE/gB6HS28nlb9DK/Bnbt2oVSisTExIYWJaBZsGABjzzySCWD/qZKTExMte63mipQyrtyxiaUC7gb+AQr+edSpdS2epAe0HumNZKcnIzT6WTHjh0NLUpAM2rUKHr27EnHjh31XiGWMtUeUN6ivP5XY0tKrVRKtVdWONCZ9SB8KaIayJxFRI4DvvY/jAFO1FjLvwSCDBAYcmgZyggEOfwhw/lKqbNK6CYiaViyecMJpZR3QX/rmQZTpv5ARDYopXo0dRkCRQ4tQ2DJEQgynMvoZb5Go9H4AK1MNRqNxgeca8r0tZqr+J1AkAECQw4tQxmBIEcgyHDOck7tmWo0Gk1Dca7NTDUajaZB0MpUo9FofECjUKY1BXwVixc89zeLSDdvn/WxHOM8798sImtF5JJy9/aIyBYR+f60qDe+luEKETnlec/3IjLD22d9LMcD5WTYKiJuEYn23DvrvhCReSJyTESqzHxYj2OiJjnqY0zUJEO9jIkmT335rdbdbxcbsAtIpszf9qLT6lwNfIwVNaY3sN7bZ30sR1+guefz8BI5PL/vAWLqoS+uAD6sy7O+lOO0+qnAv33cFwOAbsDWau77fUx4KYdfx4SXMvh9TOjSOHzzvQn4ei3wprJYB0SJSIKXz/pMDqXUWqVUpufXdVhRa3zJ2Xyfeu2L0xgLLKnju6pEKfUlkHGGKvUxJmqUox7GhDd9UR0NGkz5XKMxKNOqAr628rKON8/6Uo7y3IE1MypBAZ+KyEYRmehnGfqIyA8i8rGIdKrls76UAxEJBYYBy8pd9kVf1FVGX/ZDbfHHmPAWf4+JJk9jiGfqTcDX6ur4Mlis122JyECsP5z+5S73U0odEpE4YJWI/OyZUfhahv9g+UvniMjVwHtAu9rI7yM5SkgFvlZKlZ85+aIv6ipjgwQQ9uOY8Ib6GBNNnsYwM/Um4Gt1dXwZLNartkTkYuB14FqlVHrJdaXUIc/PY8ByrCWWz2VQSmUppXI8n1cCDhGJ8VZ+X8lRjps4bYnvo76oq4z1HkDYz2OiRuppTGgaetO2poIXAV+BEVQ8bPjW22d9LEcSsBPoe9r1MCCi3Oe1wDA/yRBPmTNGT2Cfp1/qtS889SKx9vLCfN0XnucvoPpDF7+PCS/l8OuY8FIGv48JXVTgL/OVUi4RKQn4agPmKaW2ichdnvuvAiuxTm93AnnA7870rB/lmAGcB7wsVm57l7Ki9LQAlnuu2YG3lFJpfpLht8AkEXEB+cBNyvorqu++ABgFfKqUKh8l2Sd9ISJLsE6pY0TkAPAY4Cj3fr+PCS/l8OuY8FIGv48JjXYn1Wg0Gp/QGPZMNRqNJuDRylSj0Wh8gFamGo1G4wO0MtVoNBofoJWpRtMEqSk4ShX1x4jIjyKyTUTe8rd8jRF9mq/RNEFEZACQgxW/oHMNddsBS4FBSqlMEYlTlqOBphx6ZqrRNEFUFcFRRKStiKR5YgV8JSIdPLfuBF5SnoAtWpFWjVamGo2mhNeAe5RS3YH/Bl72XG8PtBeRr0VknYgEZN76hibgPaA0Go3/EZFwrNir//J4ZQEEeX7asQKjXIHlv/+ViHRWSp2sZzEDGq1MNRoNWKvUk0qprlXcOwCsU0oVA7tF5Bcs5fpdPcoX8OhlvkajQSmVhaUob4DStC8lKVbeAwZ6rsdgLft/bQg5AxmtTDWaJognOMo3wG9E5ICI3AGMA+4QkR+AbZRF3f8ESBeRH4H/Ax5Q5UIJaiy0aZRGo9H4AD0z1Wg0Gh+glalGo9H4AK1MNRqNxgdoZarRaDQ+QCtTjUaj8QFamWo0Go0P0MpUo9FofMD/A/F/3RqTEUwRAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#Student Exercise" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Summary\n", "\n", "OK, we covered a lot of ground with this one. These concepts are fundemental to all aspects of geospatial data analysis, and we'll see them throughout the rest of the quarter. So if some aspects are still a bit fuzzy, know that there will be more opportunities to revisit and discuss.\n", "\n", "* We covered basic operations, plotting, Geopandas GeoDataFrames and associated methods/attributes - these are great for most geospaital vector data and analysis.\n", " * Caveat: the standard GeoPandas tools are not ideally suited for workflows involving billions of points - these cases will require optimization (e.g., https://github.com/geopandas/dask-geopandas) and potentially a different suite of tools.\n", "* Hopefully you got a sense of the most common approaches to define projections (EPSG codes, proj strings, WKT), and now understand some of the tradeoffs between different projections for different objectives involving visualization or quantitative analysis.\n", " * For most applications, best to avoid using a geographic projection (lat/lon) for analysis (or visualization) due to scaling issues\n", " * In general, for local studies or smaller areas (<500x500 km), you can use the appropriate UTM zone, which has acceptable distortion in terms of distance, angles and areas\n", " * For larger areas, probably want to define a custom projection (remember https://projectionwizard.org/) or use a standard regional projection designed for your intended purpose\n", " * Be careful with Web Mercator - in the coming weeks we'll be using public raster tile datasets prepared with this projection, so try to remember some of the issues highlighted here\n", "* When plotting and doing anlaysis, all of your input datasets must share the same coordinate system, which may require reprojecting one (or more) datasets to match. You can then plot them on the same axes. We will do more of this in coming weeks to combine raster and vector data." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 4 }